
Vol.:(0123456789)

Journal of Nonlinear Mathematical Physics           (2024) 31:27 
https://doi.org/10.1007/s44198-024-00195-z

1 3

RESEARCH ARTICLE

Lie Symmetry Analysis, Power Series Solutions 
and Conservation Laws of (2+1)‑Dimensional Time 
Fractional Modified Bogoyavlenskii–Schiff Equations

Jicheng Yu1 · Yuqiang Feng2

Received: 23 January 2024 / Accepted: 15 April 2024 
© The Author(s) 2024

Abstract
In this paper, Lie symmetry analysis method is applied to the (2+1)-dimensional 
time fractional modified Bogoyavlenskii–Schiff equations, which is an important 
model in physics. The one-dimensional optimal system composed by the obtained 
Lie symmetries is utilized to reduce the system of (2+1)-dimensional fractional par-
tial differential equations with Riemann–Liouville fractional derivative to the system 
of (1+1)-dimensional fractional partial differential equations with Erdélyi–Kober 
fractional derivative. Then the power series method is applied to derive explicit 
power series solutions for the reduced system. In addition, the new conservation 
theorem and the generalization of Noether operators are developed to construct the 
conservation laws for the equations studied.

Keywords Lie symmetry analysis · Fractional modified Bogoyavlenskii–Schiff 
equations · Riemann–Liouville fractional derivative · Erdélyi–Kober fractional 
derivative · Conservation laws.
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1 Introduction

The (2+1)-dimensional modified Bogoyavlenskii–Schiff equations are the impor-
tant mathematical physical equations to describe the (2+1)-dimensional interac-
tion of a Riemann wave propagating along the y-axis with a long wave along the 
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x-axis. The equations are firstly derived by Bogoyavlenskii [1] and Schiff [2], 
which are given by

Since then, Eq. (1) have been studied by many scholars with different meth-
ods in [3–8]. Among them, in [8], Kumar and Manju studied the integral order 
(2+1)-dimensional modified Bogoyavlenskii–Schiff equations by using Lie symme-
try analysis method. They obtained the one-dimensional optimal subalgebras, opti-
mal reductions and analytical solutions for Eq. (1).

As a generalization of the classical calculus, fractional calculus can be traced 
back to the letter written by L’Hôspital to Leibniz in 1695. Since then, it has 
gradually gained the attention of mathematicians. Especially in recent decades, 
it has developed rapidly and been successfully applied in many fields of science 
and technology [9–12]. Therefore, it is very important to find the solution of frac-
tional differential equation. So far, there have been some numerical and analytical 
methods, such as Adomian decomposition method [13], finite difference method 
[14], homotopy perturbation method [15], the sub-equation method [16], the vari-
ational iteration method [17], Lie symmetry analysis method [18], invariant sub-
space method [19] and so on. Among them, Lie symmetry analysis method has 
received an increasing attention.

Lie symmetry analysis method was founded by Norwegian mathematician 
Sophus Lie at the end of the nineteenth century and then further developed by 
some other mathematicians, such as Ovsiannikov [20], Olver [21], Ibragimov 
[22–24] and so on. As a modern method among many analytic techniques, Lie 
symmetry analysis has been extended to fractional differential equations (FDEs) 
by Gazizov et al. [18] in 2007. It was then effectively applied to various models 
of the FDEs occurring in different areas of applied science (see [25–41]).

In this paper, Lie symmetry analysis method is extended to the following 
(2+1)-dimensional time fractional modified Bogoyavlenskii–Schiff equations:

with 0 < 𝛼 < 1 . When y = x , the above equations become an (1+1)-dimensional 
time fractional mKdV equation, i.e.,

which is also researched by several scholars. As we all know, there are many types 
of definitions for fractional derivative, such as Riemann–Liouville type, Caputo 
type, Weyl type and so on. This paper adopts Riemann–Liouville fractional deriva-
tive defined by

(1)
{

ut + uxxy − 4u2uy − 2uxv = 0,

vx = 2uuy.

(2)
{

D�
t
u + uxxy − 4u2uy − 2uxv = 0,

vx = 2uuy,

(3)D�

t
u − 6u2ux + uxxx = 0,
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for t > a . We denote the operator 0D�
t
 as D�

t
 throughout this paper.

The aim of this paper is to find all Lie symmetries for Eq. (2) by using Lie sym-
metry analysis method and reduce Eq. (2) to (1+1)-dimensional time fractional partial 
differential equations or time fractional ordinary differential equations. Moreover, we 
will derive explicit power series solutions by the power series method for the reduced 
equations and construct the conservation laws by the new conservation theorem and the 
generalization of Noether operators.

This paper is organized as follows. In Sect. 2, Lie symmetry analysis of Eqs. (2) is 
presented. In Sect. 3, the reduced equations, power series solutions and some trivial 
solutions for Eq. (2) are obtained. The conserved vectors for the symmetries admitted 
by Eq. (2) are constructed in Sects. 4, and the conclusion is given in the last section.

2  Lie Symmetry Analysis of Eq. (2)

2.1  Lie Symmetries

Consider the (2+1)-dimensional time fractional modified Bogoyavlenskii–Schiff equa-
tions (2), which are assumed to be invariant under the one-parameter ( � ) Lie group of 
continuous point transformations, i.e.

where � , � , � , � and � are infinitesimals and ��,t , �x , � x , �y , � y , �xx , �xxy are the corre-
sponding prolongations of orders � , 1, 2 and 3, respectively.

The corresponding group generator is defined by

So the prolongation of the above group generator X has the form

where

aD
𝛼

t
f (t, x) = Dn

t aI
n−𝛼
t

f (t, x) =

⎧
⎪⎨⎪⎩

1

Γ(n−𝛼)

dn

dtn
∫ t

a

f (s,x)

(t−s)𝛼−n+1
ds, n − 1 < 𝛼 < n, n ∈ ℕ

Dn
t
f (t, x), 𝛼 = n ∈ ℕ

(4)

t∗ =t + ��(t, x, y, u, v) + o(�), x∗ = x + ��(t, x, y, u, v) + o(�),

y∗ =y + ��(t, x, y, u, v) + o(�), u∗ = u + ��(t, x, y, u, v) + o(�),

v∗ =v + ��(t, x, y, u, v) + o(�), D�

t∗
u∗ = D�

t
u + ���,t + o(�),

Dx∗u
∗ =Dxu + ��x + o(�), Dx∗v

∗ = Dxv + �� x + o(�),

Dy∗u
∗ =Dyu + ��y + o(�), Dy∗v

∗ = Dyv + �� y + o(�),

D2

x∗
u∗ =D2

x
u + ��xx + o(�), Dx∗x∗y∗u

∗ = Dxxyu + ��xxy + o(�),

(5)X = �
�

�t
+ �

�

�x
+ �

�

�y
+ �

�

�u
+ �

�

�v
.

(6)prX = X + ��,t
�

�u�t
+ �x

�

�ux
+ � x

�

�vx
+ �y

�

�uy
+ �xxy

�

�uxxy
,
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with

and

where Dt , Dx and Dy are the total derivative with respect to t, x and y, respectively.

Remark 1 The infinitesimal transformations (4) should conserve the structure of the 
Riemann–Liouville fractional derivative operator, of which the lower limit in the 
integral is fixed. Therefore, the manifold t = 0 should be invariant with respect to 
such transformations. The invariance condition arrives at

Remark 2 From the expressions of �1 and �2 , if the infinitesimals � and � be linear 
with respect to the variables u and v, then �1 = �2 = 0 , that is,

(7)

��,t = D�

t
(�) − D�+1

t
(�u) + D�

t
[Dt(�)u] + �D�+1

t
(u) + �D�

t
(ux) − D�

t
(�ux)

+ �D�

t
(uy) − D�

t
(�uy)

=
���

�t�
+ (�u − �Dt(�))

��u

�t�
− u

���u

�t�
+ (�v

��v

�t�
− v

���v

�t�
) + �1 + �2

+

∞∑
n=1

[

(
�

n

)
�n�u

�tn
−

(
�

n + 1

)
Dn+1

t
(�)]D�−n

t
(u) +

∞∑
n=1

(
�

n

)
�n�v

�tn
D�−n

t
(v)

−

∞∑
n=1

(
�

n

)
Dn

t
(�)D�−n

t
(ux) −

∞∑
n=1

(
�

n

)
Dn

t
(�)D�−n

t
(uy),

�1 =

∞∑
n=2

n∑
m=2

m∑
k=2

k−1∑
r=0

(
�

n

)(
n

m

)(
k

r

)
tn−�(−u)r

k!Γ(n + 1 − �)

�muk−r

�tm
�n−m+k�

�tn−m�uk
,

�2 =

∞∑
n=2

n∑
m=2

m∑
k=2

k−1∑
r=0

(
�

n

)(
n

m

)(
k

r

)
tn−�(−v)r

k!Γ(n + 1 − �)

�mvk−r

�tm
�n−m+k�

�tn−m�vk
,

(8)�x =Dx(�) − utDx(�) − uxDx(�) − uyDx(�),

(9)�y =Dy(�) − utDy(�) − uxDy(�) − uyDy(�),

(10)� x =Dx(�) − vtDx(�) − vxDx(�) − vyDx(�),

(11)�xx =Dx(�
x) − uxtDx(�) − uxxDx(�) − uxyDx(�),

(12)�xxy =Dy(�
xx) − uxxtDy(�) − uxxxDy(�) − uxxyDy(�),

(13)�(t, x, y, u, v)|t=0 = 0.

(14)
�2�

�u2
=

�2�

�v2
= 0.
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The one-parameter Lie symmetry transformations (4) are admitted by the system 
(2), if the following invariance criterion holds:

which can be rewritten as

Putting ��,t , �x , � x , �y and �xxy into (16) and letting coefficients of various derivatives 
of u and v to be zero, we can obtain the over-determined system of differential equa-
tions as follows:

Solving these equations altogether, with the conditions (13) and (14), we can obtain 
infinitesimals as follows:

where c1 , c2 , c3 and c4 are arbitrary constants.
So the system (2) admitted the four-dimension Lie algebra spanned by

(15)
{

prX
(
D�

t
u + uxxy − 4u2uy − 2uxv

)|(1.2) = 0,

prX(vx − 2uuy)|(1.2) = 0,

(16)
{(

��,t + �xxy − 4u2�y − 2v�x − 8uuy� − 2ux�
)|(1.2) = 0,(

� x − 2u�y − 2uy�
)|(1.2) = 0.

(17)�x =�y = �u = �v = 0, �t = �x = �u = �v = 0,

(18)�t =�u = �v = �v = �u = 0, �uu = �uu = �uv = �vv = 0,

(19)
(
�

n

)
�n�u

�tn
−

(
�

n + 1

)
Dn+1

t
(�) = 0, n ∈ N,

(20)2�x + �y − ��t = 0,

(21)v(�x − ��t) − � = 0,

(22)u(�y − ��t) − 2� = 0,

(23)u(�v + �y − �u − �x) − � = 0,

(24)
���

�t�
− u

���u

�t�
− v

���v

�t�
+ �xxy − 4u2�y − 2v�x = 0.

(25)
� = c1t, � = c2x + c3, � = (�c1 − 2c2)y + c4, � = −c2u, � = (c2 − �c1)v,

(26)

X1 = t
�

�t
+ �y

�

�y
− �v

�

�v
, X2 = x

�

�x
− 2y

�

�y
− u

�

�u
+ v

�

�v
, X3 =

�

�x
, X4 =

�

�y
.
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2.2  One‑Dimensional Optimal System

It is easy to check that the group generators in (26) are closed under the Lie 
bracket defined by

The commutation relationships of these group generators can be seen in Table 1.
Then we consider the action of the adjoint operator which is given by the Lie 

series

where � is an arbitrary parameter. According to (28), we calculate the adjoint action 
of the group generators in (26) which is listed in Table 2.

From Tables 1 and 2, by Olver’s method [21], the optimal system for the one-
dimensional subalgebras of Eq. (2) can be obtained as the following forms:

3  Similarity reductions and invariant solutions of Eq. (2)

In this section, the aimed equations (2) can be reduced to (1+1)-dimensional time 
fractional partial differential equations with the left-hand Erdélyi–Kober frac-
tional derivative. Then the reduced equations can be solved by the power series 

(27)[Xi,Xj] = XiXj − XjXi, (i, j = 1, 2, 3, 4).

(28)Ad(exp(�Xi))Xj = Xj − �[Xi,Xj] +
�2

2
[Xi, [Xi,Xj]] −⋯ ,

(29)X1, X2, X3, X4, X1 + �X2, X3 + �X4.

Table 1  The commutation table 
of Lie algebra

 [Xi,Xj] X1 X2 X3 X4

X1  0  0  0 −�X4

X2  0  0 −X3 2X4

X3  0 X3  0  0
X4 �X4 −2X4  0  0

Table 2  The adjoint 
representation of Lie algebra

 
Ad(exp(�Xi))Xj

X1 X2 X3 X4

X1 X1 X2 X3 e��X4

X2 X1 X2 e�X3 e−2�X4

X3 X1 e−�X2 X3 X4

X4 X1 − ��X4 X2 + 2�X4 X3 X4



1 3

Journal of Nonlinear Mathematical Physics           (2024) 31:27  Page 7 of 23    27 

method and Laplace transform method to construct the invariant solutions for Eq. 
(2). In what follows, we consider the following cases.

Case 1: X1 + �X2

For the convenience of calculation, assuming � =
�

2
 , we can obtain the follow-

ing group generator:

which can also be obtained by making c2 =
�

2
c1 in (25). The characteristic equation 

corresponding to the group generator X1 +
�

2
X2 is

from which, we obtain the similarity variables xt−
�

2 , y, ut
�

2 and vt
�

2 . So we get the 
invariant solutions of the system (2) as follows:

with �1 = xt
−

�

2 , �2 = y.

Theorem  2.1 The similarity transformations u(t, x, y) = t
−

�

2 f (�1,�2) , 
v(t, x, y) = t

−
�

2 g(�1,�2) with the similarity variables �1 = xt
−

�

2 , �2 = y reduce the 
system (2) to the system of (1+1)-dimensional fractional differential equations given 
by

where (P�,�

�1,�2
) is the left-hand Erdélyi–Kober fractional differential operator defined 

by

where

is the left-hand Erdélyi–Kober fractional integral operator.

X1 +
�

2
X2 = t

�

�t
+

�

2
x
�

�x
−

�

2
u
�

�u
−

�

2
v
�

�v
,

(30)dt

t
=

2dx

�x
=

dy

0
=

2du

−�u
=

2dv

−�v
,

(31)u(t, x, y) = t
−

�

2 f (�1,�2), v(t, x, y) = t
−

�

2 g(�1,�2),

(32)

⎧⎪⎨⎪⎩

(P
1−

3�

2
,�

2

�
,∞

f )(�1,�2) + f�1�1�2
− 4f 2f�2

− 2f�1
g = 0,

g�1
− 2ff�2

= 0,

(33)

(P𝜄,𝜅

𝛿1,𝛿2
𝜓)(𝜔1,𝜔2) ∶=

m−1∏
j=0

(
𝜄 + j −

1

𝛿1
𝜔1

𝜕

𝜕𝜔1

−
1

𝛿2
𝜔2

𝜕

𝜕𝜔2

)(K𝜄+𝜅,m−𝜅

𝛿1,𝛿2
𝜓

)
(𝜔1,𝜔2), 𝜅 > 0,

m =

{
[𝜅] + 1, if 𝜅 ∉ ℕ,

𝜅, if 𝜅 ∈ ℕ,

(34)

(K𝜄,𝜅

𝛿1,𝛿2
𝜓)(𝜔1,𝜔2) ∶=

{
1

Γ(𝜅)
∫ ∞

1
(s − 1)𝜅−1s−(𝜄+𝜅)𝜓(𝜔1s

1

𝛿1 ,𝜔2s
1

𝛿2 )ds, 𝜅 > 0,

𝜓(𝜔1,𝜔2), 𝜅 = 0,
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Proof For 0 < 𝛼 < 1 , the Riemann–Liouville time fractional derivative of u(t, x) can 
be obtained as follows:

Assuming r = t

s
 , we have

Because of �1 = xt
−

�

2 and �2 = y , the following relation holds:

Hence, we arrive at

Meanwhile,

This completes the proof.   ◻

Next we use the power series method introduced in [42, 43] to derive the power 
series solutions of the reduced equations (32). Let us introduce the variable 
� = �1 + a�2 and assume

where ak and bk are constants to be determined later. Substituting (35) and (36) into 
the reduced equations (32) and using the derivations in [43] yields that

��u

�t�
=

��

�t�
(t−

�

2 f (�1,�2)) =
�

�t

[
1

Γ(1 − �) ∫
t

0

(t − s)−�s
−�

2 f (xs−
�

2 , y)ds

]
.

��u

�t�
=

�

�t

[
t
1−

3�

2

Γ(1 − �) ∫
∞

1

(r − 1)−�r
3�

2
−2
f (�1r

�

2 ,�2)dr

]
=

�

�t

[
t
1−

3�

2 (K
1−

�

2
,1−�

2

�
,∞

f )(�1,�2)

]
.

t
�

�t
�(�1,�2) = tx

(
−
�

2

)
t
−

�

2
−1
��1

= −
�

2
�1

�

��1

�(�1,�2).

�

�t

[
t
1−

3�

2

(
K

1−
�

2
,1−�

2

�
,∞

f

)
(�1,�2)

]
=t−

3�

2

[(
1 −

3�

2
−

�

2
�1

�

��1

)(
K

1−
�

2
,1−�

2

�
,∞

f

)
(�1,�2)

]

=t−
3�

2

(
P
1−

3�

2
,�

2

�
,∞

f

)
(�1,�2).

uxxy − 4u2uy − 2uxv = t
−

3�

2 (f�1�1�2
− 4f 2f�2

− 2f�1
g),

vx − 2uuy = t−�(g�1
− 2ff�2

).

(35)f (�1,�2) =f (�) =

∞∑
k=0

ak(�1 + a�2)
k =

∞∑
k=0

ak�
k,

(36)g(�1,�2) =g(�) =

∞∑
k=0

bk(�1 + a�2)
k =

∞∑
k=0

bk�
k,
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Equating the coefficients of different powers of � arrives at the following system:

from which, we can obtain the explicit expressions of ak and bk . For k = 0 , we have

For k = 1 , we have

For k = 2 , we have

For k > 2 , we have

In what follows, applying the method in [44, 45], the convergence analysis of the 
power series solutions for the system (32) will be presented. From (40)–(43), we get

(37)

∞∑
k=0

Γ
(
1 −

(k+1)�

2

)

Γ
(
1 −

(k+3)�

2

)ak�k + a

∞∑
k=0

(k + 3)(k + 2)(k + 1)ak+3�
k

− 4a

∞∑
k=0

∑
l+m+n=k

(n + 1)alaman+1�
k − 2

∞∑
k=0

∑
m+n=k

(n + 1)bman+1�
k = 0,

(38)
∞∑
k=0

(k + 1)bk+1�
k − 2a

∞∑
k=0

∑
m+n=k

(n + 1)aman+1�
k = 0.

(39)

⎧
⎪⎨⎪⎩

Γ(1−
(k+1)�

2
)

Γ(1−
(k+3)�

2
)
ak − 4a

∑
l+m+n=k

(n + 1)alaman+1 − 2
∑

m+n=k
(n + 1)bman+1

+a(k + 3)(k + 2)(k + 1)ak+3 = 0,

(k + 1)bk+1 − 2a
∑

m+n=k
(n + 1)aman+1 = 0,

(40)

{
b1 = 2aa0a1,

a3 = −
1

6a

[
Γ(1−

�

2
)

Γ(1−
3�

2
)
a0 − 4aa2

0
a1 − 2b0a1

]
.

(41)

{
b2 = a(a2

1
+ 2a0a2),

a4 = −
1

24a

[
Γ(1−�)

Γ(1−2�)
a1 − 8a(a0a

2

1
+ a2

0
a2) − 2(a1b1 + 2b0a2)

]
.

(42)

{
b3 = 2a(a1a2 + a0a3),

a5 = −
1

60a

[
Γ(1−

3�

2
)

Γ(1−
5�

2
)
a2 − 4a(a3

1
+ 3a2

0
a3 + 6a0a1a2) − 2(a1b2 + 2b1a2 + 3b0a3)

]
.

(43)

⎧⎪⎪⎨⎪⎪⎩

bk+1 =
2a

(k+1)

∑
m+n=k

(n + 1)aman+1,

ak+3 =
−1

a(k+3)(k+2)(k+1)

�
Γ(1−

(k+1)�

2
)

Γ(1−
(k+3)�

2
)
ak − 4a

∑
l+m+n=k

(n + 1)alaman+1

−2
∑

m+n=k
(n + 1)bman+1

�
.
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with M = max

(
Γ
(
1−

(k+1)�

2

)

6aΓ
(
1−

(k+3)�

2

) , 2
3
,

1

3a

)
 . Assuming

with c0 = |a0| , d0 = |b0| , c1 = |a1| , c2 = |a2| and

that is, |ak| ≤ ck , |bk| ≤ dk , k = 0, 1, 2… , we can get

Consider the implicit functional system with respect to the independent variable �,

from which, H and I are analytic in the neighborhood of point (0, c0, d0) and

The Jacobian determinant is

(44)

��bk+1� ≤ 2a
∑

m+n=k
�am��an+1�,

�ak+3� ≤ M
�
�ak� +∑

l+m+n=k
�al��am��an+1� +∑

m+n=k
�bm��an+1�

�
,

(45)C(�) =

∞∑
k=0

ck�
k, D(�) =

∞∑
k=0

dk�
k,

(46)
�

dk+1 = 2a
∑

m+n=k
cmcn+1, k = 0, 1, 2… ,

ck+3 = M(ck +
∑

l+m+n=k
clcmcn+1 +

∑
m+n=k

dmcn+1), k = 0, 1, 2… ,

(47)

C(�) = c0 + c1� + c2�
2 +

∞∑
k=0

ck+3�
k+3

= c0 + c1� + c2�
2 +M

∞∑
k=0

(
ck +

∑
l+m+n=k

clcmcn+1 +
∑

m+n=k

dmcn+1

)
�k+3

= c0 + c1� + c2�
2 +MC(�)�3 +M

∞∑
k=0

[ ∑
l+m+n=k

clcmcn+1 +
∑

m+n=k

dmcn+1

]
�k+3,

(48)D(�) = d0 +

∞∑
k=0

dk+1�
k+1 = d0 + 2a

∞∑
k=0

∑
m+n=k

cmcn+1�
k+1.

(49)
H(�,C,D) = C − c0 − c1� − c2�

2 −MC�3 −M

∞∑
k=0

[ ∑
l+m+n=k

clcmcn+1

+
∑

m+n=k

dmcn+1

]
�k+3,

(50)I(�,C,D) = D − d0 − 2a

∞∑
k=0

∑
m+n=k

cmcn+1�
k+1,

(51)H(0, c0, d0) = 0, I(0, c0, d0) = 0.
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Then the two series C = C(�) and D = D(�) are analytic in the neighborhood of 
(0, c0, d0) with positive radius by implicit function theorem, that is, the series f (�) 
and g(�) are convergent in the neighborhood of (0, c0, d0).

Therefore, the power series solutions of (2+1)-dimensional time fractional 
modified Bogoyavlenskii–Schiff equations (2) have the form 

 where ak and bk are defined by (40)–(43) with arbitrary initial conditions 
a0 = f (0, 0) , b0 = g(0, 0) , a1 = f �(0, 0) and a2 =

1

2
f ��(0, 0).

Case 2: X1

The characteristic equation corresponding to the group generator X1 is

from which, we obtain the similarity variables x, yt−� , u and vt� . So we get the invar-
iant solutions of the system (2) as follows:

with �1 = x , �2 = yt−�.

Theorem  2.2 The similarity transformations u(t, x, y) = f (�1,�2) , 
v(t, x, y) = t−�g(�1,�2) with the similarity variables �1 = x , �2 = yt−� reduce the 
system (2) to the system of (1+1)-dimensional fractional differential equations given 
by

(52)J =
�(H, I)

�(C,D)
≠ 0.

(53a)

u(t, x, y) = t
−

�

2 f (�) = t
−

�

2

∞∑
k=0

ak(xt
−

�

2 + ay)k = a0t
−

�

2 + a1(xt
−

�

2 + ay)t−
�

2

+a2(xt
−

�

2 + ay)2t−
�

2 +

∞∑
k=0

−t−
�

2

a(k + 3)(k + 2)(k + 1)

[Γ
(
1 −

(k+1)�

2

)

Γ
(
1 −

(k+3)�

2

)ak

−4a
∑

l+m+n=k

(n + 1)alaman+1 − 2
∑

m+n=k

(n + 1)bman+1

]
(xt−

�

2 + ay)k+3,

(53b)

v(t, x, y) = t
−

�

2 g(�) = t
−

�

2

∞∑
k=0

bk(xt
−

�

2 + ay)k

= b0t
−

�

2 +

∞∑
k=0

2at
−

�

2

(k + 1)

∑
m+n=k

(n + 1)aman+1(xt
−

�

2 + ay)k+1,

(54)
dt

t
=

dx

0
=

dy

�y
=

du

0
=

dv

−�v
,

(55)u(t, x, y) = f (�1,�2), v(t, x, y) = t−�g(�1,�2),
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The proof of Theorem 2.2 is similar to that of Theorem 2.1. Meanwhile, assuming 
� = �2 + a�1 and using the procedure in Case 1, we can obtain the power series 
solution of Eqs. (2) as follows: 

 with arbitrary initial conditions a0 = f (0, 0) , b0 = g(0, 0) , a1 = f �(0, 0) and 
a2 =

1

2
f ��(0, 0).

Case 3: X2

The characteristic equation corresponding to the group generator X2 is

from which, we obtain the similarity variables t, yx2 , ux and vx−1 . So we get the 
invariant solutions of the system (2)

and the reduced equations

which is (1+1)-dimensional time fractional partial differential equations. For 
Eqs. (60), we can once again use the Lie symmetry analysis method to further 
reduce them to fractional ordinary differential equations, and obtain the following 
generators:

(56)

⎧
⎪⎨⎪⎩

(P1−�,�

∞,
1

�

f )(�1,�2) + f�1�1�2
− 4f 2f�2

− 2f�1
g = 0,

g�1
− 2ff�2

= 0.

(57a)

u(t, x, y) = f (�) =

∞∑
k=0

ak(yt
−� + ax)k = a0 + a1(yt

−� + ax)

+ a2(yt
−� + ax)2 +

∞∑
k=0

−1

(k + 3)(k + 2)(k + 1)a2

[ Γ(1 − k�)

Γ(1 − (k + 1)�)
ak

− 4
∑

l+m+n=k

(n + 1)alaman+1 − 2a
∑

m+n=k

(n + 1)bman+1

]
(yt−� + ax)k+3,

(57b)

v(t, x, y) = t−�g(�) = t−�
∞∑
k=0

bk(yt
−� + ax)k

= b0t
−� +

∞∑
k=0

2t−�

(k + 1)a

∑
m+n=k

(n + 1)aman+1(yt
−� + ax)k+1,

(58)
dt

0
=

dx

x
=

dy

−2y
=

du

−u
=

dv

v
,

(59)u = x−1f (t,X), v = xg(t,X), X = yx2,

(60)
{

D�
t
f + 4X2fXXX + 6XfXX − 4f 2fX − 4XgfX + 2fg = 0,

2ffX − 2XgX − g = 0,
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For �1 =
�

�X
 , Eqs. (60) have the following invarant solutions:

Substituting (62) into Eqs. (60), we get the following solutions:

That is, Eqs. (2) have one trivial solution, i.e.,

For �2 = t
�

�t
+ �X

�

�X
− �g

�

�g
 , Eqs. (60) have the following invarant solutions:

Substituting (65) into Eqs. (60), we can obtain the following fractional ordinary dif-
ferential equations:

The power series solution of (66) can be obtained as

where ak and bk are defined by a0 = f (0) , a1 =
1

4a0Γ(1−�)
−

1

2
 , b0 = 2a0a1 , 

a2 =
[

Γ(1−�)

Γ(1−2�)
a1 − 8a0a

2

1
+ 4b0a1 − 4a0a1

]
∕(8a2

0
− 12) and

That is, Eqs. (2) have the following power series solution: 

(61)�1 =
�

�X
, �2 = t

�

�t
+ �X

�

�X
− �g

�

�g
.

(62)f (t,X) = F(t), g(t,X) = G(t).

(63)F(t) =
C0

Γ(�)
t�−1, G(t) = 0,

(64)u =
C0

Γ(�)
x−1t�−1, v = 0.

(65)f (t,X) = F(�), g(t,X) = t−�G(�), � = Xt−� .

(66)

{
(P1−�,�

1

�

F)(�) + 4�2F��� + 6�F�� − 4F2F� − 4�GF� − 2FG = 0,

2FF� − 2�G� − G = 0.

(67)F(�) =

∞∑
k=0

ak�
k, G(�) =

∞∑
k=0

bk�
k,

(68)

⎧⎪⎨⎪⎩

bk+1 =
2

2k+3

∑
m+n=k+1

(n + 1)aman+1,

ak+3 =
Γ(1−(k+2)�)

Γ(1−(k+3)�)
ak+2−4

∑n≠k+2
l+m+n=k+2

(n+1)alaman+1−4
∑

m+n=k+1
(n+1)bman+1−2

∑
m+n=k+2

aman

4(k+3)a2
0
−4(k+3)(k+2)(k+1)−6(k+3)(k+2)

.
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Case 4: X3

The characteristic equation corresponding to the group generator X3 is

from which, we obtain the similarity variables t, y, u and v. So we get the invariant 
solutions of the system (2) as follows:

Substituting (71) into Eqs. (2), we have the following reduced equations:

which is rewritten as

We can easily use the Laplace transform of Riemann–Liouville fractional derivative, 
i.e.,

to obtain the exact solutions of (73) as

where k1 is a constant determined by initial condition, i.e., k1 = f (�−1)(0).

(69a)

u(t, x, y) =x−1f (t,X) = x−1F(�) = a0x
−1 +

�
1

4a0Γ(1 − �)
−

1

2

�
xyt−�

+

��
Γ(1 − �)

Γ(1 − 2�)
a1 − 8a0a

2

1
+ 4b0a1 − 4a0a1

�
∕(8a2

0
− 12)

�
x3y2t−2�

+

∞�
k=0

⎡
⎢⎢⎣

Γ(1−(k+2)�)

Γ(1−(k+3)�)
ak+2 − 4

∑n≠k+2
l+m+n=k+2

(n + 1)alaman+1

4(k + 3)a2
0
− 4(k + 3)(k + 2)(k + 1) − 6(k + 3)(k + 2)

−
4
∑

m+n=k+1
(n + 1)bman+1 + 2

∑
m+n=k+2

aman

4(k + 3)a2
0
− 4(k + 3)(k + 2)(k + 1) − 6(k + 3)(k + 2)

�
x2k+5yk+3t−(k+3)� ,

(69b)

v(t, x, y) =xg(t,X) = xt−�G(�) = 2a0a1xt
−�

+

∞∑
k=0

2

2k + 3

∑
m+n=k+1

(n + 1)aman+1x
2k+3yk+1t−(k+2)� .

(70)dt

0
=

dx

1
=

dy

0
=

du

0
=

dv

0
,

(71)u = f (t, y), v = g(t, y).

(72)
{

D�
t
f − 4f 2fy = 0,

2ffy = 0,

(73)D�

t
f (t) = 0.

(74)L{D𝛼

t
f (t)} = s𝛼F(s) −

n−1∑
k=0

skf (𝛼−k−1)(0), n − 1 < 𝛼 ≤ n, n ∈ N

(75)f (t) =
k1

Γ(�)
t�−1,
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In this case, we obtain the following trivial solutions:

where g(t, y) is an arbitrary function.
Case 5: X4

The characteristic equation corresponding to the group generator X4 is

from which, we obtain the similarity variables t, x, u and v. So we get the invariant 
solutions of the system (2)

and the reduced equations

Now we use invariant subspace method for (79) and find that they admit the follow-
ing invariant subspace:

from which, the solutions of (79) have the form f = f1(t) + f2(t)x , g = g(t) . So (79) 
can be rewritten as

from which, we can get f2(t) =
k2

Γ(�)
t�−1 with k2 = f

(�−1)

2
(0) and

Then solving the equation (81), we obtain

where k1 and � are arbitrary constants.
In this case, we obtain the following trivial solutions:

Case 6: X3 + �X4

The characteristic equation corresponding to the group generator X3 + �X4 is

(76)u =
k1

Γ(�)
t�−1, v = g(t, y),

(77)dt

0
=

dx

0
=

dy

1
=

du

0
=

dv

0
,

(78)u = f (t, x), v = g(t, x).

(79)
{

D�
t
f − 2fxg = 0,

gx = 0.

W1

2
×W2

2
= {1, x} × {1, x},

(80)D�

t
f1 + xD�

t
f2 − 2f2g = 0,

(81)D�

t
f1 −

2k2

Γ(�)
t�−1g = 0.

(82)f1(t) = k1t
� , g(t) =

k1Γ(�)Γ(� + 1)

2k2Γ(� − � + 1)
t�−2�+1,

(83)u = k1t
� +

k2

Γ(�)
t�−1x, v =

k1Γ(�)Γ(� + 1)

2k2Γ(� − � + 1)
t�−2�+1.
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from which, we obtain the similarity variables t, y − �x , u and v. So we get the 
invariant solutions of the system (2)

and the reduced equations

which can be further reduced to fractional ordinary differential equations by using 
Lie symmetry analysis method once again. The following generators are admitted 
by (86):

For �1 =
�

�X
 , similarly to Case 3, we can get another one trivial solution, i.e.,

For �2 = t
�

�t
+

�

3
X

�

�X
−

�

3
f
�

�f
−

2�

3
g

�

�g
 , Eqs. (86) have the following invarant 

solutions:

Substituting (89) into Eqs. (86), we can obtain the following fractional ordinary dif-
ferential equations:

The power series solution of (3.61) can be obtained as

where ak and bk are defined by a0 = f (0) , b0 = g(0) , a1 = f �(0) , a2 =
1

2
f ��(0) and

(84)
dt

0
=

dx

1
=

dy

�
=

du

0
=

dv

0
,

(85)u = f (t,X), v = g(t,X), X = y − �x,

(86)
{

D�
t
f + �2fXXX − 4f 2fX + 2�fXg = 0,

2ffX + �gX = 0,

(87)�1 =
�

�X
, �2 = t

�

�t
+

�

3
X

�

�X
−

�

3
f
�

�f
−

2�

3
g
�

�g
.

(88)u =
C0

Γ(�)
t�−1, v = 0.

(89)f (t,X) = t
−

�

3 F(�), g(t,X) = t
−

2�

3 G(�), � = Xt
−

�

3 .

(90)

⎧⎪⎨⎪⎩

(P
1−

4�

3
,�

3

�

F)(�) + �2F��� − 4F2F� + 2�GF� = 0,

2FF� + �G� = 0.

(91)F(�) =

∞∑
k=0

ak�
k, G(�) =

∞∑
k=0

bk�
k,
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That is, Eqs. (2) have the following power series solution: 

4  Conservation Laws of Eq. (2)

In this section, we will construct conservation laws of Eq. (2) by using the generaliza-
tion of the Noether operators and the new conservation theorem [46, 47].

The system (2) is denoted as

of which the formal Lagrangian is given by

where p(t,  x,  y) and q(t,  x,  y) are new dependent variables. The Euler–Lagrange 
operators are

(92)

⎧
⎪⎪⎨⎪⎪⎩

bk+1 = −
2

(k+1)�

∑
m+n=k

(n + 1)aman+1,

ak+3 =
−1

(k+3)(k+2)(k+1)�2

�
Γ(1−

(k+1)�

3
)

Γ(1−
(k+4)�

3
)
ak − 4

∑
l+m+n=k

(n + 1)alaman+1

+2�
∑

m+n=k
(n + 1)bman+1

�
.

(93a)

u(t, x, y) =f (t,X) = t
−

�

3 F(�) = a0t
−

�

3 + a1(y − �x)t−
2�

3 + a2(y − �x)2t−�

+

∞∑
k=0

−1

(k + 3)(k + 2)(k + 1)�2

[Γ(1 − (k+1)�

3
)

Γ(1 −
(k+4)�

3
)
ak − 4

∑
l+m+n=k

(n + 1)

alaman+1 + 2�
∑

m+n=k

(n + 1)bman+1

]
(y − �x)k+3t−

(k+4)�

3 ,

(93b)
v(t, x, y) =g(t,X) = t

−
2�

3 G(�)

=b0t
−

2�

3 +

∞∑
k=0

−2

(k + 1)�

∑
m+n=k

(n + 1)aman+1(y − �x)k+1t−
(k+3)�

3 .

(94)
{

F1 = D�
t
u + uxxy − 4u2uy − 2uxv = 0,

F2 = vx − 2uuy = 0,

(95)
L = p(t, x, y)F1 + q(t, x, y)F2

= p(t, x, y)
(
D�

t
u + uxxy − 4u2uy − 2uxv

)
+ q(t, x, y)

(
vx − 2uuy

)
,

(96)
�

�u
=

�

�u
+ (D�

t
)∗

�

�(D�
t u)

− Dx

�

�ux
− Dy

�

�uy
− D2

x
Dy

�

�uxxy
,

(97)
�

�v
=

�

�v
− Dx

�

�vx
,
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where (D�
t
)∗ is the adjoint operator of D�

t
 . It is defined by the right-sided of Caputo 

fractional derivative, i.e.

The system of adjoint equations to (94) is given by

Next we will use the above adjoint equations and the new conservation theorem to 
construct conservation laws of Eq. (2). From the classical definition of the conserva-
tion laws, a vector C = (Ct,Cx,Cy) is called the conserved vector for the governing 
equation if it satisfies the conservation equation [DtC

t + DxC
x + DyC

y]F1,F2=0
= 0 . 

We can obtain the components of the conserved vector by using the generalization 
of the Noether operators.

Firstly, from the fundamental operator identity, i.e.

where prX is mentioned in (6), I  is the identity operator and 
Wu = � − �ut − �ux − �uy , Wv = � − �vt − �vx − �vy are the characteristics for 
group generator X, we can get the Noether operators as follows:

where n = [�] + 1 and J is given by

The components of conserved vector are defined by

Case 1: X1 = t
�

�t
+ �y

�

�y
− �v

�

�v

(D𝛼

t
)∗f (t, x) ≡ c

t
D𝛼

T
f (t, x) =

{
1

Γ(n−𝛼)
∫ T

t

1

(t−s)𝛼−n+1
𝜕n

𝜕sn
f (s, x)ds, n − 1 < 𝛼 < n, n ∈ ℕ

Dn
t
f (t, x), 𝛼 = n ∈ ℕ.

(98)

{
F∗
1
=

�L

�u
= (D�

t
)∗p + 2vpx + 2vxp + 4u2py + 2uqy − pxxy = 0,

F∗
2
=

�L

�v
= −2uxp − qx = 0.

(99)
prX + Dt� ⋅ I + Dx� ⋅ I + Dy� ⋅ I = Wu

⋅

�

�u
+Wv

⋅

�

�v
+ DtN

t + DxN
x + DyN

y
,

(100)N
t =�I +

n−1∑
k=0

(−1)kD�−1−k
t

(Wu)Dk
t

�

�(D�
t u)

− (−1)nJ

(
Wu,Dn

t

�

�(D�
t u)

)
,

(101)

N
x =�I +Wu

(
�

�ux
+ DxDy

�

�uxxy

)
+Wv �

�vx
− Dx(W

u)Dy

�

�uxxy
+ DxDy(W

u)
�

�uxxy
,

(102)N
y =�I +Wu

(
�

�uy
+ D2

x

�

�uyxx

)
− Dx(W

u)Dx

�

�uyxx
+ D2

x
(Wu)

�

�uyxx
,

(103)J(f , g) =
1

Γ(n − �) ∫
t

0
∫

T

t

f (�, x, y)g(�, x, y)

(� − �)�+1−n
d�d�.

(104)Ct = N
t
L, Cx = N

x
L, Cy = N

y
L.
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The characteristics of X1 are

Therefore, for 0 < 𝛼 < 1,

Case 2: X2 = x
�

�x
− 2y

�

�y
− u

�

�u
+ v

�

�v

The characteristics of X2 are

Therefore, for 0 < 𝛼 < 1,

Case 3: X3 =
�

�x

The characteristics of X3 are

Therefore, for 0 < 𝛼 < 1,

(105)Wu = −tut − �yuy, Wv = −�v − tvt − �yvy.

(106)
Ct = pD�−1

t
(Wu) + J(Wu, pt)

= −pD�−1
t

(tut + �yuy) − J(tut + �yuy, pt),

(107)

Cx = (pxy − 2vp)Wu + qWv − pyDx(W
u) + pDxDy(W

u)

= (2vp − pxy)(tut + �yuy) − q(�v + tvt + �yvy)

+ py(tuxt + �yuxy) − p(tuxyt + �yuxyy),

(108)

Cy = (pxx − 4u2p − 2uq)Wu − pxDx(W
u) + pD2

x
(Wu)

= (4u2p + 2uq − pxy)(tut + �yuy) + px(tuxt + �yuxy)

− p(tuxxt + �yuxxy).

(109)Wu = −u − xux + 2yuy, Wv = v − xvx + 2yvy.

(110)
Ct = pD�−1

t
(Wu) + J(Wu

, pt)

= −pD�−1
t

(u + xux − 2yuy) − J(u + xux − 2yuy, pt),

(111)

Cx = (pxy − 2vp)Wu + qWv − pyDx(W
u) + pDxDy(W

u)

= (2vp − pxy)(u + xux − 2yuy) + q(v − xvx + 2yvy)

+ py(2ux + xuxx − 2yuxy) − p(xuxxy − 2yuxyy),

(112)

Cy = (pxx − 4u2p − 2uq)Wu − pxDx(W
u) + pD2

x
(Wu)

= (4u2p + 2uq − pxy)(u + xux − 2yuy) + px(2ux

+ xuxx − 2yuxy) − p(3uxx + xuxxx − 2yuxxy).

(113)Wu = −ux, Wv = −vx.
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Case 4: X4 =
�

�y

The characteristics of X4 are

Therefore, for 0 < 𝛼 < 1,

5  Conclusion

This paper repeatedly uses the Lie symmetry analysis method to reduce the 
(2+1)-dimensional time fractional modified Bogoyavlenskii–Schiff equations to 
some (1+1)- and (0+1)- dimensional fractional differential equations. For the 
reduced fractional differential equations with Riemann–Liouville fractional deriva-
tive, we use the Laplace transform method and the invariant subspace method to 
obtain some analytical solutions. For the reduced fractional differential equations 
with Erdélyi–Kober fractional derivative, we use the power series method to obtain 
some power series solutions. The main results of this study are summarized in 
Table 3. This paper demonstrates that the Lie symmetry analysis method can effec-
tively reduce the dimensionality of high-dimensional fractional differential equa-
tions until they are reduced to solvable equations. In addition, the nonlocal sym-
metries have gradually been applied to treat integer order differential equations 
[48–50]. Inspired by this, our next step is to study nonlocal symmetries for fractional 
differential equations.

(114)Ct = pD�−1
t

(Wu) + J(Wu, pt) = −pD�−1
t

ux − J(ux, pt),

(115)
Cx = (pxy − 2vp)Wu + qWv − pyDx(W

u) + pDxDy(W
u)

= (2vp − pxy)ux − qvx + pyuxx − puxxy,

(116)
Cy = (pxx − 4u2p − 2uq)Wu − pxDx(W

u) + pD2

x
(Wu)

= (4u2p + 2uq − pxy)ux + pxuxx − puxxx.

(117)Wu = −uy, Wv = −vy.

(118)Ct = pD�−1
t

(Wu) + J(Wu, pt) = −pD�−1
t

uy − J(uy, pt),

(119)
Cx = (pxy − 2vp)Wu + qWv − pyDx(W

u) + pDxDy(W
u)

= (2vp − pxy)uy − qvy + pyuxy − puxyy,

(120)
Cy = (pxx − 4u2p − 2uq)Wu − pxDx(W

u) + pD2

x
(Wu)

= (4u2p + 2uq − pxy)uy + pxuxy − puxxy.
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