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Abstract
This paper investigates Ricci solitons on Riemannian hypersurfaces in both Rieman-
nian and Lorentzian manifolds. We provide conditions under which a Riemannian
hypersurface, exhibiting specific properties related to a closed conformal vector field
of the ambiant manifold, forms a Ricci soliton structure. The characterization involves
a delicate balance between geometric quantities and the behavior of the conformal
vector field, particularly its tangential component. We extend the analysis to ambient
manifolds with constant sectional curvature and establish that, under a simple condi-
tion, the hypersurface becomes totally umbilical, implying constant mean curvature
and sectional curvature. For compact hypersurfaces, we further characterize the nature
of the Ricci soliton.
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1 Introduction

The exploration of Ricci solitons on Riemannian and Lorentzian manifolds, with a
specific focus on hypersurfaces, has been an active and dynamic area of study within
both differential geometry and mathematical physics. Valuable insights into this field
can be found in references such as [2, 11, 13, 15, 18, 20, 25].

Richard S. Hamilton’s introduction of Ricci solitons in his seminal work on Ricci
flow [19] has been instrumental in enhancing our understanding of the long-term
behavior of the Ricci flow and its interplay with geometric structures. These solitons
serve as self-similar solutions, providing valuable perspectives on the geometric and
topological properties of manifolds.

The well-established connection between Ricci solitons and Ricci flows, as eluci-
dated in [14], is widely recognized. Ametric g on amanifoldM induces a Ricci soliton
onM if andonly if there exists a positive functionσ(t) and aone-parameter familyψ(t)
of diffeomorphisms of M . The family of metrics, expressed as g(t) = σ(t)ψ(t)∗g,
satisfies the Ricci flow equation:

∂

∂t
g(t) = −2Ricg(t),

with the initial condition g = g(0). In this equation, ψ(t)∗ represents the pullback
along the diffeomorphism ψ(t), and Ricg(t) denotes the Ricci curvature of g(t).

It is known that compact Ricci solitons and noncompact shrinking Ricci solitons
fall under the category of gradient Ricci solitons (see [22, 24]). Trivial solitons, char-
acterized by a constant function f , lead to (M, g) becoming an Einstein manifold.

The studyofRicci solitons onhypersurfaces gainedmomentum, focusingon investi-
gating conditions under which hypersurfaces in Riemannian and Lorentzianmanifolds
can admit Ricci soliton structures (cf. [2, 9, 13]). Research has also delved into hyper-
surfaces with constant curvature and their correlation with Ricci solitons, including
classification results and geometric properties (cf. [21]). The non-existence of gradient
Ricci solitons are investigated in [4–8, 26, 27].

This paper focuses on Ricci solitons present on Riemannian hypersurfaces within
both Riemannian and Lorentzian manifolds. Section 2 introduces preliminaries, cov-
ering basic concepts and fundamental formulas in the theories of Ricci solitons and
Riemannian (or spacelike) hypersurfaces in Riemannian (or Lorentzian) manifolds. In
Section 3, we provide an exhaustive list of totally umbilical Riemannian hypersurfaces
in Riemannian and Lorentzian space forms. These hypersurfaces serve as models for
Riemannian hypersurfaces that, under certain assumptions, can support Ricci solitons.

Section 4 presents the main results of the paper, focusing on characterizing the
conditions under which a Riemannian hypersurface (or a spacelike hypersurface) in
a Riemannian (or Lorentzian) manifold possessing a closed conformal vector field,
exhibits a Ricci soliton structure. This characterization intricately involves the tangen-
tial component of the vector field, with conditions specifying a nuanced equilibrium
between various geometric quantities and the behavior of the conformal vector field.
The analysis extends to cases where the ambient manifold has constant sectional cur-
vature. In such instances, we prove that the hypersurface is totally umbilical, exhibiting
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constant mean curvature and constant sectional curvature, aligning it with the models
detailed in Section 3. We also consider the case where the hypersurface is compact.

2 Preliminaries

In this paper,we adopt to the convention introduced in [23] for defining theRiemannian
tensor on an n-dimensional pseudo-Riemannian manifold (M, g). According to this
formulation, the Riemannian tensor is characterized as the (1, 3) tensor field, and it is
given by:

R(X ,Y )Z = ∇[X ,Y ]Z − ∇X∇Y Z + ∇Y∇X Z ,

for all X ,Y , Z ∈ X (M), the set of all vector fields on M .
Consider an orthonormal frame E1, ..., En on M , and set εi = g(Ei , Ei ). The Ricci

curvature tensor Ric(X ,Y ) of M is expressed as:

Ric(X ,Y ) =
n∑

i=1

εi g (R(X , Ei )Y , Ei ) , (1)

for all X ,Y ∈ X(M). The scalar curvature S of M is defined as:

S =
n∑

i=1

εi Ric(Ei , Ei ). (2)

The divergence of X ∈ X(M) is given by:

div(X) =
n∑

i=1

εi g(∇Ei X , Ei ). (3)

Additionally, a Ricci soliton is identified by the presence of a vector field X on M
and a constant λ (called the soliton constant) that satisfy the equation

Ric + 1

2
LXg = λg, (4)

where LXg is the Lie derivative of g in the direction of X .
A Ricci soliton (M, g, X , λ) is considered trivial when the vector field X is a

Killing vector field. In such instances, the manifold (M, g) transforms into an Einstein
manifold. A Ricci soliton (M, g, X , λ) is categorized as steady if λ = 0, shrinking
if λ > 0, and expanding if λ < 0. In cases where X is expressible as ∇ f for some
function f on M , the Ricci soliton (M, g, f , λ) is called a gradient Ricci soliton. In
this situation, Eq. 4 transforms into

Ric + Hess f = λg, (5)
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where Hess f denotes the Hessian of f with respect to the metric g.
If (M, g, X , λ) is a Ricci soliton, then by taking the trace of Eq. 4, we derive

S + divX = nλ, (6)

In the specific case of a gradient Ricci soliton (M, g, f , λ), Eq. 6 transforms into

S + � f = nλ, (7)

where � f is the Laplacian of f .
We conclude this preliminary section by providing pertinent equations related to

hypersurfaces in both Riemannian and Lorentzian manifolds, which are essential for
the content presented in this paper. To do so, we consider an orientable Riemannian
manifold (Mn, g) of dimension n ≥ 3, which is immersed isometrically as a hyper-
surface in a Riemannian or Lorentzian manifold (Mn+1, ḡ). When Mn+1 takes on
the Lorentzian metric, the corresponding hypersurface Mn is identified as a spacelike
hypersurface.

Let X (Mn) be the set of all vector fields tangent to Mn , and let N be a globally
defined normal vector field on Mn , which is timelike when Mn is spacelike. Let ∇
and ∇ denote the Levi-Civita connections of (Mn, g) and

(
Mn+1, ḡ

)
, respectively,

and let A be the shape operator of Mn with respect to N . The Gauss and Weingarten
formulae for Mn as a hypersurface of Mn+1 are expressed as:

∇XY = ∇XY + εg (A (X) ,Y ) N , (8)

A (X) = −∇X N , (9)

for all X ,Y ∈ X (Mn), where ε = ḡ(N , N ).
We note that the curvature tensor R ofMn can be expressed in terms of the curvature

tensor R̄ of Mn+1 and the shape operator using the Gauss equation for the curvature
tensor. This equation is given by

R(X ,Y )Z = (
R̄(X ,Y )Z

)� + ε (g(A(Y ), Z)A(X) − g(A(X), Z)A(Y )) , (10)

for all X ,Y , Z ∈ X (Mn), where the symbol � refers to the tangential part on Mn .
Recalling that the mean curvature of M is defined to be

H = ε

n
trace(A), (11)

it follows from Eq. 10 that the Ricci curvatures Ric and Ric of Mn and Mn+1 are
related as follows

Ric(X ,Y ) = Ric(X ,Y ) − εg(R(N , X)Y , N ) + g(A (X) , nHY − εA (Y )), (12)

for all X ,Y ∈ X (Mn).
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Moreover, by tracing (12), we see that the scalar curvatures S and S of Mn and
Mn+1 are related as follows

S = S − 2εRic(N , N ) + ε
(
n2H2 − |A|2

)
. (13)

3 Totally Umbilical Riemannian Hypersurfaces in Riemannian
and Lorentzian Space Formsficci Solitons on Riemannian
hypersurfaces

Let Rn
ν denote the pseudo-Euclidean space of dimension n and signature (ν, n − ν),

that is, the vector space Rn endowed with the scalar product

< x, y >= −
ν∑

i=1

xi yi +
n∑

j=ν+1

x j y j ,

for all vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn .
For c̄ > 0, we define the pseudo-sphere of radius 1√

c̄
to be the hyperquadric

Snν (c̄) =
{
x ∈ Rn+1

ν :< x, x >= 1

c̄

}
.

Similarly, for c̄ < 0, we define the pseudo-hyerbolic space of radius 1√|c̄| to be the
hyperquadric

Hn
ν (c̄) =

{
x ∈ Rn+1

ν+1 :< x, x >= 1

c̄

}
.

Take note that these spaces are totally umbilical hypersurfaces in the pseudo-Euclidean
spaceRn+1

ν . These are both geodesically complete and of constant sectional curvature
c̄. It is worth mentioning that spaces denoted as Sn1 (c̄) and the universal covering of
Hn
1 (c̄) are referred to as the de Sitter and anti-de Sitter spaces, respectively.
We now draw upon [1] (See also [3]) to quote the Riemannian hypersurfaces of

Riemannian and Lorentzian space forms that are totally umbilical, serving as the
models for our discussion.

1. Totally umbilical hypersurfaces of Euclidean space Rn+1:

(a) The totally geodesic hyperplane

Rn =
{
x ∈ Rn+1 : x1 = 0

}
.

(b) The sphere

Sn(c) =
{
x ∈ Rn+1 :< x, x >= 1

c

}
,

which has shape operator A = ±√
cI and constant sectional curvature c > 0.
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2. Totally umbilical hypersurfaces of the sphere Sn+1(c̄) ⊂ Rn+2:

(a) The totally geodesic great hypersphere

Sn(c̄) =
{
x ∈ Sn+1(c̄) : xn+2 = 0

}
,

which has constant sectional curvature c̄.
(b) The small hypersphere

Sn(c) =
{
x ∈ Sn+1(c̄) : xn+2 =

√
1

c̄
− 1

c

}
,

which has shape operator A = ±√
c − c̄ I and constant sectional curvature c,

subject to the constraint c̄ < c.

3. Totally umbilical spacelike hypersurfaces of the hyperbolic space Hn+1(c̄) ⊂
Rn+2
1 :

(a) The Euclidean space

Rn =
{
x ∈ Hn+1(c̄) : x2 = 1√|c̄| − x1

}
,

which has shape operator A = ±√−c̄ I .
(b) The sphere

Sn(c) =
{
x ∈ Hn+1(c̄) : x1 =

√
1

c
− 1

c̄

}
,

which has shape operator A = ±√
c − c̄ I and constant sectional curvature

c > 0.
(c) The hyperbolic space

Hn(c) =
{
x ∈ Hn+1(c̄) : xn+2 =

√
1

c̄
− 1

c

}
,

which has shape operator A = ±√
c − c̄ I and constant sectional curvature c,

subject to the constraint c̄ ≤ c < 0.

4. Totally umbilical spacelike hypersurfaces of Minkowski space Rn+1
1 :

(a) The totally geodesic hyperplane

Rn =
{
x ∈ Rn+1

1 : x1 = 0
}

.
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(b) The hyperbolic space

Hn(c) =
{
x ∈ Rn+1

1 :< x, x >= 1

c

}
,

which has shape operator A = ±√−cI and constant sectional curvature
c < 0.

5. Totally umbilical spacelike hypersurfaces of the de Sitter space Sn+1
1 (c̄) ⊂ Rn+2

1 :

(a) The Euclidean space

Rn =
{
x ∈ Sn+1

1 (c̄) : x2 = 1√
c̄

− x1

}
,

which has shape operator A = ±√
c̄ I . For n ≥ 3, it can be proved thatRn can

be represented through an isometric immersion f : Rn → Sn+1
1 (c̄) which is

defined by the function

f (x) =
(√

c̄

2
|x |2, 1√

c̄
−

√
c̄

2
|x |2, x

)
,

as indicated in [16].
(b) The sphere

Sn(c) =
{
x ∈ Sn+1

1 (c̄) : x1 =
√
1

c
− 1

c̄

}
,

which has shape operator A = ±√
c̄ − cI and constant sectional curvature c,

subject to the constraint 0 < c ≤ c̄.
(c) The hyperbolic space

Hn(c) =
{
x ∈ Sn+1

1 (c̄) : x2 =
√
1

c̄
− 1

c

}
,

which has shape operator A = ±√
c̄ − cI and constant sectional curvature

c < 0.

6. Totally umbilical spacelike hypersurfaces of the anti-de Sitter space Hn+1
1 (c̄) ⊂

Rn+2
2 :

(a) The only totally umbilical spacelike hypersurface ofHn+1
1 (c̄) is the hyperbolic

space

Hn(c) =
{
x ∈ Hn+1

1 (c̄) : x1 =
√
1

c
− 1

c̄

}
,

which has shape operator A = ±√
c̄ − cI and constant sectional curvature c,

subject to the constraint c ≤ c̄ < 0.
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4 Ricci Solitons on Riemannian Hypersurfaces

Let n ≥ 3, and consider an n-dimensional orientable Riemannian manifold (Mn, g)
that is isometrically immersed as a hypersurface in either a Riemannian or Lorentzian
manifold

(
Mn+1, ḡ

)
. Assume N is a unit normal vector field on Mn , supposed to be

timelike when Mn+1 is Lorentzian. Let ξ̄ be a closed conformal vector field on Mn+1,
meaning

∇X ξ̄ = ψX , (14)

for all X ∈ X(Mn+1), where ψ is a function on Mn+1, called the potential function
of ξ̄ . The vector field ξ̄ is timelike when the manifold Mn+1 is Lorentzian.

If we define the restriction of ξ̄ to Mn as ξ , it can be represented as follows:

ξ = ξ T + εθN , (15)

where θ =< ξ, N > is the support function on Mn , ξ T is the tangential component
of ξ , and ε = ḡ (N , N ).

Now, because ξ is a closed conformal vector field, it becomes evident when utilizing
(14) and (15) that

∇Xξ T = ψX + εθ A(X), (16)

and
∇θ = −A(ξ T ). (17)

From Eq. 16, it is straightforward to derive

divξ T = n(ψ + θH). (18)

Before we present the theorem that characterizes Ricci solitons on Riemannian
hypersurfaces in both Riemannian and Lorentzian manifolds, let us introduce certain
notations. Let Q and Q̄ be self-adjoint operators on Mn and Mn+1, respectively. Their
definitions are such that Ric(X ,Y ) = g(QX ,Y ) and Ric(X ,Y ) = ḡ(Q̄X ,Y ). As
the vector field R̄(N , X)N is tangent to Mn for all X ∈ X(Mn), the normal Jacobi
operator RN : T Mn → T Mn is defined as follows:

RN (X) = R̄(N , X)N .

Ricci solitons have been demonstrated to occur on hypersurfaces (and more gen-
erally on submanifolds) of pseudo-Riemannian manifolds, as outlined in references
[10, 12, 17].

Theorem 1 Given an orientable Riemannian manifold (Mn, g) immersed isometri-
cally as a hypersurface in either a Riemannian or Lorentzian manifold (Mn+1, ḡ) of
dimension n + 1, where n ≥ 3, and assuming ξ̄ is a closed conformal vector field
of Mn+1 (timelike if Mn+1 is Lorentzian), with ψ as its potential function, and ξ as
its restriction to Mn and ξ T represent the tangential component of ξ . Let ε = ±1
be defined as ε = ḡ(N , N ), where N is a unit normal vector field on Mn. Then, the
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quadruple (Mn, g, ξ T , λ) constitutes a Ricci soliton if and only if the equation below
is satisfied:

εA2 − (εθ + nH)A + (λ − ψ)I = Q̄ − εRN . (19)

Here, A, θ , H, λ, ψ , I , Q̄, and RN hold their defined meanings within the context of
the mathematical formulation provided.

Proof Assume that (Mn, g, ξ T , λ) is a Ricci soliton, satisfying the equation:

Ric + 1

2
LξT g = λg. (20)

For any pair of vector fields X ,Y ∈ X(Mn), utilizing (16), we derive the expression:

LξT g(X ,Y ) = 2g((ψ I + εθ A)X ,Y ). (21)

Additionally, Eq. 12 provides the following representation:

QX = Q̄X − ε R̄(N , X)N + nH A(X) − εA2(X) (22)

By substituting (21) and (22) into (20), we obtain the expression labeled as Eq. 19.
The converse is easily deduced. �


When the ambient manifold has constant sectional curvature, Theorem 1 leads to
the following conclusion:

Theorem 2 Let (Mn, g) be an orientable Riemannian manifold immersed isometri-
cally as a hypersurface in either a Riemannian or Lorentzian manifold (Mn+1(c̄), ḡ)
having constant sectional curvature c̄ and being of dimension n+1, with n ≥ 3. Under
the conditions and notations fulfilled in Theorem 1, it follows that if the quadruple
(Mn, g, ξ T , λ) constitutes a Ricci soliton, then the following equation is satisfied:

|A|2 − nH2 + εn(λ − ψ − θH) − n(n − 1)(H2 + εc̄) = 0, (23)

or equivalently
|A|2 − nH2 + εS − n(n − 1)(H2 + εc̄) = 0. (24)

Here, A, H, and S refer to the shape operator, mean curvature, and scalar curvature
of the manifold Mn, respectively, as described earlier.

Proof Since Mn+1(c̄) is of constant curvature c̄, then Q̄ = nc̄I and RN = εc̄ I .
Equation 19 becomes

εA2 − (εθ + nH)A + (λ − ψ − (n − 1)c̄)I = 0.

By tracing the above equation, we get

ε|A|2 − εn(εθ + nH)H + n (λ − ψ − (n − 1)c̄) = 0,
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or equivalently

|A|2 − nH2 + εn(λ − ψ − θH) − n(n − 1)(H2 + εc̄) = 0. (25)

Given that ξ T represents the potential field of (Mn, g, ξ T , λ), according to Eq. 6, we
can express this relationship as:

S + divξ T = nλ, (26)

where S represents the scalar curvature of Mn . Substituting Eqs. 18 into 26, we obtain:

S = n(λ − ψ − θH),

Consequently, the modified form of Eq. 25 is:

|A|2 − nH2 + εS − n(n − 1)(H2 + εc̄) = 0.

The results presented below are consequences of the formulas Eqs. 23 and 24 as
specified in Theorem 2. The inequality presented in the following theorem’s impli-
cation extends the scope of Theorem 4.2 in [2], which was originally established for
hypersurfaces with constant mean curvature in Euclidean space, under the assumption
that ξ serves as the position vector field.

Theorem 3 Consider the manifolds (Mn, g) and (Mn+1(c̄), ḡ) as defined in
Theorem 2, with the additional assumption that Mn is compact. If the quadruple
(Mn, g, ξ T , λ) forms a non-trivial Ricci soliton, then it implies ελ ≤ (n−1)(H2+εc̄),
with equality occurring if and only if Mn is a sphere Sn(c), where c = H2 + εc̄ > 0.
Notably, the Ricci soliton is shrinking when (Mn+1(c̄), ḡ) is Riemannian, while it
becomes trivial when (Mn+1(c̄), ḡ) is Lorentzian.

Proof If Mn is a compact manifold, by integrating (23) and considering (26), we get:

∫

Mn

(
nH2 − |A|2

)
dV = n

∫

Mn

(
ελ − (n − 1)(H2 + εc̄)

)
dV . (27)

By utilizing Schwartz’s inequality, it follows that ελ ≤ (n−1)(H2+εc̄). Therefore, if
equality is achieved, then Mn is totally umbilical. Referring to Lemma 35 on page 116
in [23], we can deduce that H is constant and Mn has a constant sectional curvature
c = c̄ + εH2. As Mn is compact, we conclude that Mn is a sphere with a constant
positive curvature c = H2 + εc̄. This implies that ελ > 0. Consequently, when
ε = 1, the Ricci soliton is shrinking, whereas it is expanding when ε = −1. Since it
is compact and expanding, it necessarily qualifies as a trivial Ricci soliton (cf. [18]).

�

The following corollary arises as a consequence of Theorem 3.
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Corollary 1 Consider the manifolds (Mn, g) and (Mn+1(c̄), ḡ) as defined in
Theorem2, with the additional assumptions that Mn is compact and H2+εc̄ ≤ 0. If the
quadruple (Mn, g, ξ T , λ) forms aRicci soliton, then it is shrinkingwhen (Mn+1(c̄), ḡ)
is Lorentzian, while it becomes trivial when (Mn+1(c̄), ḡ) is Riemannian.

Proof In line with Theorem 3, it follows that ελ ≤ (n − 1)(H2 + εc̄). Therefore, if
the condition H2 + εc̄ ≤ 0 is assumed, it now implies ελ ≤ 0. The case λ = 0 is
clearly ruled out. Consequently, with ελ < 0, for ε = −1, the Ricci soliton displays
a shrinking behavior, while for ε = 1, it expands and becomes trivial. The shift
to triviality is attributed to the compactness of Mn , as mentioned in the proof of
Theorem 3. �

Theorem 4 Consider the manifolds (Mn, g) and (Mn+1(c̄), ḡ) as defined in
Theorem 2, and assume in addition that Mn is connceted and geodesically complete.
If the quadruple (Mn, g, ξ T , λ) constitutes a Ricci soliton and satisfies the condition
εS ≥ n(n − 1)(H2 + εc̄), then the mean curvature H of Mn is constant, and Mn has
a constant sectional curvature c = c̄ + εH2. More specifically, Mn can be identified
as either a Euclidean space Rn, a sphere Sn(c), or a hyperbolic spaceHn(c), with all
possibilities detailed in Section 3.

Proof The condition εS ≥ n(n − 1)(H2 + εc̄) implies |A|2 − nH2 = 0, which
results directly from Eq. 24. This leads to the conclusion that Mn is totally umbilical,
by application of Schwartz’s inequality. Similarly to what is stated in the proof of
Theorem 3, we conclude that H is constant and Mn has a constant sectional curvature
c = c̄ + εH2. Now, it is clear that Mn is either a Euclidean space Rn , a sphere Sn(c),
or a hyperbolic space Hn(c), with all possibilities detailed in Section 3. �


The following theorem generalizes Theorem 4.3 in [2], established for hypersur-
faces in Euclidean space, under the assumption that ξ serves as the position vector
field.

Theorem 5 Consider (Mn, g) and (Mn+1(c̄), ḡ) as defined in Theorem 2, and assume
in addition that Mn is compact. If the quadruple (Mn, g, ξ T , λ) forms a Ricci soli-
ton and satisfies the condition ελ ≥ (n − 1)(H2 + εc̄), then it follows that Mn

is a sphere Sn(c), with c = H2 + εc̄ > 0. Notably, the Ricci soliton is shrinking
when (Mn+1(c̄), ḡ) is Riemannian, while it becomes trivial when (Mn+1(c̄), ḡ) is
Lorentzian.

Proof If M is compact, we encounter the same integral formula Eq. 27 as presented
in the proof of Theorem 3.

The condition ελ ≥ (n − 1)(H2 + εc̄) indicates that |A|2 − nH2 = 0. This also
implies λ = (n − 1)(c̄ + εH2) and that Mn is totally umbilical, resulting in the same
conclusion as observed in the proof of Theorem 3. �
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