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Abstract

This research paper examines the characteristics of a two-dimensional steady flow
involving an incompressible viscous Casson fluid past an elastic surface that is both
permeable and convectively heated, with the added feature of slip velocity. In con-
trast to Darcy’s Law, the current model incorporates the use of Forchheimer’s Law,
which accounts for the non-linear resistance that becomes significant at higher flow
velocities. The accomplishments of this study hold significant relevance, both in
terms of theoretical advancements in mathematical modeling of Casson fluid flow
with heat mass transfer in engineering systems, as well as in the context of prac-
tical engineering cooling applications. The study takes into account the collective
influences of magnetic field, suction mechanism, convective heating, heat genera-
tion, viscous dissipation, and chemical reactions. The research incorporates the con-
sideration of fluid properties that vary with respect to temperature or concentration,
and solves the governing equations by employing similarity transformations and the
shooting approach. The heat transfer process is significantly affected by the pres-
ence of heat generation and viscous dissipation. Furthermore, the study illustrates
and presents the impact of various physical factors on the dimensionless tempera-
ture, velocity, and concentration. From an engineering perspective, the local Nusselt
number, the skin friction, and local Sherwood number are also depicted and pro-
vided in graphical and tabular formats. In the domains of energy engineering and
thermal management in particular, these results have practical relevance in improv-
ing our understanding of heat transmission in similar settings. Finally, the thorough
comparison analysis reveals a significant level of alignment with the outcomes of
the earlier investigations, thus validating the reliability and effectiveness of our
obtained results.
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1 Introduction

Scientists have been studying the motion of non-Newtonian fluids within the bound-
ary layer for the past few years. These fluids have important features that have sev-
eral applications in technological and industrial operations, such as food, particu-
lar separation methods, paper production petroleum drilling, and more. Drilling
muds, clay coatings, synthetic lubricants, biological fluids including blood, specific
oils, sugar solutions, and paints are a few examples of non-Newtonian fluids [1, 2].
The fundamental Navier-Stokes equations are unable to completely describe the
dynamic behaviour of non-Newtonian fluid flow because of the complex mathemati-
cal expressions involved in the flow problems. Because of this, these equations are
unable to instantly portray all of the features of such fluid flow fields. To character-
ise the behavior of non-Newtonian fluids while taking into consideration their rheo-
logical characteristics, numerous models have been devised. Carreau, Williamson,
Burger, Viscoelastic, Casson, Eyring-Powell, Micropolar, Seely, Hyperbolic, Old-
royd-B, Bulky, Oldroyd-A, Maxwell, Jeffrey, and more models are included in this
group. Researchers can examine and comprehend the distinct rheological character-
istics of non-Newtonian fluids by using the various perspectives that each model
offers on the flow behavior of these fluids. The Casson model, which was first pre-
sented by Casson [3], is among the models that has the most bearing on our under-
standing of the characteristics of blood and suspensions in daily life. This model
has become a crucial tool for researching these fluids’ characteristics and behaviours
since it clearly addresses how they behave. A specific kind of plastic fluid model
called the Casson model exhibits a number of distinguishing characteristics, such as
shear thinning behaviour, a yield stress threshold, and high viscosity at high shear
circumstances. When the applied shear stress is greater than the yield stress, the
Casson fluid behaves physically in a way that resembles a solid. The Casson fluid,
however, starts to deform as soon as the shear stress exceeds the yield stress. This
phenomenon is discussed in detail by Rohni et al. [4]. Eldabe and Salwa [5] con-
ducted a study to examine the flow characteristics of a Casson fluid in the region
between two cylinders that were rotating. In their research, Pramanik [6] examined
the effects of thermal radiation on the steady boundary layer flow and heat trans-
fer of a Casson fluid over a stretching surface with exponential permeability. The
research conducted by Rao et al. [7] suggests that when the Casson fluid model is
subjected to extremely high wall shear stresses, it can be simplified and treated as
a Newtonian fluid. The impact of Dufour and Soret mechanism on the magnetohy-
drodynamic flow of a Casson fluid was investigated by Hayat et al. in their work
[8]. Mustafa et al. [9] conducted a study on the unsteady boundary layer flow and
heat transfer of a Casson fluid over a moving flat plate with a parallel free stream.
To tackle the issue analytically, they used the Homotopy analysis technique. Alali
and Megahed [10] utilized a shooting numerical method to investigate the impact
of mass heat transmission on the flow of a dissipative Casson nanofluid liquid film.
Fluid flow within a porous medium involves the movement of a fluid through
a substance that has interconnected empty spaces. This can be seen in materials
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like soil, sand, or rock. The flow occurs because of differences in pressure or
concentrations, and it is significant in various natural and human-made systems.
The structure of the porous material affects how the fluid flows, including fac-
tors like the size of the empty spaces, how they connect, and their winding paths.
The interaction between the fluid and the porous medium follows principles of
fluid mechanics, particularly Darcy’s law [11], which explains the relationship
between the fluid’s speed, pressure changes, and the permeability of the medium.
Understanding and researching fluid flow in porous materials are crucial for fields
like hydrogeology, gas-cleaning filtration, petroleum engineering, environmental
science, and managing groundwater resources.

Dupuit [12] and Forchheimer [13] achieved a great advancement in the field of
fluid flow through their empirical discoveries. They discovered that the resistance
or drag a fluid encounters grows in a quadratic connection with the velocity of the
fluid flow. In other words, when velocity increases, the drag force acting on the fluid
quadratically increases. This finding has ramifications for a variety of engineering
and scientific applications and offers important new insight into the behavior of fluid
flow. In their investigation, Ali et al. [14] considered the Darcy—Forchheimer model
to analyze the Casson nanofluid flow across a non-linearly diminishing surface. Their
study’s goal was to look at how slip conditions and viscous dissipation affect flow
behaviour. A considerable amount of researches [15-21] can be found in the litera-
ture regarding the Darcy model and the Forchheimer model in the context of fluid
flow through porous media. The Darcy—Forchheimer model serves as a versatile and
essential instrument in fluid dynamics, with its utility extending across fields such
as groundwater hydrology, petroleum engineering, filtration processes, and more.
Its capacity to precisely depict non-linear fluid flow through porous media renders
it indispensable for comprehending and refining diverse engineering systems and
operations in both natural and industrial settings. Therefore, the literature provides
an extensive array of studies [22-25] that explore the uses, constraints, and improve-
ments of both the Darcy and Forchheimer models concerning fluid flow through
porous media.

It becomes clear from a careful review of the literature that there is a notable lack of
scientific research examining the combined effects of heat generation, viscous dissipa-
tion, slip velocity, and variable fluid properties on the flow behavior of Casson fluids, as
well as their related heat and mass transfer characteristics. The simultaneous influence
of these elements has not yet been thoroughly investigated, indicating a large research
gap in the area. In a Darcy—Forchheimer porous media, this work intends to investigate
the hydrodynamic flow of a Casson fluid past a permeable stretched sheet with slip
circumstances. A magnetic field, viscous dissipation, slip velocity, chemical reaction,
and convective heating are among the additional aspects that the analysis takes into
account. The main goal is to look at how these parameters collectively affect the Cas-
son fluid system’s flow behaviour and heat transfer properties.

@ Springer



19 Page 4 of 18 Journal of Nonlinear Mathematical Physics (2024) 31:19

2 Flow Analysis

The study examines the properties of a Casson fluid flowing past a linearly stretching,
convectively heated permeable surface in an incompressible, stable, two-dimensional
laminar boundary layer. The physical flow concept is illustrated visually in Fig. 1 and
the surface velocity is given as U,, = ax, where a is a constant.

In this study, the x-axis is defined parallel to the direction of the plate, while the
y-axis is perpendicular to it. Heat and mass transfer models are examined to account for
the presence of chemical reaction, viscous dissipation and slip conditions. The veloc-
ity components in the x and y directions are represented by u and v, respectively. The
analysis assumes that the boundary conditions of slip are present on the plate’s sur-
face. The Casson temperature away the sheet is assumed to be T, while the concentra-
tion of the fluid at the same location is assumed to be C,,. Furthermore, in accordance
with previous work [26], the equations governing the boundary layer flow through a
Darcy—Forchheimer porous medium with heat and mass transfer of the Casson fluid are
formulated as follows:

ou , 0v _
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ox * dy @
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Fig. 1 Sketch of the physical fluid flow problem
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oC oC 0 oC

wo S = 5<D(C)g> —K/(C=Cy), @)
where p, is the ambient fluid density, f is the Casson parameter, c, is the specific
heat at constant pressure, C represents the fluid concentration, & is the permeability
of the porous medium, x denotes the thermal conductivity of the Casson fluid and
F is the Forchheimer drag force coefficient. It is noteworthy that as the parameter f
tends towards infinity, our previously utilized non-Newtonian Casson model can be
converted into a Newtonian model. K| is the coefficient of chemical reaction, o is the
electrical conductivity, B, is the magnetic field strength, D is the Brownian diffusion
coefficient, x(T) is the thermal conductivity of the Casson fluid and u(7) is the fluid
viscosity. Additionally, the variable Q denotes the amount of heat produced (when
QO > 0) or consumption (when Q < 0) per unit volume. The research carried out by
Gomathy and Kumar [27] served as the basis for the particular expression for the
term Q.

kU,
Q=——=956T-T,). (3)

X (s8]
In the fluid system, the parameter 6 represents the temperature-dependent heat
generation or absorption. When heat is generated, 6 is positive, and when heat is
absorbed, 6 is negative. We consider the significant association between the fluid

viscosity, designated as u(7), and the fluid temperature in our analysis as follows
[28]:

o= e (). ©)

where a is the viscosity parameter, y, is the ambient viscosity, 7 is the temperature
of the convective fluid below the stretching sheet, which can be assumed to take the
form T, =T, + nx?. Additionally, it is anticipated that the fluid’s thermal conduc-
tivity will follow the following relation [28]:

T-T
K(T):Koo[l-i-el(ﬁ)], @)
f o0

where k., represents the thermal conductivity of the fluid at the ambient and ¢, is the
thermal conductivity parameter. Further, the fluid concentration is expressed in the

following form [29]:
D(C)=D_ |1+ >
oo & C —-C ’ (8)

w (o)

where ¢, represents the diffusion parameter and D is the ambient diffusivity.
The appropriate boundary conditions for the present problem are described as
follows [29]:
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A
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Now, we presented a set of appropriate transformations in terms of a new similarity
variable # that can be summarized as follows [29]:

n=y\/%, u = axf’(n), v=—\/a”—°°f(n). an
/’loo poo

_ C- Coo 0 _ )
o) —m, (m= T, - Too. (12)

It is important to note that with each # under consideration, a set of equations is
developed, encompassing pertinent governing parameters. The selection of # serves
the purpose of defining dimensionless parameters that govern the behavior of the
reduced equation system. In the given context, f, 6, and ¢ represent the stream func-
tion, the dimensionless temperature, and the dimensionless concentration, respec-
tively. By applying the suitable transformation mentioned earlier (11)—(12), the par-
tial differential equation that governs the proposed model (2)—(4) together with the
given boundary conditions (9)—(10) is converted into an ordinary differential equa-
tion, as illustrated below:

<1 + %) IZf/// _ l%f/ _ a@’f”] e—a9 +ff” _le(Fr + 1) _Mf/ — 0’ (13)

1 ’ 6 /
oo (6107 + (1 +,0)0"] +10 + - (1+€,0)0 -2 0

+Ee(14 L)oo 2 + if’2 +EcFf? =0 (9
p D, T
1+ )"+ £97] +79 —Rp =0, (15)
With the following boundary condition:
fO)=S, fFO)=1+ /1<1 + %)e‘”@f”(O),
(16)
oy 6(0) — 1 _
6°(0) _Bi<—1 +£19(0)>, $0) =1,
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fl(0)=0,  6(c0)=0,  ¢p(c0)=0. (17)

Clearly that the factors denoting the parameters that influence the previously gov-
erning equations are diverse. These factors encompass a range of variables such as
Forchheimer parameter F,, suction parameter S, magnetic parameter M, Darcy num-
ber D,, Eckert number Ec, chemical reaction parameter R, Biot number B;, Prandtl
number Pr, Schmidt number Sc and the slip velocity parameter A, which are defined
as follows:

-V oB?
Fr = Fx s S = 0 s M = _Os
Poo kl aVoo pooa
v . (18)
Voo Uw Kl
Da=_, EC=—’ R:—’
ak, cp(Tf -T.) a

Doy |
! a o€
. pro % Yoo a (19)

K K D v

o0 (o] oo

3 Physical and Engineering Quantities

The drag coefficient Cf,, energy transfer rate Nu,, and mass transfer rate Sh, are
examples of the physical quantities associated with the system. These quantities can
be expressed in a simplified, non-dimensional form as follows:

Re:Cf, = —<1 + %)e“’“mf"(O), NuRe? =—0'(0), ShRe =—¢'(0),
(20)
where Re, = 2 denotes the local Reynold number.

©

4 Shooting Method Algorithms

Due to the significant nonlinearity present in the system described by equations
(13) through (15), it is imperative to employ numerical methods for obtaining solu-
tions. Here, we have utilized the shooting method to accomplish this objective. The
shooting technique for solving boundary value ordinary differential equations entails
converting the initial boundary problem into an initial value problem, alongside
transforming the set of ordinary differential equations into a system of first-order
equations. Here is a concise overview of the algorithm:

1. Initial Guess: Select an initial estimation for the values of the unknown parameters
or initial conditions.
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2. Integrate ODEs: Numerically integrate the system of first-order ordinary differ-
ential equations using the provided initial guesses.

3. Evaluate Residuals: Assess the residuals by comparing the acquired solution with
the specified boundary conditions.

4. TIteration: Iterate through the preceding steps until the solution approaches the
designated boundary conditions within an acceptable tolerance.

5. Convergence Check: Verify convergence by observing the variation in the solu-
tion across iterations. If the change falls within the predefined tolerance, deem
the solution as converged.

6. Final Solution: Upon reaching convergence, the determined values for the
unknown parameters or initial conditions serve as the solution to the nonlinear
system of boundary value ordinary differential equations.

Further, the efficacy of the shooting method hinges on the initial guess and conver-
gence criteria. Runge—Kutta methods or similar numerical techniques are employed
for integrating the ODE:s. Iterative application of the algorithm continues until the
solution satisfies the accuracy or convergence requirements.

5 Code Verification

To confirm the present-day outcomes and assess the reliability of the existing assess-
ment, we conducted comparisons with available data on the skin friction coefficient
for the proposed Casson fluid. In Table 1, we present a comparison between our
findings of the skin friction coefficient and the results obtained by Mabood et al.
[30]. During this comparison, we observe a significant agreement between our find-
ings and those presented in the table. The results indicate that the skin friction coef-
ficient exhibits an upward trend as the magnetic parameter M increases.

6 Discussion of Numerical Results

This study looked at how heat and mass transfer effect the motion of a non-New-
tonian Casson fluid with heat generation. The porous media, whose characteristics
vary has a permeable sheet through which the fluid flows. The impact of Forch-
heimer’s Law is also taken into account in the study. Mathematically, the equations
(13)—(15) and the accompanying boundary conditions in equations (16)—(17) have

Table 1 Comparison of —f"'(0)

X > M Mabood et al. [30] Present work
with the results of Mabood
et al. [30] for different values of 0.0 1.00000840 1.000000001 1
M when ff — oo, D, — oo and
Fo=a=4=5=0 1.0 1.41421356 1.4142135580
5.0 2.44948974 2.4494896998
10.0 3.31662479 3.3166247880
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been resolved by combining shooting and Runge—Kutta approaches. Graphs are used
to represent the contributions of various flow parameters in the study, including the
magnetic parameter M, suction parameter S, Casson parameter f§, chemical reaction
parameter R, viscosity parameter a, Forchheimer parameter F,, Darcy number D,
Prandt]l number Pr, Biot number B;, and others. These graphs illustrate the relation-
ship between these parameters and their impact on the system. Figure 2 showcases
the influence of the magnetic factor M on the velocity f’(r) and temperature 6(#)
profiles of the flow of Casson fluid. The effect of the magnetic factor on the tem-
perature and fluid velocity profiles is depicted in this figure. The velocity is seen
to decrease over the whole boundary layer as the magnetic factor values rise. The
temperature, on the other hand, displays a distinct pattern, initially rising near the
sheet’s surface then reversing to fall.

The magnitude of the Darcy number’s D, influence on the flow rate or veloc-
ity f’(n) and temperature proportions 6(n) is seen in Fig. 3. The Darcy number, in
essence, signifies the relative magnitude of viscous forces compared to inertial
forces within the flow of a porous medium. Generally speaking, an increase in the
Darcy number causes a rise in fluid velocity and a fall in fluid temperature. This
is so because the Darcy number identifies the proportion of inertial to viscous
forces in a flow through a porous medium. Physically, an increase in the Darcy
number signifies a greater influence of viscous forces relative to inertial forces.
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Consequently, the resistance to flow within the porous medium becomes more
prominent compared to the fluid’s momentum. Consequently, the fluid velocity
decreases as the flow encounters increased resistance, making it more challenging
for the fluid to traverse through the porous medium.

Figure 4 illustrates how the concentration profile ¢(») is influenced by vari-
ations in both the magnetic parameter M and the Darcy parameter D,. This fig-
ure demonstrates that an increase in the magnetic parameter leads to an enhance-
ment of the dimensionless concentration profile and the boundary layer thickness,
whereas the opposite effect is observed for the Darcy number.

Figure 5 showcases the effects of the Forchheimer parameter F, on the velocity
f'(n) and temperature O(n) profiles. From this figure, it is evident that increas-
ing the values of the Forchheimer parameter leads to a reduction in velocity
across the entire boundary layer region. However, the temperature profile near
the surface of the sheet exhibits the opposite trend when influenced by the same
parameter.

The temperature 0(y) and velocity f’(n) profiles are also impacted by the slip
velocity parameter 4, as seen in Fig. 6. With a boost in the slip velocity parame-
ter, as shown in this figure, both the temperature and the velocity profiles decline.
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Physically, the slip effect gets more noticeable as the slip velocity parameter rises,
which speeds up the rate at which heat is transferred from the fluid to the solid.
As more heat is transmitted to the solid surface as a result, the fluid’s temperature
decreases.

Figure 7 illustrates the variations in the concentration profile for different values
of both the Forchheimer parameter F, and the slip velocity parameter A. The figure
demonstrates that the concentration profile ¢(#) and the associated thickness of the
boundary layer are slightly enhanced by the first parameter, but they experience a
significant enhancement with the second parameter.

Figure 8 shows how the viscosity parameter a affects both the velocity f’(s) and
temperature 6(#) curves. This figure demonstrates that the viscosity parameter has a
decreasing relationship with both the temperature and velocity profiles. Higher vis-
cosity physically translates to greater flow resistance, which causes more internal
friction inside the fluid. The fluid’s temperature drops as a result of the enhanced
heat dissipation that results from this.

Figure 9 visually represents the impact of the Casson parameter f on both the
temperature and velocity curves. The Casson fluid flow’s temperature and the thick-
ness of its thermal boundary layer both drop as the Casson parameter rises, as seen

¢ )
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0.8 0.8
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s . J > f 7 ; .
(a) ¢(n) for various F; (b) ¢(n) for various A

Fig.7 a ¢(n) for various F,. b ¢(#) for various 4
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by the plot. Additionally, as the Casson parameter is improved, the fluid velocity
away from the sheet also declines. Physically, the yield stress of the Casson fluid
weakens as the Casson factor values rise, enhancing the plastic dynamic viscosity.
As a result, the thermal boundary layer’s thickness in the flow temperature profile

decreases.
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Suction parameter S effects on temperature 6(5) and velocity f’(n) profiles are
shown in Fig. 10. The opposing relationship between the suction parameter’s
uplifting values and the structures of the momentum boundary layer, Casson fluid
velocity, and temperature distribution can be observed from Fig. 10. Physically,
the rate of fluid removal from the boundary layer grows in direct proportion to the
suction parameter. The thermal boundary layer’s thickness decreases as a result,
and the amount of heat that is transferred from the fluid to the surface also dimin-
ishes. It follows that the temperature of the fluid drops.

The concentration field ¢(n) is influenced by the suction parameter S and
chemical reaction parameter R, as depicted in Fig. 11. A drop in the concentration
profile and the thickness of the related boundary layer has been seen when both
the suction parameter and the concentration of the chemical reactive species are
increased.

Figure 12 illustrates the relationship between the heat generation parameter 6
and the Biot number B, in terms of the temperature distribution 6(5). In physi-
cal terms, the Biot number B; can be understood as the ratio between the inter-
nal thermal resistance at the surface of a body and the thermal resistance of
the boundary layer. According to findings, thermal convection near the surface

@ Springer



19 Page 14 0f 18 Journal of Nonlinear Mathematical Physics (2024) 31:19

strengthens as the Biot number B, increases, causing the fluid’s temperature dis-
tribution to accelerate. In other words, greater values of the Biot number B; are
related with thicker fluid boundary layers and higher temperature profiles. Simi-
larly, the heat generation parameter 6 exhibits a similar effect on both the tem-
perature field O(#) and the thickness of the thermal boundary layer.

Figure 13a shows how the thermal conductivity parameter €, affects the tem-
perature profile 8(#). This graph shows how, when the thermal conductivity param-
eter climbs, the temperature profile away the sheet and the thermal thickness rises
as well. Figure 13b shows the diffusion parameter’s influence on the concentration
field. A higher value of the diffusion parameter is observed to result in an increase
in both the fluid concentration and the thickness of the boundary layer. The rate of
diffusion physically increases with a bigger diffusion parameter. By spreading out
and dispersing more equally throughout the system, this causes a more effective
mixing of the fluid and enables molecules or particles to move about more freely.
Because of this, when the diffusion parameter is greater, the fluid concentration

tends to rise.
1 1

The skin friction coefficient Re? Cf,, local Nusselt number Re’ Nu,,
-1

and the local Sherwood number Re’ Sh, were calculated using fixed val-

ues Pr=6.2,5¢=09,6,=02,R=0.2 and &, =0.2, while considering the
effects of different remaining governing factors such as magnetic parame-
ter (M =0.0,0.5,1.5), Darcy number (D, =3,7,10), Forchheimer parameter
(F,=0.0,1.5,2.5), slip velocity parameter (4 =0.0,0.2,0.4), viscosity param-
eter (o =0.0,0.5,1.5), Casson parameter (f = 0.0,0.5,1.0), suction parameter
(§=0.0,0.5,1.5), Biot number (B; = 0.1,0.3,0.5) and heat generation parameter
(6 =0.0,1.0,2.5) in Table 2. This table shows that as the Darcy number, slip
velocity parameter, viscosity parameter, and Casson parameter increase, the skin
friction coefficient drops. In addition, as the magnetic, Forchheimer, viscosity,
and heat generating parameters rise, the Nusselt number also falls. On the other
hand, the Darcy number, slip velocity parameter, and suction parameter show the
opposite pattern. The table also shows that, whereas the opposite tendency is seen

Ec=0.1, D,=10, $=0.5, a=0.2
1=0.2, B=0.5, F,=0.5
Sc=0.9, £,=0.2, R=0.2
Pr=6.2, B;=02, 6=0.1

o0 £=00,02,0.5 Ec=0.1, D,=10, $=0.5, =0.2

1=0.2, B=0.5, F,=0.5 081
Sc=0.9, £,=0.2, R=0.2 o6l

Pr=6.2, Bi=0.2, 6=0.1 £=0.0,02,0.5

(a) 6(n) for various &1 (b) &(n) for various 2

Fig. 13 a 6(n) for various €. b ¢() for various &,
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1 Bl =
Table 2 Values of Re; Cf,, Re,> Nu, and Re,’ Sh, for various values of M, D,
Pr=62,5¢=09,6, =02,R=02and e, =0.2

F.,a,p,5,B; and 6 with

as

1 Bl
M b, F A * b § Bi d Re} Cf, Re,’ Nu, Re,” Sh,

0.0 10 0.5 02 02 05 0.5 0.1 0.1 1.51502  0.0928714  0.825845
0.5 10 0.5 02 02 05 0.5 0.1 0.1 1.66663 0.0923999  0.806926
1.5 10 0.5 02 02 05 0.5 0.1 0.1 1.89542  0.0916227 0.779026
0.5 3 0.5 02 02 05 0.5 0.1 0.1 1.83257  0.0906326  0.786406
0.5 7 0.5 02 02 05 0.5 0.1 0.1 1.70039  0.0920388 0.802712
0.5 10 0.5 02 02 05 0.5 0.1 0.1 1.66663 0.0923999  0.806926
0.5 10 00 02 02 05 0.5 0.1 0.1 1.66663 0.0923999  0.806926
0.5 10 1.5 02 02 05 0.5 0.1 0.1 1.76956  0.0912866  0.796401
0.5 10 2.5 02 02 05 0.5 0.1 0.1 1.85492  0.0903812  0.787746
0.5 10 0.5 00 02 05 0.5 0.1 0.1 276472 0.0873642  0.886156
0.5 10 0.5 02 02 05 0.5 0.1 0.1 1.66663 0.0923999  0.806926
0.5 10 0.5 04 02 05 0.5 0.1 0.1 1.21544  0.0941238 0.766893
0.5 10 0.5 02 00 05 0.5 0.1 0.1 1.67388  0.0924106  0.807306
0.5 10 0.5 02 05 0.5 0.5 0.1 0.1 1.62478  0.0923341 0.804575
0.5 10 0.5 0.2 1.5 0.5 0.5 0.1 0.1 1.56035 0.0922204  0.800409
0.5 10 0.5 02 02 00 05 0.1 0.1 1.88054  0.0921267 0.809828
0.5 10 0.5 02 02 05 0.5 0.1 0.1 1.66663 0.0923999  0.806926
0.5 10 0.5 02 02 1.0 05 0.1 0.1 146167  0.0926254  0.801361
0.5 10 0.5 02 02 05 00 0.1 0.1 1.55498  0.0900135 0.563252
0.5 10 0.5 02 02 05 0.5 0.1 0.1 1.66663 0.0923999  0.806926
0.5 10 0.5 02 02 05 1.5 0.1 0.1 1.90001 0.0952221 1.397651
0.5 10 0.5 02 02 05 0.5 0.1 0.1 1.66663 0.0923999  0.806926
0.5 10 0.5 02 02 05 0.5 0.3 0.1 1.66566  0.2651190  0.806856
0.5 10 0.5 02 02 05 0.5 0.5 0.1 1.66476  0.4234431 0.806791
0.5 10 0.5 02 02 05 0.5 0.1 0.0 1.66665 0.0924475 0.806928
0.5 10 0.5 02 02 05 0.5 0.1 1.0 1.66634  0.0919339  0.806913
0.5 10 0.5 02 02 05 0.5 0.1 2.5 1.66575 0.0909649  0.806884

for the other parameters, the Sherwood number enhances as the Darcy number
and suction parameter rise.

7 Conclusion

This study’s objective was to look into the heat and mass transfer processes that
occur when a Casson fluid flows across a permeable stretched sheet while being
exposed to a steady magnetic field. The research considered the flow occurring
within a porous medium, where the Forchheimer’s Law was followed. Addition-
ally, the study examined the influences of heat generation, slip velocity, variable
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fluid properties, chemical reaction, and convection phenomenon. The authors
employed similarity transformations and the shooting method to solve the gov-
erning equations in the research. Graphs and tables were included to facilitate the
visual and quantitative analysis of the obtained results. The primary findings are
summarized as follows:

1. As the chemical reaction parameter increased, there was a degenerate in fluid
concentration. However, the slip velocity parameter and the diffusion parameter
showed an opposite trend, with their increase resulting in an increase in fluid
concentration.

2. Observations indicate that elevating the suction and chemical reaction parameters
leads to a deterioration in fluid concentration.

3. Increasing the slip velocity parameter results in a degradation of both the tem-
perature and velocity of the Casson fluid.

4. Large values of the magnetic and Forchheimer parameters are found to degenerate
the velocity profile, whilst the Darcy number shows the opposite trend.

5. Raising the Casson parameter causes the fluid flow near the sheet surface to have
higher velocity profiles and lower temperature profiles.

6. Future research avenues stemming from this study might involve exploring hybrid
Casson nanofluids within non-Darcian porous medium under varied thermal prop-
erty conditions, which stands out as a substantial area of interest.
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