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Abstract
This paper’s major goal is to provide a numerical approach for estimating solutions 
to a coupled system of convection–diffusion equations with Robin boundary con-
ditions (RBCs). We devised a novel method that used four homogeneous RBCs to 
generate basis functions using generalized shifted Legendre polynomials (GSLPs) 
that satisfy these RBCs. We provide new operational matrices for the derivatives of 
the developed polynomials. The collocation approach and these operational matrices 
are utilized to find approximate solutions for the system under consideration. The 
given system subject to RBCs is turned into a set of algebraic equations that can be 
solved using any suitable numerical approach utilizing this technique. Theoretical 
convergence and error estimates are investigated. In conclusion, we provide three 
illustrative examples to demonstrate the practical implementation of the theoretical 
study we have just presented, highlighting the validity, usefulness, and applicability 
of the developed approach. The computed numerical results are compared to those 
obtained by other approaches. The methodology used in this study demonstrates a 
high level of concordance between approximate and exact solutions, as shown in the 
presented tables and figures.
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1 Introduction

The convection–diffusion equation is a mathematical representation that combines 
the diffusion and convection equations. It is used to explain many physical events 
in which the transfer of particles, energy, or other physical variables occurs inside 
a physical system as a result of two distinct processes: diffusion and convection. 
The nomenclature for a certain equation may vary depending on the specific 
context in which it is used. In some cases, the equation may be referred to as the 
convection–diffusion equation, while in other cases it may be termed the drift-
diffusion equation. Additionally, it is also possible for the equation to be referred 
to as the generic scalar transport equation [7, p.64].

The study of singularly perturbed coupled systems of convection–diffusion 
equations has a rich history in the field of applied mathematics. Such systems 
arise in various scientific disciplines, including fluid mechanics, chemical engi-
neering, and environmental modeling, among others. In these systems, convec-
tion and diffusion work together. Convection is the movement of a substance due 
to the motion of the fluid as a whole, and diffusion is the spreading or dispersing 
of the substance due to random molecular movement. One of these effects is sig-
nificantly dominant compared to the other, leading to a disparity in the magni-
tudes of the associated coefficients. This results in a multiscale behavior of the 
solution, where rapid variations occur in thin transition layers, while the solution 
behaves more slowly away from these layers. Understanding and accurately esti-
mating the solutions of such systems present challenges due to the presence of 
sharp gradients and the need to resolve these layers accurately.

The choice of boundary conditions is crucial when solving the singularly 
perturbed coupled system of convection–diffusion equations. Different forms 
of boundary conditions, including Dirichlet, Neumann, and Robin, can be con-
sidered [10, 11, 21, 25]. However, the focus of this paper is on the application 
of Robin boundary conditions. Robin boundary conditions, also referred to as 
impedance or mixed boundary conditions, combine Dirichlet and Neumann con-
ditions. They offer modeling flexibility for systems in which the values of the 
solution and its derivative affect the exchange or transmission of a substance 
across a boundary [9, 20]. By adding Robin boundary conditions to the coupled 
convection–diffusion system, physical phenomena can be represented more accu-
rately, making the model more accurate.

The Robin boundary condition problem for a set of singularly perturbed con-
vection–diffusion equations is the subject of this research. This problem in the 
form:

subject to the set of four RBCs:

(1.1)
�1 u

��
1
(x) + F1(x, u1(x), u2(x), u

�
1
(x), u�

2
(x)) = g1(x), x ∈ (a, b),

�2 u
��
2
(x) + F2(x, u1(x), u2(x), u

�
1
(x), u�

2
(x)) = g2(x), x ∈ (a, b),

}
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where F1 and F2 are either linear or nonlinear functions, 0 ≤ 𝜀j ≪ 1, are the pertur-
bation parameters and �ij, �ij, �ij, i, j = 1, 2, are all constants.

In the case of F1 and F2 are linear functions, this system has been the subject 
of several related investigations: the adaptive grid method [21], hybrid difference 
schemes on the Shishkin mesh [26], upwind finite difference scheme on a Shishkin 
meshes [6], a parameter uniform numerical method [13].

Three well-known spectral methods are the collocation method, the tau method, 
and the Galerkin method. These methods provide very accurate approximations for 
a wide range of various differential equations. The form of these methods depends 
on the kind of differential equation being solved and the boundary conditions being 
considered. The computational cost of solving differential equations using one of 
these methods may be reduced by using operational matrices to construct efficient 
approaches (see for instance, [1–5, 8, 22, 24]).

To the best of our knowledge, a Galerkin operational matrix with any basis func-
tion that fulfills the homogeneous RBCs (In the form (1.2) with �i,j = 0, i, j = 1, 2 ) is 
unknown and untraceable in the literature. This contributes to our interest in such an 
operational matrix. The numerical approach of BVP (1.1) and (1.2) using this kind 
of operational matrix is another inspiration.

The primary goals of this study are as follows: 

 (i) Using GSLPs to build a new class of basis polynomials that meet the four 
homogeneous Robin boundary conditions, we called them Robin-Modified 
Legendre polynomials (RMLP).

 (ii) Creating operational matrices for the derivatives of the calculated polynomials.
 (iii) Creating a numerical technique for solving BVP (1.1) and (1.2) utilizing the 

collocation method and the operational matrices of derivatives given.
 (iv) Estimating the error obtained for the approximate solution.

The structure of the paper is as follows. The Legendre polynomials and their shifted 
ones GSLPs are explored in Sect. 2. Section 3 is confined to building RMLP that 
satisfies homogenous RBCs. Section 4 focuses on creating a new operational matrix 
of RMLP’ derivatives to handle BVP (1.1) and (1.2). The section 5 looks at the use 
of the collocation method to provide numerical approache for BVP, (1.1), and (1.2). 
Section 6 discusses theoretical convergence and error estimates. Section 7 includes 
three examples as well as comparisons with other approaches from the literature. 
Finally, some conclusions are presented in Sect. 8.

2  An Overview on Legendre Polynomials and their Shifted Ones

One of the several approaches that may be used to define the Legendre polynomials 
of degree n, Ln(t) , is the recurrence formula, which reads as follows [14]:

(1.2)
�1juj(a) + �j �1ju

�
j
(a) = �1j, j = 1, 2,

�2juj(b) + �j �2ju
�
j
(b) = �2j, j = 1, 2,

}
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and they are orthogonal polynomials and satisfy the relation

The generalized shifted Legendre polynomials (GSLPs) L∗
n
(x;a, b) , are defined as 

follows:

and their orthogonality relation is

Lemma 2.1 The GSLPs can be represented as

where

Proof The known shifted Legendre polynomials L∗
n
(x;0, 1) are expressed analytically 

as

Then

Substituting the relation

(2.1)
(n + 1)Ln+1(t) = (2n + 1)t Ln(t) − n Ln−1(t), t ∈ [−1, 1],

L0(t) = 1, L1(t) = t,

}

�
1

−1

Lm(t)Ln(t) dt =

{
2

2n + 1
, n = m,

0, n ≠ m.

(2.2)L∗
n
(x;a, b) = Ln

(
2x − a − b

b − a

)
, x ∈ [a, b],

�
b

a

L∗
m
(x;a, b) L∗

n
(x;a, b) dx =

{
b − a

2n + 1
, n = m,

0, n ≠ m.

(2.3)L∗
n
(x;a, b) =

n∑
q=0

L
∗(q)
n (0;a, b)

q!
xq, n ≥ 0,

(2.4)L∗(q)
n

(0;a, b) =
(−1)n+q(n + q)!

(b − a)q(q)!(n − q)! 2F1

(
q − n, n + q + 1

q + 1

|||
a

a − b

)
.

(2.5)L∗
n
(x;0, 1) =

n∑
k=0

(−1)n+k(n + k)!

(k!)2 (n − k)!
xk, x ∈ [0, 1].

(2.6)

L∗
n
(x;a, b) = L∗

n
(
x − a

b − a
;0, 1) =

n∑
k=0

(−1)n+k(n + k)!

(k!)2 (n − k)!

(
x − a

b − a

)k

, x ∈ [a, b].

(x − a)k =

k∑
i=0

(
k

i

)
(−a)k−i xk,
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to Eq.(2.6), expanding and collecting similar terms - and after some rather 
manipulation - one can see that L∗(q)n (0;a, b), q ≤ n, take the form (2.4) and this 
completes the proof of Lemma 2.1.   ◻

It follows logically from Lemma 2.1 that

Note 2.1 Here, it is important to remember that the generalized hypergeometric 
function is defined as Luke [23]

where bj ≠ 0 , for all 1 ≤ j ≤ q.

3  Robin‑Modified Legendre Polynomials

This section introduces two new classes of polynomials denoted by �j,k(x), j = 1, 2, 
and they are referred to as RMLP and meet the homogeneous RBCs:

respectively. To achieve this aim, it is proposed that RMLP be written as

where the constants �j,k, �j,k, j = 1, 2, will be computed such that �j,k(x) fulfill the 
conditions (3.1), respectively. Substitution of �j,k(x) into (3.1) yields the two systems 
for j = 1, 2:

respectively, which directly provides

(2.7)L∗
n
(x;0, �) =

n∑
q=0

(−1)n+q(n + q)!

(q!)2(n − q)!�q
xq, x ∈ [0, �].

pFq

(
a1, a2, ..., ap
b1, b2, ..., bq

|||z
)

=

∞∑
k=0

(a1)k...(ap)k z
k

(b1)k...(bq)k k!
,

(3.1)
�1j�j,k(a) + �j �1j�

(1)

j,k
(a) = 0,

�2j�j,k(b) + �j �2j�
(1)

j,k
(b) = 0,

}

(3.2)�j,k(x) = (x2 +�j,k x + �j,k)L
∗
k
(x;a, b), k = 0, 1, 2,… ,

(3.3)

�1j(a2 +�j,ka + �j,k)L∗k (a;a, b) + �j �1j((2a + �j,k)L∗k (a;a, b) + (a2 +�j,ka + �j,k)L
∗(1)
k (a;a, b)) = 0,

�2j(b2 +�j,kb + �j,k)L∗k (b;a, b) + �j �2j((2b + �j,k)L∗k (b;a, b) + (b2 +�j,kb + �j,k)L
∗(1)
k (b;a, b)) = 0,

}

(3.4)

�j,k = −
a�1jL(�j �2j(a−b(dk+2))−�2jbL)+�j �1j(�2jbL(a(dk+2)−b)+�j �2j(dk+2)(abdk−Lr))

Δj,k

,

�j,k =
�j �1j(�2jL(2a+r dk)+�j �2jdk(dk+2)r)−�1jL(�j �2j(2b+r dk)+�2jLr)

Δj,k

,

⎫⎪⎬⎪⎭
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where dk = k2 + k, L = b − a,  r = a + b and

The proposed RMLP have the special values

4  Operational Matrix of Derivatives of RMLP

Operational derivative matrices for �j,n(x), n = 0, 1, 2,… , will be developed in this 
section. They will be new Galerkin operational matrices of derivatives. The follow-
ing Theorem must be proven first:

Theorem 4.1 D�j,n(x), j = 1, 2,  for all n ≥ 0 , have the following expansions:

and

where a0(n), a1(n), … , an−1(n) , satisfy the system

while the coefficients ã0(n), ã1(n), … , ãn−1(n) , satisfy the system

where an = [a0(n), a1(n), … , an−1(n)]
T,  ãn = [ã0(n), ã1(n), … , ãn−1(n)]

T , 
Gn = (gi,j(n))0≤i,j≤n−1,  G̃n = (g̃i,j(n))0≤i,j≤n−1,   Bn = [b0(n), b1(n), … , bn−1(n)]

T and 
B̃n = [b̃0(n), b̃1(n), … , b̃n−1(n)]

T . The elements of Gn, G̃n, Bn and B̃n are defined as 
follows:

and

Δj,k = �1jL
(
�j �2j

(
dk + 1

)
+ �2jL

)
+ �j �1j

(
−�j �2jdk

(
dk + 2

)
−
(
�2j

(
dk + 1

)
L
)) ≠ 0.

(3.5)
�
(q)

j,k
(0) = �j,k L

∗(q)

k
(0;a, b) + q�j,k L

∗(q−1)

k
(0;a, b) + q(q − 1) L

∗(q−2)

k
(0;a, b), 1 ≤ q ≤ k + 2.

(4.1)D�1,n(x) =

n−1∑
j=0

aj(n)�1,j(x) + �n(x), �n(x) = e1(n)x + e0(n),

(4.2)D𝜑2,n(x) =

n−1∑
j=0

ãj(n)𝜑2,j(x) + 𝜖n(x), 𝜖n(x) = ẽ1(n)x + ẽ0(n),

(4.3)Gnan = Bn,

(4.4)G̃nãn = B̃n,

gi,j(n) =

{
�
(n−i+1)

1,n−j−1
(0) i ≥ j,

0, otherwise,
, bi(n) = �

(n−i+2)

1,n
(0),

g̃i,j(n) =

{
𝜑
(n−i+1)

2,n−j−1
(0) i ≥ j,

0, otherwise,
, b̃i(n) = 𝜑

(n−i+2)

2,n
(0).
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In addition, ei(n) and  ẽi(n), i = 0, 1, have the forms:

Proof It is easy to see that e0(n) and e1(n) take the form in (4.5). This enable us to 
write (4.1) in the form:

Using Maclaurin series for �1,j(x) and D�1,n(x) , Eq.(4.6) takes the form:

This gives the following triangle system of n equations in the unknowns 
aj(n), j = 0, 1,… , n − 1,

which can be written in the matrix form (4.3). As before, it is possible to show that 
D�2,n(x) has the expansion (4.2). Here, ẽ0(n) and ẽ1(n) have the forms in (4.5), and 
ãj(n), j = 0, 1,… , n − 1 satisfy the system (4.4). This completes the proof of Theo-
rem 4.1.   ◻

This section’s primary objective is to introduce the operational matrices of deriv-
atives of

which is stated in the following corollary:

Corollary 4.1 The mth derivative of the vectors �j(x), j = 1, 2, have the forms:

where �1(x) =
[
�0(x), �1(x),… , �N(x)

]T,  �2(x) =
[
𝜖0(x), 𝜖1(x),… , 𝜖N(x)

]T
, H1 =

(
hi,j

)
0≤i,j≤N and H2 =

(
h̃i,j

)
0≤i,j≤N,

(4.5)
ei(n) = 𝜑

(i+1)

1,n
(0) −

∑n−1

j=0
aj(n)𝜑

(i)

1,j
(0),

ẽi(n) = 𝜑
(i+1)

2,n
(0) −

∑n−1

j=0
ãj(n)𝜑

(i)

2,j
(0).

�

(4.6)

D�1,n(x) − �
(1)

1,n
(0) − �

(2)

1,n
(0)x =

n−1∑
j=0

a
j
(n)

(
�1,j(x) − �1,j(0) − �

(1)

1,j
(0)x

)
, n = 1, 2,… .

(4.7)

n+1�
r=2

�
(r+1)

1,n
(0)

r!
xr =

n−1�
j=0

aj(n)

⎛⎜⎜⎝

j+2�
r=2

�
(r)

1,j
(0)

r!
xr
⎞⎟⎟⎠
=

n+1�
r=2

⎛⎜⎜⎝

n+1�
j=r

�
(r)

1,j−2
(0)

r!
aj−2(n)

⎞⎟⎟⎠
xr, n = 1, 2,… .

(4.8)
n+1∑
j=r

�
(r)

1,j−2
(0) aj−2(n) = �

(r+1)

1,n
(0), r = n + 1, n,… , 2,

(4.9)�j(x) = [�j,0(x),�j,1(x),… ,�j,N(x)]
T , j = 1, 2,

(4.10)
dm�j(x)

dxm
= H

m
j
�j(x) + �

(m)

j
(x), �

(m)

j
(x) =

m−1∑
k=0

H
k
j
�
(m−k−1)

j
(x),

hi,j =

{
aj(i), i > j,

0, otherwise,
, h̃i,j =

{
ãj(i), i > j,

0, otherwise.
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For instance, if N = 5, a = 0, b = 1, �i1 = �i1 = 1, �i2 = 1, �i2 = −1, i = 1, 2 , we 
get

and

5  A Collocation Algorithm for Handling the System (1.1) Subject 
to RBCs(1.2)

In this part, we go through how to get numerical solutions for BVP (1.1)–(1.2) using 
the operational matrix mentioned in Corollary 4.1.

5.1  Homogeneous Boundary Conditions

In this section, consider the homogeneous case of BCs (1.2), i.e., �i,j = 0, i, j = 1, 2 . 
In this case, we propose approximations to u1(x) and u2(x) as follows:

and

Corollary 4.1 allows us to estimate the derivatives u(m)
j,N

(x), m, j = 1, 2, as follows:

Using estimates (5.3), we can define the residuals of two Equations (1.1) as follows:

(4.11)H1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

6 0 0 0 0 0

−
2004

329
12 0 0 0 0

3670204

164829
−

12940

7849

50

3
0 0 0

−
1311891740

72359931

102206469

3445711
−

125930

219939
21 0 0

2555675305543

49566552735
−

11509826512

2360312035

1006475201

30131643
−

73422

300715

126

5
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠6×6

,

(4.12)H2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

6 0 0 0 0 0
2004

329
12 0 0 0 0

3670204

164829

12940

7849

50

3
0 0 0

1311891740

72359931

102206469

3445711

125930

219939
21 0 0

2555675305543

49566552735

11509826512

2360312035

1006475201

30131643

73422

300715

126

5
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠6×6

.

(5.1)u1(x) ≃ u1,N(x) =

N∑
i=0

ci �1,i(x) = A
T
1
�1(x), A1 =

[
c0, c1,… , cN

]T
,

(5.2)u2(x) ≃ u2,N(x) =

N∑
i=0

c̃i 𝜑2,i(x) = A
T
2
�2(x), A2 =

[
c̃0, c̃1,… , c̃N

]T
.

(5.3)u
(m)

j,N
(x) = A

T
j
H

m
j
�j(x) + �

(m)

j
(x),
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To solve the system (1.1)–(1.2) (with �i,j = 0, i, j = 1, 2, ) numerically, a spectral 
technique is proposed: the Robin shifted Legendre collocation operational matrix 
mathod RSLCOMM. The collocation points xi , are chosen such that either the 
(N + 1) zeros of L∗

N+1
(x;a, b) or xi =

i + 1

N + 2
, i = 0, 1, ...,N , so we have

then solving the system (5.5) gives the coefficients ci and c̃i (i = 0, 1, ...,N).

5.2  Nonhomogeneous Boundary Conditions

The transformation of the equation (1.1) with non-homogeneous RBCs (1.2) into the 
appropriate homogeneous conditions is a crucial step in the construction of the sug-
gested method. To accomplish this, the following transformation is suggested:

where

As a result, it is sufficient to solve the system

subject to the homogeneous RBCs:

6  Convergence and Error Estimates For RSLCOMM

In this part, we analyze the convergence and error estimates of the proposed tech-
nique. For a nonnegative integer N, consider the two spaces Sj,N , j = 1, 2, defined by

(5.4)

Rj,N(x) = �j (AT
j H

2
j �j(x) + �(2)j (x)) + Fj(x,AT

1 �1(x),AT
2 �2(x),AT

1 H1 �1(x)

+ �1(x),AT
2 H2 �2(x) + �2(x)) − gj(x), j = 1, 2.

(5.5)Rj,N(xi) = 0, i = 0, 1, ...,N, j = 1, 2,

(5.6)ūj(x) = uj(x) − 𝜆j x − 𝜇j, j = 1, 2,

(5.7)

�j =
1

△j

(�2j�1j − �1j�2j),

�j =
1

△j

(�2j
�
a�1j + �j �1j

�
− �1j

�
�2jb + �j �2j

�
),

△j = �2j
�
�1j(a − b) + �j �1j

�
− �1j �j �2j ≠ 0.

⎫⎪⎪⎬⎪⎪⎭

(5.8)
𝜀1 ū1

��(x) + F1(x, ū1(x), ū2(x), ū1
�(x), ū2

�(x)) = ḡ1(x), x ∈ (a, b),

𝜀2 ū2
��(x) + F2(x, ū1(x), ū2(x), ū1

�(x), ū2
�(x)) = ḡ2(x), x ∈ (a, b),

}

(5.9)
𝛼1jūj(a) + 𝜀j 𝛽1jū

�
j
(a) = 0, j = 1, 2,

𝛼2jūj(b) + 𝜀j 𝛽2jū
�
j
(b) = 0, j = 1, 2.

}
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Furthermore, the differences between the function uj(x) and its estimated value 
uj,N(x) are denoted by

This study examines the errors of the suggested method by using the L2 norm error 
estimate,

and the L∞ norm error estimate,

The proof of the following theorem has similarities to the proofs of theorems 
expounded in the research articles [5, 15–19, 27N.

Theorem  6.1 Assume that u
(i)

j
(x) ∈ C[a, b], i = 0, 1, ...,N + 1, with 

|u(N+1)
j

(x)| ≤ Mj,∀x ∈ [a, b], j = 1, 2 . Assume that uj,N(x), j = 1, 2, have the expan-
sions (5.1) and (5.2), respectively, represent the best possible approximations for 
uj(x) out of Sj,N , j = 1, 2 , respectively. Then, the estimates obtained are as follows:

and

Proof The proof of this theorem is similar to [, Theorem 6.1]. 5  ◻

The following corollary demonstrates that the obtained errors converge 
rapidly.

Corollary 6.1 For all N ≥ 1 , the following two estimates hold:

and

Proof The proof of this corollary is similar to [, Corollary 6.1]. 5  ◻

Sj,N = Span{�j,0(x),�j,1(x), ...,�j,N(x)}.

(6.1)Ej,N(x) =
|||uj(x) − uj,N(x)

|||, j = 1, 2.

(6.2)‖Ej,N‖2 = ‖uj − uj,N‖2 =
�
∫

b

a

�uj(x) − uj,N(x)�2 dx
�1∕2

,

(6.3)‖Ej,N‖∞ = ‖uj − uj,N‖∞ = max
a≤x≤b�uj(x) − uj,N(x)�.

(6.4)‖Ej,N‖∞ ≤ Mj (b − a)N+1

(N + 1)!
,

(6.5)‖Ej,N‖2 ≤ Mj

(N + 1)!

(b − a)(N+1)+1∕2

(2N + 3)1∕2
.

(6.6)‖Ej,N−1‖∞ = O(((b − a)e)N∕NN+1∕2), j = 1, 2,

(6.7)‖Ej,N−1‖2 = O(((b − a)e)N∕NN+1), j = 1, 2.
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7  Computational Simulations

In this section, we show that the proposed algorithm in Sect. 5 has high flexibility 
and accuracy. In order to evaluate the precision of RSLCOMM, we define the fol-
lowing error:

and the order of convergence RN by

By solving three numerical problems, we show that RSLCOMM yields reliable 
results, and when the provided system has polynomial solutions uj(x), j = 1, 2, of 
degree less than or equal to N, these solutions have the forms:

In addition, the obtained errors of order 10−15 are produced for N = 10, 11 when 
employing the suggested technique RSLCOMM, as shown in two Tables 1 and 3. 
The computational outcomes in these tables are outstanding. Table 2 provide com-
parisons between our technique and other approaches in [21], and it shows that 
RSLCOMM provides greater precision outcomes than these approaches.

Moreover, as illustrated in Figs. 3 and 4, the exact and numerical solutions for 
the two cases: �1 = 10−8 ,  �2 = 10−5 and �1 = 10−8,   �2 = 10−10 , to the provided 

(7.1)EN = max{‖E1,N‖∞, ‖E2,N‖∞},

(7.2)RN ≈
Log(EN+1∕EN)

Log(EN∕EN−1)
.

(7.3)u1(x) =

N−2∑
i=0

ci 𝜑1,i(x), u2(x) =

N−2∑
i=0

c̃i 𝜑2,i(x).

Table 1  Numerical results with �
1
= 2−9 for Problem 7.2

�
2

N = 1 N = 3 N = 5 N = 7 N = 9 N = 11

2−8 E
N 1.2×10−3 5.0×10−6 1.3×10−8 2.2×10−11 2.0×10−14 8.26×10−15

R
N

1.00 1.09 1.07 1.10 1.47 1.49
2−10 E

N 1.4×10−3 5.0×10−6 1.2×10−8 2.0×10−11 1.4×10−14 5.0×10−15

R
N

1.05 1.07 1.06 1.13 1.38 1.40
2−12 E

N 1.4×10−3 4.5×10−6 1.2×10−8 1.9×10−11 2.1×10−14 6.0×10−15

R
N

1.07 1.03 9.30 1.08 1.05 1.10
2−14 E

N 1.3×10−3 5.0×10−6 1.1×10−8 1.8×10−11 2.7×10−14 2.5×10−15

R
N

1.02 1.10 1.01 1.36 1.23 1.20
2−16 E

N 1.4×10−3 4.4×10−6 1.1×10−8 1.9×10−11 3.0×10−14 4.2×10−15

R
N

1.01 1.09 1.02 1.26 1.13 1.12
2−18 E

N 8.7×10−4 4.5×10−6 1.2×10−8 1.2×10−11 2.8×10−14 5.3×10−15

R
N

1.07 1.10 1.11 1.22 1.13 1.11
2−20 E

N 8.5×10−4 4.3×10−6 1.1×10−8 1.9×10−11 3.1×10−14 7.7×10−15

R
N

1.02 1.07 1.01 1.36 1.33 1.31
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Table 2  Comparison of several approaches of Problem 7.2

RSLCOMM Shishkin mesh [21] Adaptive mesh [21]
�
1

�
2

(N = 11)

10−8 10−5 E
N

2.14E-15 2.96E-03 7.87E-04

10−8 10−10 E
N

5.47E-15 1.55E-03 7.80E-04

Fig. 1  Errors E
1,11

(x) and E
2,11

(x) using �
1
= 10−8 and �

2
= 10−5 for Problem 7.2

Fig. 2  Errors E
1,11

(x) and E
2,11

(x) using �
1
= 10−8 and �

2
= 10−10 for Problem 7.2

Fig. 3  Exact and Approximate solutions for Problem 7.2 using N = 11, �
1
= 10−8 and �

2
= 10−5
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problem 7.2, are in great agreement, and their corresponding errors are represented 
by two Figs.  1 and 2. Additionally, two Figs.  5a and 6a show that the absolute 
error function Ej,N(x), j = 1, 2, for different values of N and they emphasize the 
dependency of error on N. Also, they demonstrate that when RSLCOMM is used, 

Fig. 4  Exact and Approximate solutions for Problem 7.2 using N = 11, �
1
= 10−8 and �

2
= 10−10

Table 3  Numerical results with �
1
= 10−10 for Problem 7.3

�
2

N = 0 N = 2 N = 4 N = 6 N = 8 N = 9 N = 10

10−2 E
N 4.9×10−2 1.2×10−4 5.0×10−7 1.1×10−10 2.1×10−13 3.2×10−15 2.0×10−15

R
N

1.53 1.2 1.11 1.09 1.01 1.12
10−4 E

N 5.2×10−2 1.3×10−4 4.9×10−7 1.3×10−10 2.2×10−13 3.6×10−15 2.2×10−15

R
N

1.43 1.22 1.17 1.12 1.07 1.09
10−6 E

N 5.2×10−2 1.4×10−4 4.8×10−7 1.2×10−10 2.1×10−13 3.3×10−15 2.2×10−15

R
N

1.44 1.31 1.11 1.19 1.09 1.1
10−8 E

N 5.2×10−2 1.3×10−4 4.9×10−7 1.4×10−10 2.3×10−13 4.4×10−15 1.2×10−15

R
N

1.51 1.32 1.17 1.15 1.11 1.12
10−10 E

N 5.3×10−2 1.2×10−4 5.1×10−7 1.2×10−10 2.2×10−13 2.5×10−15 1.2×10−15

R
N

1.49 1.30 1.14 1.09 1.07 1.11

Fig. 5  Errors results at �
1
= 10−10 , �

2
= 10−8 for Problem 7.3
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the convergent behavior of the calculated numerical solutions to the Problem  7.3 
performs well. Furthermore, Figs. 6b, and 6b illustrate the stability of solutions.

Example 7.1 Consider the following system as a linear test problem to illustrate the 
theoretical result of RSLCOMM:

subject to the set of four RBCs

where the exact solutions are u1(x) = U∗
3
(x;0, 1) and u2(x) = U∗

2
(x;0, 1) . In this prob-

lem, the used bases polynomials have the forms

The application of proposed method RSLCOMM gives the exact solution for N ≥ 1:

Example 7.2 Consider the singularly perturbed convection–diffusion:

(7.4)

u��
1
(x) − u�

1
(x) − u1(x) − 2x u2(x) = −96x3 − 64x2 + 530x − 228, x ∈ (0, 1),

u��
2
(x) − u�

2
(x) + u1(x) + 3x u2(x) = 112x3 − 144x2 + 17x + 44, x ∈ (0, 1),

}

(7.5)
10 u1(0) + u�

1
(0) = 0, 10 u1(1) − u�

1
(1) = 0,

16 u2(0) + 3 u�
2
(0) = 0, 16 u2(1) − 3 u�

2
(1) = 0,

}

�1,i(x) =

(
x2 − x +

1

10 − i(i + 1)

)
L∗
i
(x;0, 1), i = 0, 1, 2,… ,

�2,i(x) =

(
x2 − x +

3

16 − 3i(i + 1)

)
L∗
i
(x;0, 1), i = 0, 1, 2,… .

(7.6)u1(x) = 32�1,1(x), u2(x) = 16�2,0(x).

(7.7)
− �1 u

��
1
(x) + ((2x + 1) u1)

�(x) − (x2 u2(x))
� = f1(x), x ∈ (0, 1),

− �2 u
��
2
(x) − (x2 u1)

�(x) + (u2(x))
� = f2(x), x ∈ (0, 1),

}

Fig. 6  Errors results at �
1
= 10−10 , �

2
= 10−8 for Problem 7.3
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subject to the set of four RBCs

where f1(x) and f2(x) are chosen such that the exact solutions are

In this problem, the computed bases polynomials take the form:

where

The application of RSLCOMM gives the following numerical solutions u1,11(x) and 
u2,11(x) for �1 = 10−8 and �2 = 10−k, k = 5, 10:

and

respectively. These solutions corresponds precisely to the exact solution of precision 
10−15 as shown in Table 1.

Example 7.3 Consider the singularly perturbed convection–diffusion:

(7.8)
u1(0) + �1 u

�
1
(0) = 1, u1(1) + �1 u

�
1
(1) = 2 + 2�1,

u2(0) + �2 u
�
2
(0) = 2, u2(1) + �2 u

�
2
(1) = 4 + 3�2 − �2 cos 1 − sin 1,

}

(7.9)u1(x) = 1 − e−x∕�1 + x2, u2(x) = 2 − 2 e−x∕�2 + x(1 + x) − sin x.

(7.10)�j,i(x) = (x2 +�j,i x + �j,i)L
∗
i
(x;0, 1), j = 1, 2, i = 0, 1, 2,… ,

�j,i =
1 + 2 �j − i(i + 1)

(
i2 + i + 2

)
�2
j

i(i + 1)
(
i2 + i + 2

)
�2
j
− 1

, �j,i =
�j +

(
i2 + i + 2

)
�2
j

1 − i(i + 1)
(
i2 + i + 2

)
�2
j

.

u1,11(x) = 1 + 7.06102 ∗ 10−14 x + x2 + 1.61923 ∗ 10−11 x3 − 1.13497 ∗ 10−10 x4 + 5.35737 ∗ 10−10 x5

− 1.76544 ∗ 10−9 x6 + 4.13893 ∗ 10−9 x7 − 6.94268 ∗ 10−9 x8 + 8.27108 ∗ 10−9 x9 − 6.8327 ∗ 10−9 x10

+ 3.72099 ∗ 10−9 x11 − 1.20145 ∗ 10−9 x12 + 1.74233 ∗ 10−10 x13,

u2,11(x) = 2 − 1.15855 x + x2 + 0.166667 x3 + 1.44308 ∗ 10−10 x4 − 0.00833333 x5 + 2.13159 ∗ 10−9 x6

+ 0.000198408 x7 + 7.89061 ∗ 10−9 x8 − 2.76475 ∗ 10−6 x9 + 7.06017 ∗ 10−9 x10 + 2.14831 ∗ 10−8 x11

+ 1.03523 ∗ 10−9 x12 − 2.86939 ∗ 10−10 x13 +
(

200003
100000

− sin(1) − cos(1)
100000

)

x,

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

u1,11(x) = 1 − 8.70415 ∗ 10−14 x + x2 − 1.91388 ∗ 10−11 x3 + 1.28573 ∗ 10−10 x4 − 5.74032 ∗ 10−10 x5

+ 1.76417 ∗ 10−9 x6 − 3.79102 ∗ 10−9 x7 + 5.69559 ∗ 10−9 x8 − 5.88266 ∗ 10−9 x9 + 4.01249 ∗ 10−9 x10

− 1.66482 ∗ 10−9 x11 + 3.49732 ∗ 10−10 x12 − 2.05703 ∗ 10−11 x13,

u2,11(x) = 2 − 1.15853 x + x2 + 0.166667 x3 + 1.96343 ∗ 10−10 x4 − 0.00833333 x5 + 2.30854 ∗ 10−9 x6

+ 0.000198408 x7 + 5.54202 ∗ 10−9 x8 − 2.75992 ∗ 10−6 x9 + 1.259 ∗ 10−9 x10 + 2.56883 ∗ 10−8 x11

− 6.79802 ∗ 10−10 x12 + 1.62319 ∗ 10−11 x13 +
(

20000000003
10000000000

− sin(1) − cos(1)
10000000000

)

x,

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(7.11)
�1 u

��
1
(x) + (3 u1(x) −

1

4
e−u

2

1
(x) − u2(x))

� = f1(x), x ∈ (0, 1),

�2 u
��
2
(x) + (4 u2(x) − cos(u2(x)) − u1(x))

� = f2(x), x ∈ (0, 1),

}
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subject to the set of four RBCs

where f1(x) and f2(x) are chosen such that the exact solutions are

In this problem, the computed bases polynomials have the forms (7.10). The appli-
cation of RSLCOMM gives the following numerical solutions u1,9(x) and u2,9(x) for 
�1 = 10−10 and �2 = 10−4 , and u1,10(x) and u2,10(x) for �1 = 10−10 and �2 = 10−8:

and

respectively. These solutions corresponds precisely to the exact solution of precision 
10−15 as shown in Table 3.

8  Conclusion

In this article, two RMLP systems that meet homogeneous four-boundary Robin 
conditions (3.1) were built. The combination of these polynomials and the col-
location spectral technique results in an approximation to the system (1.1)–(1.2). 
The proposed technique, RSLCOMM, was tested on three problems, confirming 
the algorithm’s high accuracy and efficiency. The theoretical insights offered in 

(7.12)
u1(0) + �1 u

�
1
(0) = −

3

4
, u1(1) + �1 u

�
1
(1) =

1

4
,

u2(0) + �2 u
�
2
(0) = 2, u2(1) + �2 u

�
2
(1) = e + 1,

}

(7.13)

u1(x) =
4�1 + 3

4
�
�1 + 1

��
e�1 − �1 − 1

�ex − 1 + 3e

4
�
e�1 − �1 − 1

�x,

u2(x) =
e�2 + �2 − 2�2 cos(1) − 2 sin(1)�
�2 + 1

��
e�2 − �2 cos(1) − sin(1)

�ex − (1 − e) sin(x)

e�2 − �2 cos(1) − sin(1)
.

⎫
⎪⎪⎬⎪⎪⎭

u1,9(x) = − 5.38711 ∗ 10−11 + 0.538711 x − 0.375 x2 − 0.125 x3 − 0.03125 x4 − 0.00625 x5 − 0.00104165 x6

− 0.000148841 x7 − 0.0000185494 x8 − 2.12122 ∗ 10−6 x9 − 1.71503 ∗ 10−7 x10 − 3.11824 ∗ 10−8 x11

+ 1
4

(

x − 1
10000000000

)

− 3
4

( 10000000001
10000000000

− x
)

,

u2,9(x) = 0.00017608 + −1.7608 x + x2 + 0.673755 x3 + 0.0833335 x4 − 0.000354345 x5 + 0.00277776 x6

+ 0.000802151 x7 + 0.0000495022 x8 − 9.59263 ∗ 10−9 x9 + 4.79934 ∗ 10−7 x10 + 1.27788 ∗ 10−7 x11

+ 2
( 10001
10000

− x
)

− (1 + e)
( 1
10000

− x
)

,

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

u1,10(x) = − 5.38711 ∗ 10−11 + 0.538711 x − 0.375 x2 − 0.125 x3 − 0.03125 x4 − 0.00625 x5 − 0.00104167 x6

− 0.000148807 x7 − 0.0000186055 x8 − 2.06079 ∗ 10−6 x9 − 2.12228 ∗ 10−7 x10 − 1.55721 ∗ 10−8 x11

− 2.59846 ∗ 10−9 x12 + 1
4

(

x − 1
10000000000

)

− 3
4

( 10000000001
10000000000

− x
)

,

u2,10(x) = 1.76028 ∗ 10−8 − 1.76028 x + x2 + 0.673666 x3 + 0.0833333 x4 − 0.000349982 x5 + 0.00277778 x6

+ 0.000801981 x7 + 0.0000496078 x8 − 1.22015 ∗ 10−7 x9 + 5.56639 ∗ 10−7 x10 + 9.83842 ∗ 10−8 x11

+ 4.8907 ∗ 10−9 x12 + 2
( 100000001
100000000

− x
)

− (1 + e)
( 1
100000000

− x
)

,

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭
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this paper may be applied to a variety of ordinary, partial, and fractional differen-
tial equation systems. Theoretical convergence and error analysis were also stud-
ied. The presented numerical problems demonstrated the method’s applicability, 
utility, and accuracy. By exploring the connection between our research and the 
field of inverse scattering problems in future studies and incorporating ideas from 
the mentioned works [12, 28, 29], we can further investigate the applicability and 
potential extensions of our method for solving inverse scattering problems, which 
would provide valuable insights for the scientific community.
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