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Abstract

In this paper, we obtain weighted Sobolev type inequalities with explicit constants
that extend the inequalities obtained by Guo et al. (Math Res Lett 28(5):1419-1439,
2021) in the Riemannian setting. As an application, we prove some new logarithmic
Sobolev type inequalities in some smooth metric measure spaces.
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1 Introduction

The study of Sobolev inequalities with sharp constants has a long tradition in analy-
sis and geometry. For example, on the unit sphere S"~! endowed with its standard
metric, Escobar [7] classified all positive solutions of

Au=0 in B,
n—=2 P Sn—] (1.1)

u, + - u=u2 on

by an integral method and hence [8] proved that, for allu € C* (I_S’n),

-2
n— n—-1
vol(§"~1)m (/ uziz”dv> < 2 |Vu|2dv+/ wdv, (1.2)
sn-1 n—2 B Ssn-1
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where dv and vol(S"~!) are respectively the Riemannian measure and the Riemann-
ian volume of $"~!. This inequality plays an important role in the study of the
Yamabe problem on Riemannian manifolds. Note that, using harmonic analysis,
Beckner [1] derived a family of inequalities

2
q-1 g+l —n
vol(§"~1ya </ uq+1dv> <(g- 1)/ |Vu|2dv+/ w’dv,Yu € C*(B),
Sn—l B" Snfl

(1.3)
provided 1 < g< oo, if n=2, and 1 <g< ﬁ’ if n>3. The corresponding
Euler-Lagrange equation to (1.3) is

Au=0 in B,
u, + qfllu=u‘1 on "1, (1.4)

It is apparent that the case n > 2 and g = ’—’ of (1.3) and (1.4) are just (1.2) and
(1.1) respectively. Also, in the same paper, Beckner [1] confirmed

s F -1
vol(S"~ e < / uq“dv) <4— |Vul?dv + / wdv,Yu € C® ("),
Ssn—1 n— Sn—1 sn—1
(1.5)

provided 1 < g < oo, if n =2 or 3, and 1 < ¢ < “=, if n > 3. By considering the
Euler-Lagrange equation (1.4) and using integral methods Bidaut-Véron and Véron
[2] were able to give another proof of the inequality (1.5). More results about the
Sobolev inequalities on the unit sphere can be found in [5, 10, 11].

Guo et al. [9] recently generalized the spherical inequality (1.3) to any smooth
compact Riemannian manifolds with nonnegative sectional curvature and strictly
convex boundary. They proved the following Sobolev inequality.

Theorem 1.1 [9] Let (M", g) be a smooth compact Riemannian manifold with non-
negative sectional curvature and Il > 1 on the boundary oM. Assume 2 < n < 8 and

2
1 arl q-—1 1
CARNY)Y < Vul|*dQ + 2dx.
<vol(aM) ol ) = Yol(oM) /Ml ul vol(oM) fo, "
(1.6)

In the limiting case Theorem 1.1 implies the following logarithmic Sobolev
inequality.

Corollary 1.2 [9] Let (M", g) be a smooth compact Riemannian manifold with non-
negative sectional curvature and I > 1 on the boundary oM. Assume 2 <n < 8.
Then for any u € C®(M) with —— l(ﬁM) / u*d¥ = 1, we have

1 2 2 2 2
log i? d<. < Vul? dS.
Vol @) J,, 1 logw dx < SO /Ml ul
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The purpose of the present paper is to adapt the technique that has been used in
[9] to the setting of smooth metric measure spaces with nonnegative sectional curva-
ture and strictly convex boundary. We generalize Theorem 1.1 and Corollary 1.2 to the
smooth metric measure space. Let us fix some required notations before stating our
results.

Let (M, g) be a smooth compact n-dimensional Riemannian manifold and ¢ be a
C2%(M) function. We denote V, A and V2 the gradient, Laplacian and Hessian operator
on M with respect to g, respectively. Ric and R denote Ricci curvature and scalar curva-
ture, respectively. An n-dimensional smooth metric measure space (M, g,do = e~ dQ)
is a smooth compact n-dimensional Riemannian manifold (M, g) endowed with a
weighted measure e~% dQ and d<Q is the Riemannian volume element of the metric g.
On a smooth metric measure space (M, g, do = e=?dQ), we let

Ric, = Ric + V¢, 1.7)

stand for the Bakry—Emery Ricci curvature which is also called oo—Bakry—Emery
Ricci curvature, i.e., the m = oo case of the following m-Bakry—Emery Ricci curva-
ture defined by

o 1

with some constant m > n, and m = n if and only if ¢ is a constant. The equation
Ric, = Ag for some constant 4 is just the gradient Ricci soliton equation, which plays
an important role in the study of Ricci flow. The equation Ric” = Ag corresponds to
the quasi-Einstein equation [4], which has been studied by many mathematicians. In
recent years, the smooth metric measure space received much attention from many
mathematicians, see [6, 12—16, 19-22, 24-26] and the references therein.

Let v be the unit outward normal of M. Define the second fundamental form of
OM by II(X,Y) = (Vyv, Y) for any two tangent vector fields X and Y on M, and the
mean curvature by H = tr(Il). The f~mean curvature (see [22, p. 398]) at a point
x € M with respect to v is given by H,(x) = H(x) — (V¢(x),v(x)), where (-,-)
denotes the Riemannian metric g.

On (M, g,dc = e=? dQ), we consider the weighted Laplacian as follows:

Ly :=e?div(e?V) = A —g(Ve, V"), (1.9)

where V denotes the Levi-Civita connection, div = tr(V-) denotes the Riemannian
divergence operator, and A = divV is the Laplace—Beltrami operator. Notice that the
Green formula (the integration by parts formula)

/hﬂ_¢uda:/ huvdv—/(Vu, Vh)do
M oM M

= [ (hu,—uh,)dv+ / ul yhdo
oM M

holds provided u or & belongs to C>(M), where u,, = (v, Vu), and dv = e~ d% and
dZ is the volume form on oM.
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The following is one of our main results.

Theorem 1.3 Let (M, g, do = e~ dQ) be a smooth compact metric measure space
with nonnegative sectional curvature and Il > ¢ for a positive constant ¢ on the
boundary oM. Let ¢ be a potennalfunctlon such that V¢ — —dd) ®dp>0o0nM.
Assume2 <m < 8andl < q <55 Thenfor anyu € C°°(M) we have

1 1
—_— uq“dv) _—/ Vul*do + ——— u® dv,
(V01¢(0M) oM | I C(Vold)(aM)) M I I V01¢(()M) oM
(1.10)
where vol ,(0M) is the weighted area of OM.

Note that Theorem 1.3 recovers Theorem 1.1 obtained by Guo—Hang—Wang.
Moreover, Theorem 1.3 implies the logarithmic type Sobolev inequality.

Corollary 1.4 Let (M, g,do = e~ dQ) be a smooth compact metric measure space
with nonnegative sectional curvature and Il > ¢ for a positive constant ¢ on the
boundary o0M. Let ¢ be a potential function such that V2¢ - ﬁd(l) ®dp >0o0n M.

Assume 2 < m < 8. Then for any u € C*(M) with u? dv = 1, we have

vol (z)M ) /

_ 1 |u|210gu2dv§;/ \Vul? do.
vol,(0M) Joy c(vol (o))

The proof of Theorem 1.3 is based on the uniqueness results, which we state in
this setting as follows.

Theorem 1.5 Let (M, g,do = e=® dQ) be a smooth compact metric measure space
with boundary oM. Assume that the sectional curvature is nonnegative on M, and
the second fundamental form Il > c for a positive constant ¢ on dM. Let ¢ be a
potential function such that V¢ — ﬁd(j} ®dep > 0o0n M. Let u be a positive solu-
tion of the following system:

U_d,u =0 in M, 111
u,+Au=u? on M. (1.11)
Then the only positive solution to the Eq. (1.11) is constant if A < T provided

_4m_

2<m<8and1<q< —

If we take ¢p = constant, then Theorem 1.5 becomes Theorem 2 proved by Guo
et al. [9].

The rest of this paper is organized as follows. In Sect. 2, we establish some ele-
mentary lemmas (Lemmas 2.1, 2.2, 2.3). The uniqueness results (Theorem 1.5)
are discussed in Sect. 3. Finally, Sect. 4 is dedicated to the proof of Theorem 1.3
and Corollary 1.4, respectively.
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2 Preliminaries
In this section, we drive some useful lemmas that will be used later.

Lemma 2.1 (Weighted Reilly formula) Let (M, g, dc = e~ dQ) be a smooth com-
pact metric measure space with boundary oM and V : M — R be a twice differen-
tial function. Given a smooth function f on M, we have

_ m 1 2
/M( J+R1c¢(Vf,Vf)>Vda+/M<1 m)([LJ) Vdo
= / (V2V(VS, V) = IVfIPLyV + Ric) (Vf, V/)V) do Q2.1)
M
+ / v(zfv[L_¢f+H¢fj+H(§fﬁf))dv+ / V, IV dv,
oM oM

where J:= |V2f]? — i(l]_d,f)z +Ricy(Vf, Vf), Ly =A—g(Vp.V), V and A are

respectively the gradient operator and the Laplace operator on oM.

Proof Now in the calculations that follow (at a point x € dM), we will use an ortho-
normallocal frame {e,, ...,e,} such thate, ..., e,_; are tangent to the boundary oM

*Tn
and e, = v is the outward unit normal to oM.
We use the integration by parts and the Ricci identity to derive that

/V|V2f|2d0'=/V2fljer’¢dQ
M M =1

= / VY fife?dz - / Y Vffe?da- / VY fufe?dQ
[V — M jj=1 M =1
+ / VY fifibe ™t d
Mo =

n

=/deZﬁufie—¢d2—ng<%|Vf|2>je—¢dQ

i=1

- / vy <(Af),. + ) Rif, |fre™?dQ + / VY fifibe dQ.
M =1 j=1 M

ij=1
2.2)
Using the integration by parts again, we obtain

@ Springer
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—/ ZVJA<1|Vf|2>‘e_¢dQ
Mj=1 2 J

=—-/ V,|Vf|?e? dz +
oM

n n

N =

j=1

<.

/i
I

(LyV)IVfPPe® dQ

0| —

:—-/ V,|Vf|?e ™ dz +
2 oM

and

M =

- / 1% ((Af)i+zn:Rij]j>/ie‘¢dQ
—/ Vzn: ((ﬂ_¢f+ i‘l’ﬂ;‘) + zn:Rijfj)fie‘¢dQ

= __/M Vi <(|]-41f), + 121 (J;'id)j + ¢ji];) + iR%)fie_d’dQ,

Inserting (2.3) and (2.4) into (2.2), we attain

/ VIV|? do
M

n
1
= [ V)Y ffe?d -~ / V,|Vf|*e~? dE
/0M ; 2 Jom
n
+%/ (I]_¢,V)|Vf|2e‘¢’d£2+/ VY fifibe?dQ
M M =1

_/Mvi (([Ldf)ﬁi(ﬁid’ﬁd’ﬁﬁ) +2Rif'ff

By the integration by parts, we have
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- |v L,f) fie~®dQ
v E e
= / V(L e d= + / ([LJ)ZVJge-¢dQ+ / V([Ld,f)z e dQ
oM M i=1 M i=1
-/ v .e”? dQ.
/M Lo B e

2.6)
Substituting (2.6) into (2.5), we can get

/V|V2f|2da
M
n 1 !
= \4 ii‘¢d2__/ VVV 2—¢d2+_/|]_vv2—¢dg
/aM ,Z:f“fe 2 Jou IVfle 2M(¢)|f|e
—/ V([L¢f)fve_¢d2+/(l¢f)zV‘f,»e“”dg+/ V(Lyf) th.e—fi’dg
M M i=1 M pry
-, Vi Troetaa= [ v 3w, oy an
M i=1 M=
=/ <V fiufi_lvvlvflz_vau—qaf>e_¢dz+1/(|]_¢V)|Vf|26_¢dﬂ
oM i=1 2 2 Jm

+ / Lf D, Vifie®dQ+ / V(Lyf) e dQ - / Ric,(Vf, Ve dQ.
M i=1 M M

2.7
We easily infer from (2.7) the following:
/ V((I]_d,f)z - |v2f|2> do
M
- vS 1 2 -9
= / < VY ff+ SVIVIP + V(L¢f)fv>e ds 2.8)
oM i=1

+ / < - %(MV)IVJ’IZ = (Lyf) X, Vif; + VRicy(Vf, Vf))ﬂ""’ .
M i=1

Applying the integration by parts, we get
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- / (L) Y Vifie™ dQ
M i=1
= - . _¢d

-/BMfV;Vfle 2‘-i--/M<,*z/‘—
_ _ S Ligs2 -6
_/0M< fV;V‘fi+ 51V Vv>e dZ+/M<
Taking (2.9) into (2.8), we have
/ V((Lyf) = IV¥P?) do
M

= / (—v i+ VUV + VNS £, vm)e-"’ dz
oM i=1 i=1

v/ (—%([L(pV)IVfIZ +
M

it + T V(519E) et ae
1 i=1 !

n

Vifif - %(H_¢V)|Vf|2>e‘¢ dQ.
1
(2.9)

ij=

n

Vi — %([quV)IVf > + VRic,(Vf, Vf))e“i’ Q.
1

ij=

2.10
Note that H, = H — (V¢,v). From the Gauss-Weingarten formula =
Af = Hf, + Af +f,, @2.11)
and
(VFVE) =Fifo = HOLND + (V. VL), (2.12)
we have

/ V(([L¢f)fv - mefi>e“” dx
oM i=1
= /0 V(Z(f;; —fipf, - Zﬁm>6‘¢ dz 2.13)
M i=1 i=1
n—1 n—1
- /a ; V(Z (i —fib)f, —£2¢, — mefi>e—¢ d.
i=1

i=1
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Putting (2.11) and (2.12) into (2.13), we get
/ V<([L¢f)fv - Z‘,fmf,->e‘¢ dx
oM i=1
n—1
= / V<<va +Zf +fvv - Zf;d)l)/\/ _f‘/2¢v _fufvv>e_¢ dz‘
oM i=1

+ /0 ; V(U(?f, VF) — (Vf, §fv>)e-¢ s

n—1
= /0 y V(<Zf - Zm)/v + (Hf? = f2¢,) + (VNS — (Vf, §fv>>e¢ dx
i=1

- / V(fv(ﬂ__¢f) + Hyf? = (Vf, Vf) + II(Vf, ?f))e-qﬁ ds.
oM

Again applying the integration by parts shows that

2 o_p o Pl
/0M<IVfI v, fvizzlm>e ds
=/ (Wflzvv —fvﬁvﬁf))e—d’dz
oM
= / (ISP, + VL, V1) + VI )e? dx.
oM

Then combining (2.14) and (2.15), we obtain

/ <—V D AL+ VIV + VLE, —f, D, Vf,.> dv
oM i=1 i=1
= / V(va([L_¢f)+H¢fV2 +11(€fﬁf))dv+ / V,|Vf|*dv.
oM oM
Substituting (2.16) into (2.10), we can get
/ V((Lyf)? = IV?fI = Ric,(Vf, V) do
M
= / V(2fLyf + Hyf? + (V. Vf)) dv
oM
+ / V,IVfI?dv + / (V2V = (L,V)g)(Vf. Vf) do,
oM M

which is equivalent to

(2.14)

(2.15)

(2.16)

(2.17)
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/ V(= (Lyf)? = IV = Ric,(Vf, V) ) do
m
m 1 2
+/M RIC "y, Vf)+(1—n—1>([l_¢f) )da
= / V(2f,Lyf + Hyf? + H(Vf, Vf)) dv + / Ric}(Vf, V)V do
oM

+ / V,IVf*dv + / (V2V = Ly V)g) (Vf. Vf) do.
oM M
(2.18)
Therefore, by the definition of J, we conclude the proof of Lemma 2.1. O

Let (M, g, do = e~® dQ2) be a smooth compact metric measure space with bound-
ary oM and f € C®(M) be a positive function. Let w be another smooth function on
M satisfying the following boundary conditions

wloy =0, @, loy =-1 (2.19)
We take V = fPw, for any b € R.

1 - m
/M <(1 - ;)([L(,)f)2 — J +Ric}(V], Vf))fba)da
b _
+/M§wfb 2IVFIP(3fLyf + (b — DIVfI?) do
- / (5097, 9 ~ IV Pf Ly = 21V, V) do

/ Ric)(Vf, V)f wdo — / FPIVFI? dv.

Proof A direct calculation gives
VV = f’Vo + baf’ ' Vf,
VIV = V%20 + bfP N (df ® dw + do ® df) + baf’ ' V2f
+ b(b — Daf*2df ® df,
L,V = fPLyw + 26" (Vf, Vo) + baf’'Lyf + b(b — Daf’ 2| Vf|?,
VAV(VE, Vf) = fPV?a(Vf, V) + 26" |Vf(Vf, Vo)
+ bof "'V F(VE, V) + b(b — Daf? 2| VF|*.

Plugging these equations into (2.1), we have
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1 . m
/M<l—Z)(ﬂ_¢f)2fbwdo+/M(—J+R1c¢(Vf,Vf)>fba)do
= / FoV2(VE, V) + baf" ' V2f(VF, Vf) do
M
- / IVFIP (f Ly + bof*~'Lyf) do + / Ricly(Vf, VA wdo
M M

+ / flw (2fv[l__¢f + Hyf? + H(VY, ?f)) dv + / (f*w, + baf*'f,)|Vf|? dv.
oM oM
(2.21)
Using the boundary conditions for @ in (2.19) yields

/M (1 —%)(I]_d)f)sza)da+ /M (—J+Ricjg(Vf, Vf))fba)da
_ / (F"V2a(Vf, VF) + baf ™ VF(Vf, V) do + / Ric!(Vf, V)f’w do
M M

- / IVF* (P Ly + bof 'L yf ) do — / FPIVEdv.
M oM
(2.22)
Using the integration by parts and w|,,, = 0, we get

@ Springer
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b / of IV (VF, V) do
M

=b/wfb-‘
M ij=

= g/wfb‘l Z(|Vf|2)j;§e—¢dsz
M j=1

b . ) o )
- E/M<Z (f " IVSIPe ¢),.—j;(wfb IV e ¢> dQ

fiffie™? dQ
1

J=1

+2 [ T et vt i
Mj=1
2 [ appgertan =2 [ 3 (4 0= Dart 2 ) vpRe de
2 oM v 2 w5 }f J J

b [~ ) b _
_E/M]Z,a’fb i1V e ¢dg+§[W|Vf|2wfb UV, Vf) do

_b / of V1V dv - & / PNV PV, Y1) + (b — Df* 2| Vf|* do
2 Jom 2 Ju

=% [ af SRS~ 0lVFEV. V) do

- —3/ (@f " IVFPLYf + (b = DfP ol V|* + 771 [Vf Ve, Vf)) do.
M

(2.23)
Substituting (2.23) into (2.22), we attain

/M <l - %)(U_J)Zf”wdo + /M (—J + RinZ(Vf, Vf))fbw do

= / (f”v%(Vf, VA = VP Lyw — gwf”‘zlvflz(3ﬂL¢f + (b= DIVF?)
M

- §|Vf|2f”" (Vf. Vo) + Ricj (Vf, Vf)f”w)do — [ fIVfPdv.
oM

Reorganizing yields the desired equality (2.20). Therefore the proof of Lemma 2.2 is
completed. O

Lemma 2.3 (Weighted Pohozave identity)
[ 1PV 90 4 7L + 2V Vo) = 1719 PLy0] do
M

-1 / PP = 2 dv.
oM
(2.24)
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Proof For any smooth vector field Vw, we can get
. _¢ l 2
d1V<e (<Vf, Vo)Vf = 3 IVf] Vw))
- e‘¢<V2w(Vf, V) + (LgfXVf, Vo) — %|Vf|2[L¢w).

Note that Vo = —v on dM. Multiplying both sides of the above identity by f* and
integrating yields

/ fbe_¢ V2o(Vf, Vf) + (L )(VS, Vw>—1|Vf|2[L¢w>dQ

/ fbdlv (Vf Vo)Vf — —|Vf| Vco))dQ

= /be ; <e‘¢ ; <fla)‘]; - %flza)j)> dQ

J

- / B! i]ﬁ(ﬂ Zn:ﬁwfj B % iﬂzwje_d’) de
M =1 i=1 i=1
+ [ 3 (9B (s - ypac) ) an

J

=/ [fbfv(Vf,Va))—lbeﬂzwv] dv—/bfb-1<Vf,Vw>|Vf|2da
oM 2 M
1 2
+§/M|Vf| (Vf,Vo)do

1 b -
= [ rea a2 [ porve) vk
oM M
(2.25)
By a straightforward computation, we obtain

L mvpav=1 / PATFP +12)d. (2.26)
2 oM 2 oM
Substituting (2.26) into (2.25), we get
/f”dlv (Vf Vo)Vf — —|Vf| Vco))dQ
L pawe-pav-t / UV V)P do.
oM 2 M

Thus, we have
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[ VLD + (L + BV V) = 3V Py do
M

_1
)

PPV =12 dv,
oM
which completes the proof of Lemma 2.3. O
Lemma 2.4 [17] Let u be a smooth function on M. For every m > n, we have
|V2ul* + Ricy(Vu, Vi) > l([L¢,u)2 +Ricl (Vu, Vu). (2.27)
m
Moreover, the equality in (2.27) holds if and only if

V2 =-L(Auwg and Lyu = ——(Vp, V).
n m-—n

3 Proof of Theorem 1.5
In this section, we shall prove Theorem 1.5.
Proof of Theorem 1.5 Let u be a positive solution of (1.11). Let a be a nonzero real

number to be determined later and take u = f~“. Then f > 0 satisfies the following
equation

{[LJ:(H DfUVFE in M, an

f, = 10f = f1*e=a1)  on oM.

For any s € R, multiplying the first equation in (3.1) by f* and integrating over M
yields

(a+s+1)/ |Vf|2f5‘1da=/ f°f, dv. (3.2)
M oM

Inserting (3.1) into (2.20), we obtain

/ ((1 ~ Dy 23202 >fb‘2|Vf|4a)da
M m 2

+ / (—J+Ricj;(Vf, Vf))f”a)da
M ) (3.3)
= / (17 V20915 = 19/ Pf "Ly = S|V P(VS. Vo) ) do
M
+ / Ric)(Vf, VA)f*@ do — / FPIVEI? dv.
M oM
Taking (3.1) into (2.24), we have
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[ (v 0r.9p + @+ 1+ 2 7P Vo) = 371V PLy0 ) do
M

SPAVfE =D av.
oM
3.4
In order to eliminate the term

’ / VF P (V. Vo) do,
M

b
2

we multiply (3.4) by 7 to get
2

a+1+

b _
5 /M PPV, Vo) do

SRR

—(% f”(ﬁflz—ff)dw%/fbwﬂzmqbwda)
M

b
a+1+§

- / V2w (VF, Vf)do
a+1+

;,,/ AP = dv - —— /f”Vzw(Vf Vf)do
a+1+ 5 Jom

a+1+=

N

b
+;/fb|Vf|2ﬂ_¢wda.
2<a+1+§> M

3.5
Substituting (3.5) into (3.3), we can get

[(1—1)(a+1)2+M /fb‘2|Vf|4coda—/fwado
m 2 Y M

/ Ric(Vf, V)f wdo
M

a+1+3b
- / <wf VZa(Vf., Vf) - —“,,|Vf|2f”[L¢w> do
+1+ 5

a+1+2

ib a+1+%b _
+ / Ric}(Vf, VAHftwdo + / bfbff— bf”lvflz dv.
M oM a+1+5 a+1+5

We choose b = —;—‘(a + 1). Then
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[5n—9—(m+9ala+1)
9m

= / FPV2 o(VE,Vf)do + / Ricy(Vf, V)f’wdo — / Iof2 dv.
M M oM

/fb‘2|Vf|4a)da+/ (—J+Ric;',’(Vf, Vf))f"wd"
M M

(3.6)
O

By arguing as in [23], we consider a weight function y :=p — c”—;, where
p = d(-,0M) denotes the distance function to the boundary oM. Notice that y 1s smooth
near dM and satisfies

Wlow =0, w,=-1

From now on we assume that M has nonnegative sectional curvature and I/ > c for
a positive constant ¢ on dM. By the Hessian comparison theorem [18] p < - hence
w > 0 and —V?y > cg in the support sense. To overcome the difficulty that l// is not
smooth, we also need

Proposition 3.1 [23] Fix a neighborhood C of Cut(0M) in the interior of M, with
Cut(0M) the cut-locus of points at the boundary oM. Then for any € > 0, there
exists a smooth nonnegative function y, on M such that w, =y on M\C and
—V2y, 2 (c - e)g.

Taking the weight @ = y, in (3.6) yields

[5m -9 — (m+9)al(a+ 1)
I9m

- / Py V) do - / PV, (VF.Vf) do
C

M\C

/ VS, do + / (=7 + RiEGVF D )y do
M M

/Rlcm(Vf VA w, da—/ fbf dv
M
> (c—¢) / FIVf1Pdo / [V (V). Vf)do
c M\C
+/Ric’£(Vf, VA, d"‘/ fbfvzdv'
Iy om

By letting ¢ — 0 and shrinking the neighborhood, we get the following

[S5m —9 — (m+9)al(a + 1)
I9m

/ 2V do + / ( —J +Ric)(VY, Vf))fby/ do
M M
>c / FPIVF? do — / FOV2W(VF, Vf)do + / Ricj (Vf, VHfPy do
c M\C M
I dv.
oM
Since the function y is smooth and —V?y > cg on M\ C, we obtain
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[S5m —9 — (m+9)al(a+ 1)
9m

c /M FPIVF? do + / Ric)(Vf, V) "y do - /beffdv.

/ 2|V do + / (-J +Ric”(Vf, Vf) )fbw do

Applying (3.2) and the boundary condition for fin (3.1), we have

[5m —9 — (m+ al(a + 1)
9m

z/cfb|Vf|2da+/Ric'g(Vf, Vf)fbwdo—l/ (AfPF! — prHirasaa)f gy

M M a Jom

=/ <cfb|Vf|2— WT"'ZM b|vf|2 %fbw aq|vf|2> do
M

+ / Ric} (Vf, VifPw do
M

=/ <(C A(z >fblvf|2 ( +3£)fb+a—aqlvf|2> do
M a

+ / Ricy (Vf, VOf"w do,
M

/f”‘2|Vf|4y/do+/ (=7 + Ricj(vr.V5) )y do
M M

3.7
which is equivalent to

A/fb—2|Vf|4wda+B/fb|Vf|2da
M M
c / fhra=aa|yf|? do + / (—J+Ric;}(Vf, Vf))fbu/da 3.8)
M M
> / Ric/\(Vf, V)f'w do,
M

where, with x = a!

[Sm =9 — (m +9)al(a + 1) [(6m—9)x — (m+ 9)](x + 1)

A=
9m Omx?

2_
=229 Ao p_.

3a 3

) )
C: —_——_—— — = _—— - —

1=373,797373"

By choosing a such that A, B, C < 0, we can get
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m+9
- 1)<
(- gp )+ v =0,

%(2x—1)—c§0,

2 2
- -=x<0
q 3% <

Direct computation gives

l<x< m+9’
Sm—-9
3¢ 1
“g-1<x<==+=
P Wi

The selection is possible when q —-1<x < == + 1 and : q -1< 5’”m+99 <0, that
is, (q— DA<cand g < 51_9 Smce g>1 we must have 2 <m < 8. Then when
qg < —and(q— DA<e, take— = Eq— 1, we get

C =0,
=(@-1Di-c<0,
5m—9 (3 2/3 m+9
A= 2 —1> 2g—1- <0.
6m q(zq <2 Sm— 9)

Therefore, the left hand side of (3.8) is nonpositive while the right hand side is non-
negative. Thus, both sides of (3.8) are zero and we must have

V2f = == (8,
Lyf = —Z—(Vf. V), (3.9)
Ric”(Vf, Vf) =
From (3.9), we obtain
V2f = = (A0 = —x (Lyf + (V. Vg
1
= —;([Ld)f )g (3.10)

VS Ps.

Ifg < % or (g —1)A < ¢ we have A < 0 or B < 0, respectively and thus f must be
constant. It needs to verify that f must also be constant when

dm
Sm—-9’

q= (@-Di=c. (3.11)

With the assumption (3.11), we can get
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0= 1 5m-9
T 3,1 m+9°
g1

Since Ric'g =0 and V3¢ — ﬁdd) ®d¢p >0 on M, we have Ric(Vf,-) =0. We
denote

_12m—6n

e -1 2 _ —1 2
§:i= IVFI® = wn +9)f [VFI*.

By (3.10), we obtain V2f = £g. Working with a local orthonormal frame we
differentiate

51 :fij,i :fu‘,j - ijfl
= (Af)j + Rﬂf,
= néj.

Thus & = 0 and ¢ is constant. To continue, recall that we have

(m+9)n

Vi = ——— 2
V7 12m — 6n

<

Differentiating both sides we get

(m+9)n
—&f =2 2fEg.. = 2&f.
oty = 2ff; = ke = 24
Thus, we have
25m—12n+9
&V =0.
12m — 6n VI

By taking inner product on both sides with Vf and applying f > 0, we obtain

sz = 0. Since m > n, we have & = 0 and thus Vf = 0 and f must be a

constant function. This finishes the proof of Theorem 1.5.

4 Proof of Theorem 1.3 and Corollary 1.4
In this section, we shall prove Theorem 1.3 and Corollary 1.4.

Proof of Theorem 1.3 We suppose m > 2, and consider the following family of func-
tionals 7, which is defined by

Jq(n)=/ \Vnl*do + —— | ndv
q—1 Jou

and consider u, 1= inf{7,(n),n € H,}, where
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H, = {;1 € Hi(do): [ n™'dv= 1}.

oM
Another important key here is that the real-valued function

g x> 4x
5x-9

is decreasing. So

4n
5n—-9

4m
Sm—9

=g(m) <gn) =

as n < m. Using the compactness of the inclusions
H2(do) & L*(do) and H(do) < L' (do)

for any g+ 1< ,,?ng’ we can confirm that p, is realized by a positive function
¥, € H,and hence we can easily check that y, verifies weakly the following system:

ﬂ_d)(//q =0 n M,
o q oM 4.1
dy, + 1V = HeV¥y on .
The regularity result of [3, Theorem 1] indicates that y, is smooth, so by applying
Theorem 1.5, we can infer that y, is constant. Since y, € H,, we have

_L C 1— C
v, = voly(oM) «' and p, = qjy/q 9=

gq-1
— 1vol¢(c9M)4+1.
Hence, recalling the definition of Hg> We can get

c
q-—1

o= 2 c 2
voly(oM) ! < |Vy|“do + —— n-dv.
M g—1 Jou

Simple calculation can be obtained,

_al -1
1 < vol,(oM) Z+l<q—/ |V11|2d0'+/ nzdv>.
¢ M oM

Considering any # € H12(d0') satisfies

2
g+ _a=l -1
</ 7’]q+ldv>q $V01¢(0M) Z+1 <q_/ |V]1|2d(7+/ I12dv>. “4.2)
oM ¢ Ju oM

Hence,

2
ey -1
<; u| ! dv) < q—/ |Vu|2da+; u? dv.
vol¢(6M) oM c(vol¢(0M)) M vol¢(0M) oM
“4.3)
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Thus we complete the proof of Theorem 1.3 for m > 2. The case where m = 2 (i.e.,
n = 2 and ¢ is constant), (1.10) can be obtained from [9, Corollary 1]. Therefore the
proof of Theorem 1.3 is completed. O

Using Theorem 1.3 we can prove Corollary 1.4.

Proof of Corollary 1.4 Under the assumption on u (4.3) can be written as

2

1 o\
— |9+ dv) -1
(vol¢<aM> Jom < 1 / \Vul? do. (4.4)
g—1 c(vol,(0M))
2
Let F(g) = (b [y ! dv) ™ = 1. We can get
(]
_r g+l gy, '
2\ 1 2 <vol iy Jow 11! )
F'(g) =F 1 a+1 ?
@=F@ (q+1> "(vol¢<aM) ! dv>+

qg+1 1
(st Jow el av)

-1
= L ; q+1 1 g+1
_F(q)<q+1<vol¢(aM) aMlul lnudv)<vol¢(aM) /azwlul dv) )

— 2 1 g+l
+F(q)< G+ " <vol¢(aM) ! d>]>
=_L<; |u|"+1dv>m[ln <; |u|"+1dv)]
(g + )2\ vol,0M) Jom voly,(0M) Joum

2 g

+1
+L;( |u|q+11nudv>( ! |u|"+1dv>q
g+ Lvol, M) \ /oy vol, (M) Jony

Taking limit ¢ | 1and applying L’Hospital’s rule yields

2
R S g+l ol _
<v01¢(aM) /0M |u| dv !
m

g=1 qg-—1
F
= lim @ _ lim F'(q)
=lg—1 ¢-I 4.5)
= 1 lu|* In udy
vol,(0M) Jou
L 1 |u|? In u? dv.

~ 2v0ly(0M) Jou

Substituting (4.5) into (4.4), we get the desired inequality. we complete the proof.
O

@ Springer



5 Page 22 of 23 Journal of Nonlinear Mathematical Physics (2024) 31:5

Author Contributions PYW conceived the idea of the study and wrote the paper. HTC discussed the
results and revised the manuscript.

Funding This work was supported by NSFC, National Natural Science Foundation of China (no.
12101530), Scientific and Technological Key Projects of Henan Province (no. 232102310321), the Key
Scientific Research Program in Universities of Henan Province (nos. 21A110021, 22A110021) and
Nanhu Scholars Program for Young Scholars of XYNU (no. 2023).

Data Availability Data sharing is not applicable to this article as no new data were created or analyzed in
this study.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.
Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licen
ses/by/4.0/.

References

1. Beckner, W.: Sharp Sobolev inequalities on the sphere and the Moser—Trudinger inequality. Ann.
Math. (2) 138(1), 213-242 (1993)

2. Bidaut-Véron, M., Véron, L.: Nonlinear elliptic equations on compact Riemannian manifolds and
asymptotics of Emden equations. Invent. Math. 106(3), 489-539 (1991)

3. Cherrier, P.: Problemes de Neumann non linéaires sur les variétés riemanniennes. J. Funct. Anal.
57(2), 154-206 (1984)

4. Case, J., Shu, Y., Wei, G.: Rigidity of quasi-Einstein metrics. Differ. Geom. Appl. 29(1), 93-100
(2011)

5. Chen, L., Lu, G., Tang, H.: Sharp stability of log-Sobolev and Moser—Onofri inequalities on the
sphere. J. Funct. Anal. 285, 110022 (2023)

6. Du, F., Mao, J., Wang, Q., Xia, C.: Estimates for eigenvalues of weighted Laplacian and weighted p
-Laplacian. Hiroshima Math. J. 51(3), 335-353 (2021)

7. Escobar, J.: Sharp constant in a Sobolev trace inequality. Indiana Univ. Math. J. 37(3), 687-698
(1988)

8. Escobar, J.: Uniqueness theorems on conformal deformation of metrics, Sobolev inequalities, and an
eigenvalue estimate. Commun. Pure Appl. Math. 43(7), 857-883 (1990)

9. Guo, Q., Hang, F., Wang, X.: Liouville type theorems on manifolds with nonnegative curvature and
strictly convex boundary. Math. Res. Lett. 28(5), 1419-1439 (2021) .

10.  Guo, Q., Wang, X.: Uniqueness results for positive harmonic functions on B, satisfying a nonlinear
boundary condition. Calc. Var. Partial Differ. Equ. 59, 146 (2020)
11. Gu, P, Li, H.: A proof of Guo-Wang’s conjecture on the uniqueness of positive harmonic functions

in the unit ball. arXiv:2306.15565v1

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2306.15565v1

Journal of Nonlinear Mathematical Physics (2024) 31:5 Page230f23 5

12.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Huang, G., Zhu, M.: Some geometric inequalities on Riemannian manifolds associated with the
generalized modified Ricci curvature. J. Math. Phys. 63, 111508 (2022)

Huang, G., Ma, B.: Sharp bounds for the first nonzero Steklov eigenvalues for f-Laplacians. Turk. J.
Math. 40(4), 770-783 (2016)

Huang, G., Ma, B.: Eigenvalue estimates for submanifolds with bounded f-mean curvature. Proc.
Indian Acad. Sci. Math. Sci. 127, 375-381 (2017)

Huang, G., Li, Z.: Liouville type theorems of a nonlinear elliptic equation for the V-Laplacian. Anal.
Math. Phys. 8(1), 123-134 (2018)

Huang, Q., Ruan, Q.: Applications of some elliptic equations in Riemannian manifolds. J. Math.
Anal. Appl. 409(1), 189-196 (2014)

Ilias, S., Shouman, A.: Sobolev inequalities on a weighted Riemannian manifold of positive Bakry—
Emery curvature and convex boundary. Pac. J. Math. 294(2), 423-451 (2018)

Kasue, A.: A Laplacian comparison theorem and function theoretic properties of a complete Rie-
mannian manifold. Jpn. J. Math. (N.S.) 8(2), 309-341 (1982)

Li, X.: Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds. J.
Math. Pures Appl. 84(10), 1361-1995 (2005)

Li, H., Wei, Y.: f-minimal surface and manifold with positive m—Bakry—Emery Ricci curvature. J.
Geom. Anal. 25, 421-435 (2015)

Ma, L., Du, S.: Extension of Reilly formula with applications to eigenvalue estimates for drifting
Laplacians. C. R. Math. Acad. Sci. Paris 348(21-22), 1203-1206 (2010)

Wei, G., Wylie, W.: Comparison geometry for the Bakry—Emery Ricci tensor. J. Differ. Geom.
83(2), 377-405 (2009)

Xia, C., Xiong, C.: Escobar’s Conjecture on a sharp lower bound for the first nonzero Steklov eigen-
value. Peking Math. J. (2023). https://doi.org/10.1007/s42543-023-00068-2

Zeng, F.: Gradient estimates for a nonlinear parabolic equation on complete smooth metric measure
spaces. Mediterr. J. Math. (N.S.) 18(4), 21 (2021)

Zeng, L., Sun, H.: Eigenvalues of the drifting Laplacian on smooth metric measure spaces. Pac. J.
Math. 319(2), 439470 (2022)

Zhang, L.: Global lower bounds on the first eigenvalue for a diffusion operator. Bull. Malays. Math.
Sci. Soc. 43(5), 3847-3862 (2020)

@ Springer


https://doi.org/10.1007/s42543-023-00068-2

	Weighted Sobolev Type Inequalities in a Smooth Metric Measure Space
	Abstract
	1 Introduction
	2 Preliminaries
	3 Proof of Theorem 1.5
	4 Proof of Theorem 1.3 and Corollary 1.4
	References


