
Vol.:(0123456789)

Journal of Nonlinear Mathematical Physics (2023) 30:1821–1833
https://doi.org/10.1007/s44198-023-00160-2

1 3

RESEARCH ARTICLE

Higher‑order soliton solutions for the Sasa–Satsuma 
equation revisited via @̄ method

YongHui Kuang1  · Bolin Mao1 · Xin Wang1

Received: 15 September 2023 / Accepted: 24 November 2023 / Published online: 7 December 2023 
© The Author(s) 2023

Abstract
In optics, the Sasa–Satsuma equation can be used to model ultrashort optical pulses. 
In this paper higher-order soliton solutions for the Sasa–Satsuma equation with zero 
boundary condition at infinity are analyzed by �̄� method. The explicit determinant form 
of a soliton solution which corresponds to a single pl-th order pole is given. Besides the 
interaction related to one simple pole and the other one double pole is considered.

Keywords Sasa–Satsuma equation · �̄�-problem · Higher-order soliton · Inverse 
scattering transform · Boundary condition

1 Introduction

It is well known that the celebrated nonlinear Schrödinger (NLS) equation [23]

can be used to model short soliton pulses in nonlinear optics [1]. To model ultra-
short optical pulses, one has to modify the NLS equation and establish new equa-
tions. Based on this observation, Kodama and Hasegawa proposed the following 
higher-order nonlinear Schrödinger (HNLS) equation

where q(�, �) is a complex-valued function, �1, �2, �j, j = 1, 2, 3 are real constants 
[8]. Generally speaking, the HNLS equation is not integrable unless some restric-
tions are imposed on �j(j = 1, 2, 3) . Sasa and Satsuma [15] consider the following 
integrable case

iqt +
1

2
qxx + |q|2q = 0

iq� + �1q�� + �2|q|2q + i[�1q��� + �2|q|2q� + �3q(|q|2)�] = 0,
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Through gauge, Galilean and scale transformations, The Eq. (1) is transformed to a 
complex modified KdV-type equation

The Eq. (2) is commonly known as Sasa–Satsuma equation, which has been widely 
studied with various methods such as the inverse scattering scheme [7, 15], Hirota’s 
bilinear approach [5], Darboux transform [12, 21] and Bäcklund transform [20]. 
Recently Feng [4] and Yang [22] Studied the Rogue wave of Sasa–Satsuma equa-
tion. Much research has been conducted for it, we will not dwell on a detailed expo-
sition of various results.

The aim of this paper is to study higher-order soliton solutions for the Sasa–Satsuma 
equation by means of �̄� method [3, 11, 17, 24]. Soliton solutions corresponding to mul-
tiple poles have been investigated in the literature before. Zakharov first given a soliton 
solution for the NLS equation corresponding to a double pole [23]. Subsequently 
higher-order soliton solutions have also been studied for the modified KdV equation 
[19], the sine-Gordon equation [18]. So far various methods have been developed to 
deal with higher-order solitons, for example the inverse scattering scheme [10, 13, 16, 
18, 19, 23], generalized Darboux transform [6], robust inverse scattering transform [14] 
et al. The motivation of this paper is as follows. 

1. Compared with the Riemann–Hilbert method, the �̄� method is more directly to 
derive the soliton solutions. In particular, we will show that �̄� method is also a 
powerful tool to obtain higher-order soliton solutions.

2. Compared to the previous results under the �̄� method [10], we will consider more 
general higher-order soliton solutions and the interaction related to one simple 
pole and the other one double pole.

This paper is arranged as follows. In Sect. 2, we summary �̄�-method for the Sasa–Sat-
suma equation. In Sect. 3, we derive the explicit determinant form of a higher-order 
soliton solution which corresponds to one p-th order pole, as well as the interaction 
related to one simple pole and one double pole is displayed.

2  Summary of @̄‑Method for the Sasa–Satsuma Equation

We summarize the already well-known results for the Sasa–Satsuma Eq. (2) that will 
be used in our study. Here we consider the Sasa–Satsuma equation with zero bound-
ary condition (ZBC) at |x| → ∞ . To be more precise, q(x, t) decays rapidly for large |x|. 
The Eq. (2) can be viewed as a compatible condition of the following linear differential 
equations (also called Lax pair)

(1)iq� +
1

2
q�� + |q|2q + iq��� + 6i|q|2q� + 3iq(|q|2)� = 0.

(2)qt + qxxx + 6|q|2qx + 3q(|q|2)x = 0,

(3)�x(x, t, k) = X�(x, t, k), �t(x, t, k) = T�(x, t, k),
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where

and

Here the bar denotes complex conjugate and q means q(x, t). In order to establish a 
connection between Lax pair and �̄� problem, we first consider a priori [2] �(x, t, k) 
for the Eq. (3) which obey the boundary condition

for all Im{k} ≠ 0 . We introduce a modified priori

then Ψ(x, t, k) satisfies

and

Moreover, we know that Ψ(x, t, k) and �(x, t, k) are analytic in ℂ∕ℝ , then we can 
write an asymptotic expansion for Ψ(x, t, k) when k → ∞

Substituting the above expansion into the Eq. (6) and using (5), we have

2.1  ̄@‑Problem Related to the Sasa–Satsuma Equation

Based on the above analysis, we start from an integral form of the 3 × 3 matrix �̄� prob-
lem �̄�Ψ(k, k̄) = Ψ(k, k̄)R(k, k̄) with the canonical normalization (7) in the complex 
k-plane

X = −ikJ1 + Q,

T = −4ik3J1 + 4k2Q + 2ikJ1(Qx − Q2) − Qxx + QxQ − QQx + 2Q3

J1 =

⎛
⎜⎜⎝

1 0 0

0 − 1 0

0 0 − 1

⎞
⎟⎟⎠
, Q =

⎛
⎜⎜⎝

0 q q̄

−q̄ 0 0

−q 0 0

⎞
⎟⎟⎠
.

(4)�(x, t, k) → e−(ikx+4ik
3t)J1 , x → ∞

Ψ(x, t, k) = �(x, t, k)e(ikx+4ik
3t)J1 ,

(5)Ψ(x, t, k) → I, x → ∞

(6)

Ψx = − ik[J1,Ψ] + QΨ,

Ψt = − 4ik3[J1,Ψ] + 4k2QΨ + 2ikJ1(Qx − Q2)Ψ

− (Qxx − QxQ + QQx − 2Q3)Ψ.

Ψ(x, t, k) = Ψ0(x, t) +
Ψ1(x, t)

k
+

Ψ2(x, t)

k2
+ O(

1

k3
).

(7)Ψ(x, t, k) → I, |k| → ∞.

(8)Ψ(k, k̄) = I + Ψ(k, k̄)R(k, k̄)Ck,
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where R(k, k̄) is a spectral transform matrix and Ck is the Cauchy-Green integral 
operator acting on the left and given by

For the sake of simplicity, the arguments k̄ have omitted in the Ψ(k, k̄) and R(k, k̄) 
from now on. A formal solution of (8) is given by

To establish a connection with Lax pair, we need to introduce the variables x, t into 
the spectral transform matrix R(k). For the Sasa–Satsuma equation, we assume that 
R(k) satisfies 

 From (8), (9) and (10a) we arrive at the first expression of the Eq. (6) and

or

where

and ⟨ΨR⟩ = ⟨ΨR, I⟩ . The time evolution equation of Ψ(x, t, k) is implied by (10b) 
and given by the second expression of the Eq. (6). The above detailed calculations 
are available in [24]. In fact, the Eq. (6) can be viewed as the another form of Lax 
pair associated with the Sasa–Satsuma equation.

2.2  Symmetry Conditions and Discrete Spectrum

It is well known that the function Ψ(x, t, k) in (6) admits the following symmetries [16]

where the superscript † means the Hermitian conjugation and

Ψ(k)R(k)Ck =
1

2𝜋i ∬
dl
⋀

dl̄

l − k
Ψ(l, l̄)R(l, l̄).

(9)Ψ(k) = I ⋅ (I − R(k)Ck)
−1.

(10a)Rx(x, t, k) = −ik[J1,R(x, t, k)],

(10b)Rt(x, t, k) = −4ik3[J1,R(x, t, k)],

(11)Q(x, t) = −i[J1, ⟨ΨR⟩],

(12)q(x, t) = −2i⟨ΨR⟩12,

⟨F,G⟩ = 1

2𝜋i ∬ F(�)GT (�)d� ∧ d�̄,

(13)Ψ(x, t, k) = J2Ψ(x, t,−k̄)J2, Ψ−1(x, t, k) = Ψ†(x, t, k̄),

J2 =

⎛⎜⎜⎝

1 0 0

0 0 1

0 1 0

⎞⎟⎟⎠
.
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From the uniqueness of �̄� problem the spectral transform matrix R(x, t, k) satisfies

So we have, elementwise,

Suppose that R12(x, t, k) has a finite simple pole kj (j = 1, 2,… ,N) . Owing to the 
symmetry conditions (15), the discrete spectrum is the set

In particular, If kj is a pure imaginary number, i.e. kj = i�j , the discrete spectrum set 
reduces to

2.3  N‑Soliton Solutions for the Sasa–Satsuma Equation

In this subsection we consider soliton solutions for the Sasa–Satsuma equation. 
From the theory of the inverse scattering transform we know that the poles of the 
reflection coefficient give rise to soliton solutions. Here soliton solutions correspond 
to the spectral transform matrix R(k) located at the discrete spectrum points of the 
complex plane where a solution Ψ(k) of the �̄� problem has simple poles. Firstly we 
consider the discrete spectrum set Z (17), by means of the Eq. (10) and the symme-
try conditions (15), we can choose

where �(k) denotes the delta function and c1j, c2j, c3j, c4j (j = 1, 2,… ,N) are given by 
the following proposition.

Proposition 1 Let c1j = �j , �j is arbitrary complex constant, then the coefficients 
c2j, c3j, c4j are given as follow

Proof It follows from R21(k) = R12(k̄) that R21

0
(k) = R12

0
(k̄) , this is

Let − 1

2i
∬ f (�) ∙ d� ∧ d�̄  act on R21

0
(k) = R12

0
(k̄) and take advantage of the formula

(14)R(x, t, k) = J2R(x, t,−k̄)J2, R(x, t, k) = R†(x, t, k̄).

(15)R13(k) = R12(−k̄), R21(k) = R12(k̄), R31(k) = R12(−k).

(16)Z = {kj,−k̄j, k̄j,−kj}.

(17)Z = {i�j,−i�j}.

(18)

R(x, t, k) = e−i(kx+4k
3t)J1R0e

i(kx+4k3t)J1 ,

R0 = �

N�
j=1

⎛⎜⎜⎝

0 c1j�(k − i�j) c2j�(k − i�j)

c3j�(k + i�j) 0 0

c4j�(k + i�j) 0 0

⎞⎟⎟⎠
,

(19)c2j = c3j = −�̄�j, c4j = c1j = 𝛾j.

R12

0
(k̄) = c1j𝛿(k̄ − i𝜆j), R21

0
(k) = c3j𝛿(k + i𝜆j).
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we derive

In the similar way, we can obtain

thus we have (19).   ◻

Plugging (18) into (12), we can derive

where G and Ψ11 are N-dimension row vector

and substituting the explicit form of R(k) (18) into the equation in the integral form 
(8), we derive a linear algebraic system

where I denotes the identity matrix, E is an N-dimensional column vector with an 
element of 1 and

From (22) and (23), we can obtain the determinant form for N-soliton solution

For example, we take N = 1 , the 1-soliton solution is

where

and displayed in Fig. 1a.
For the general case (16), similar to the proposition 2.1, we take

∬ f (�, �̄)𝛿(� − k)d� ∧ d�̄ = −2if (k, k̄),

(20)c3j = −�̄�j.

(21)c2j = −�̄�j, c4j = �̄�j.

(22)q = −2iGΨT
11
,

G = (�1e
�1 , �2e

�2 ,… , �je
�j ,… , �Ne

�N ), �j = 2(�jx − 4�3
j
t),

Ψ11 = (�11(i�1),�11(i�2),… ,�11(i�j),… ,�11(i�N)),

(23)(I + Γ)ΨT
11

= E, Γ = Γ̄1Γ1 + Γ2Γ̄2,

Γ1 = Γ2, (Γ1)ij =
�je

�j

i(�i + �j)
.

(24)q = −2i
detΩ�

detΩ
, Ω = I + Γ, Ω� =

(
0 G

E Ω

)
.

q = ie�+i�sech(� − � + 2�1)

�1 = � + i�, �1 =

√
2

2
e�
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where �∓
j
= �(k ± kj) , 𝜈

∓
j
= 𝛿(k ± k̄j) and �j, �j (j = 1, 2,… ,N) are arbitrary complex 

values. As the above process, plugging (25) into (12), we can derive

where G and Ψ11 are 2N-dimensional row vector

Next substituting the explicit form of R(k) (25) into the equation in the integral form 
(8), we derive the linear algebraic system (23), where I denotes the identity matrix, 
E is an 2N-dimensional column vector with an element of 1 and Γj, j = 1, 2 are the 
block matrix Γj = (Γ

(mn)

j
)N×N,

So we can obtain the determinant form for N-soliton solution

For example, when N = 1 , Let �1�1 ≠ 0 , we obtain spatially localized and tempo-
rally periodic bound states [16]. The corresponding single-soliton solutions is dis-
played in fig.1(b).

(25)R0(k) = 𝜋

N�
j=1

⎛
⎜⎜⎝

0 𝛼j𝜇
+
j
+ 𝛽j𝜈

−
j

− �̄�j𝜈
−
j
− 𝛽j𝜇

+
j

−�̄�j𝜈
+
j
− 𝛽j𝜇

−
j

0 0

𝛼j𝜇
−
j
+ 𝛽j𝜈

+
j

0 0

⎞
⎟⎟⎠
,

(26)q = −2iĜΨ̂T
11
,

Ĝ = (𝛼1g1, 𝛽1ḡ1,… , 𝛼jgj, 𝛽jḡj,… , 𝛼NgN , 𝛽NḡN), gj = e
−2i(kjx+4k

3

j
t)
,

Ψ̂11 = (𝜓11(k1),𝜓11(−k̄1),… ,𝜓11(kj),𝜓11(−k̄j),… ,𝜓11(kN),𝜓11(−k̄N)).

Γ
(mn)

1
=

( 𝛼ngn

kn−k̄m

𝛽nḡn

−k̄n−k̄m
𝛼ngn

kn+km

𝛽nḡn

−k̄n+km

)
, Γ

(mn)

2
=

( 𝛽nḡn

kn−k̄m

𝛼ngn

−kn−km
𝛽nḡn

k̄n+k̄m

𝛼ngn

−kn+k̄m

)
.

(27)q = −2i
detΩ�

detΩ
, Ω = I + Γ, Ω� =

(
0 Ĝ

E Ω

)
.

Fig. 1  Single-soliton solution for the Sasa–Satsuma equation: a �1 = 1 + i, �1 = 1 . b 
�1 = �1 = 1, k1 = 0.5 + i.
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3  Higher‑Order Soliton Solutions for Sasa–Satsuma Equation

In this section we consider a soliton solution corresponding to a single multiple pole 
of arbitrary order, that is pl-th order pole in the point kl . For the sake of simplicity, 
here we only consider the case kl = i�l and take the spectral transform R0 in the form

where �(j)

l±
= �(j)(k ∓ i�l) . Here the choice of spectral transform R0 is more general 

than [10].
As the process described in the Sect.2.3. Plugging (28) into (12) and by means of 

the formula [9]

we can obtain

where G̃ and Ψ̃11 are (pl + 1)-dimensional row vector

Substituting the explicit form of R(k) (25) into the equation in the integral form (8), 
we derive a linear algebraic system

where

From (29) and (30), by calculation we can obtain the determinant form for pl-th 
order soliton solution in the point kl

(28)R0 = 𝜋

pl�
j=0

⎛⎜⎜⎜⎝

0 𝛾 l
j
𝜔
(j)

l+
− (−1)j𝛾 l

j
𝜔
(j)

l+

−�̄� l
j
𝜔
(j)

l−
0 0

(−1)j𝛾 l
j
𝜔
(j)

l−
0 0

⎞⎟⎟⎟⎠
,

∬ d� ∧ d�̄f (l, l̄)𝛿(p)(� − k) = (−1)p+12i
𝜕pf (k, k̄)

𝜕kp
,

(29)q = −2iG̃Ψ̃T
11
,

(
G̃
)
1n

=

pl∑
j=n−1

(−1)j+1Cn−1
j

𝜕(j−n+1)g̃j

𝜕𝓁(j−n+1)
|
𝓁=i𝜆l

, g̃j = 𝛾 l
j
e−2i(𝓁x+4𝓁

3t),

Ψ̃11 =
(
𝜓11(i𝜆l) ⋯

𝜕(n−1)𝜓11

𝜕𝓁(n−1)
|
𝓁=i𝜆l

⋯
𝜕(pl )𝜓11

𝜕𝓁pl
|
𝓁=i𝜆l

)
.

(30)(I + Γ)Ψ̃T
11

= Ẽ,

Ẽ =
(
1 0 ⋯ 0 ⋯ 0

)
, Γ = Γ̄1Γ1 + Γ2Γ̄2,

(Γ1)mn =

pl∑
j=n−1

(−1)j+1Cn−1
j

𝜕(j−n+m)(
g̃j

𝓁−k
)

𝜕𝓁(j−n+1)𝜕k(m−1)
|
𝓁=i𝜆l,k=−i𝜆l

,

(Γ2)mn = −

pl∑
j=n−1

Cm−1
j

𝜕(j−n+m)(
g̃j

𝓁−k
)

𝜕𝓁(j−n+1)𝜕k(m−1)
|
𝓁=−i𝜆l,k=i𝜆l

.
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Example 1 (The second and third order solution) Assuming pl = 1 , i.e. the spectral 
transform

and taking account of the formulas (31), the expression for a second order soliton 
solution in the point �l can be obtained and is displayed in Fig. 2. Here

When pl = 2 , from (31) the corresponding third order soliton solution is plotted in 
Fig. 3.

Remark If we consider N distinct poles k1, k2,… , kl,… , kN and their order are 
p1, p2,… , pl,… , pN respectively, the spectral transform can be taked in the follow-
ing form

(31)q = −2i
detΩ̃�

detΩ̃
, Ω̃ = I + Γ, Ω̃� =

(
0 G̃

Ẽ Ω̃

)
.

R0 = �

⎛
⎜⎜⎝

0 � l
0
�l+ + � l

1
�
(1)

l+
− � l

0
�+ + � l

1
�
(1)
+

−� l
0
�l− − � l

1
�
(1)

l−
0 0

� l
0
�l− − � l

1
�
(1)

l−
0 0

⎞
⎟⎟⎠

Γ1 =

⎛
⎜⎜⎝
−(

𝛾 l
0
+2i𝛾 l

1
(x−12𝜆2

l
t)

2i𝜆l
+

𝛾 l
1

(2i𝜆l)
2
)e2𝜃l

𝛾 l
1

2i𝜆l
e2𝜃l

−(
𝛾 l
0
+2i𝛾 l

1
(x−12𝜆2

l
t)

(2i𝜆l)
2

+
2𝛾 l

1

(2i𝜆l)
3
)e2𝜃l

𝛾 l
1

(2i𝜆l)
2
e2𝜃l

⎞
⎟⎟⎠
,

Γ2 =

⎛⎜⎜⎝
(
𝛾 l
0
+2i𝛾 l

1
(x−12𝜆2

l
t)

2i𝜆l
+

𝛾 l
1

(2i𝜆l)
2
)e2𝜃l

𝛾 l
1

2i𝜆l
e2𝜃l

−(
𝛾 l
0
+2i𝛾 l

1
(x−12𝜆2

l
t)

(2i𝜆l)
2

+
2𝛾 l

1

(2i𝜆l)
3
)e2𝜃l −

𝛾 l
1

(2i𝜆l)
2
e2𝜃l

⎞⎟⎟⎠
,

Ẽ =
�
1 0

�T
, G̃ =

�
−[𝛾 l

0
+ 2i𝛾 l

1
(x − 12𝜆2

l
t)]e2𝜃l 𝛾 l

1
e2𝜃l

�
.

Fig. 2  Double pole soliton solution for the Sasa–Satsuma equation with � l
0
= 1, � l

1
= i, k

l
= i . a The 3-D 

structure; b the density structure
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As the process described in above, we can drive the expression for the general mul-
tiple pole solutions similar to the formulas (31). To illustrate, we give an example 
of the interaction between one simple pole soliton and the other one double pole 
soliton.

Example 2 (The interaction between one simple pole and the other one double pole) 
Let us choose k1 = i�1, p1 = 1, k2 = i�2, p2 = 0 , and then the spectral transform (32) 
in the form

where �̃�± = 𝛾1
0
𝜔1∓ + 𝛾2

0
𝜔2∓ . As the process described in above, we can obtain the 

expression (31) for a soliton solution related to one simple pole and the other one 
double pole, where

(32)R0 = 𝜋

N�
l=1

pl�
j=0

⎛
⎜⎜⎜⎝

0 𝛾 l
j
𝜔
(j)
+ − (−1)j�̄� l

j
𝜔
(j)
+

−�̄� l
j
𝜔(j)
−

0 0

(−1)j𝛾 l
j
𝜔(j)
−

0 0

⎞
⎟⎟⎟⎠
.

(33)R0 = 𝜋

⎛
⎜⎜⎝

0 �̃�+ + 𝛾1
1
𝜔
(1)

1+
− �̃�+ + 𝛾1

1
𝜔
(1)

1+

−�̃�− − 𝛾1
1
𝜔
(1)

1−
0 0

�̃�− − 𝛾1
1
𝜔
(1)

1−
0 0

⎞
⎟⎟⎠

Fig. 3  Triple pole soliton solution for the Sasa–Satsuma equation with � l
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1
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 The interaction is shown in Fig. 4.

4  Conclusions and Discussions

We analyzed the process dealing with multiple pole soliton solutions for Sasa–Sat-
suma equation by means of �̄� method in detail. In the frame of �̄� problem it’s easy 
to derive the explicit determinant form of multiple pole solutions. It should be 
noted that other methods such as the inverse scattering scheme, generalized Dar-
boux transform could be applied as well for multiple pole soliton solution, but the �̄� 
method leads directly to the final results. In this paper the potentials q(x) is consid-
ered under ZBC, we know that under nonzero boundary condition it is more com-
plicated to solve double pole solutions by the inverse scattering transform based on 
Riemann–Hilbert method in the literature [14]. So we will take advantage of this 
method to the NZBC case in the near future.
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