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Abstract
In this paper, we investigate solutions of a (2+1)-dimensional sinh-Gordon equation. 
General solitons and (semi-)rational solutions are derived by the combination of 
Hirota’s bilinear method and Kadomtsev-Petviashvili hierarchy reduction approach. 
General solutions are expressed as N × N Gram-type determinants. When the 
determinant size N is even, we generate solitons, line breathers, and (semi-)rational 
solutions located on constant backgrounds. In particular, through the asymptotic 
analysis we prove that the collision of solitons are completely elastic. When N is 
odd, we derive exact solutions on periodic backgrounds. The dynamical behaviors 
of those derived solutions are analyzed with plots. For rational solutions, we 
display the interaction of lumps. For semi-rational solutions, we find the interaction 
solutions between lumps and solitons.

Keywords  Hirota’s bilinear method · Breather · Lump · (Semi-)rational solution · 
Sinh-Gordon equation

1  Introduction

The study of solitons, breathers, rational solutions and their interactions is a main 
topic in the field of soliton theory and attracts great attention in recent years. 
Various explicit physical meaning solutions of integrable equations are found, 
such as algebra solitons, lumps, line breathers, rogue waves and peakon solutions, 
and so on. Studies of solitons are not only restricted in (1+1)-dimensional 
integrable equations. In fact, (2+1)-dimensional integrable systems have richer 
dynamic properties and they are more relevant to real world physics. Many 
(2+1)-dimensional integrable systems have been extensively studied, such as 
Davey-Stewartson (DS) equation [1–3], Mel’nikov equation [4], dispersive long 
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wave equation [5], Fokas equation [6], et al. A variety of powerful methods have 
been developed to solve integrable equations, such as inverse scattering method 
[7], Darboux transformation method (DT) [8], Hirota’s bilinear method [9], the 
dressing method [10], Riemann-Hilbert method [11], Kadomtsev-Petviashvili 
(KP) hierarchy reduction method [12] and so on. Among these methods, the KP 
reduction technique in conjunction with Hirota’s bilinear method is very powerful 
to construct (semi-)rational solutions. This approach has been applied to many 
integrable systems [1–4, 13–16] to derive rational and semi-rational solutions. 
These pioneer works inspire us to study dynamics of (2+1)-dimensional nonlinear 
integrable equations.

In 1987, the sinh-Gordon equation, qxt + sinh q = 0 , was extended to 
(2+1)-dimension by the inverse spectral transform [17]. The extended 
(2+1)-dimensional sinh-Gordon equation reads

In [18], Lou proposed the following (2+1)-dimensional extended sinh-Gordon 
equation

This equation is related to the first negative KP equation by a two-dimen-
sional Miura transformation. Here, C is arbitrary constant, �2

= −1 and �2
= 1 

correspond to the KP I and KP II equation, respectively. In [19], by setting 
2� = �,C =

1

2
, � = 1, s = � , the (2+1)-dimensional sinh-Gordon equation (2) is 
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the sinh-Gordon equation (3) is transformed into the following bilinear form [19]

Besides, a bilinear Bäcklund transformation, Wronskian solutions and Pfaffian 
generalization of this equation were derived in [19]. Integrable discretization of the 
(2+1)-dimensional extended sinh-Gordon equation (3) was investigated in [20]. By 
using Hirota’s bilinear method and KP hierarchy reduction technique, the rational 
solutions of algebraic solitons in the Gram determinant form are constructed in [21]. 
However, to the best of our knowledge, general solitons, line breathers, lumps on the 
constant and periodic backgrounds of the (2+1)-dimensional sinh-Gordon equation 
(3) have not been reported yet.

In this paper, we consider general solitons, line breather solutions and (semi-)
rational solutions of the (2+1)-dimensional sinh-Gordon equation (3). We derive 
lump solutions and further explore semi-rational solutions consisting of lumps and 
solitons. Moreover, the dynamical behaviors of solitons, line breathers and lumps 
both on constant and periodic backgrounds are studied.

This paper is organized as follows. In Section 2, we present the general solitons 
and (semi-)rational solutions of the sinh-Gordon equation. These solutions 
are expressed as N × N Gram-type determinant. In Section  3, we demonstrate 
the dynamic behaviors of solitons on the constant and periodic backgrounds, 
respectively. In Section 4, we present the line breather solutions on the constant and 
periodic grounds. In Section 5, the dynamics of rational solutions on the constant 
and periodic background are illustrated. In Section  6, semi-rational solutions of 
interactions of lumps and solitons are investigated. Finally we give the conclusion 
and discussion.

2 � General Solitons and (Semi‑)Rational Solutions in Determinant 
Form

In this part, we give the general solitons and (semi-)rational solutions of the sinh-
Gordon Eq. (3). Bilinear sinh-Gordon equation (5) can be obtained from the 
following KP hierarchy equations

under the variables transformation x1 = −x, x2 = −y, x
−1 =

t

2
, and �n = F, �n+1 = G 

(see ref. [21]). The rational algebraic solitons in the Gram-type determinant form of 
the sinh-Gordon equation (5) are presented in [21]. In the following we give more 
general soliton and (semi-)rational solutions.

(5)

{

(Dy + D2
x
)F ⋅ G = 0,

(D2
x
Dt + DyDt + 2Dx)F ⋅ G = 0.

(6)(D2
x1
− Dx2

)�n+1 ⋅ �n = 0,

(7)(Dx
−1
(D2

x1
− Dx2

) − 4Dx1
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Theorem 1  The bilinear sinh-Gordon equation (5) admits solutions

where �n = det1≤i,j≤N(m(n)

i,j
) . The elements are defined as following

where

Here, N is a positive integer, ni, nj are nonnegative integers, �i,j is the Kronecker 
delta, and ci, pi, qj, �i,0, �j,0 are arbitrary parameters.

The Gram determinant solutions can be obtained from solutions the KP 
hierarchy equations by introducing differential operators applied to those 
parameters of elements in the determinant [21]. The proof of the above theorem 
is similar to that in [21] and we omit the details here.

Remark 1  Four types of solutions (8) in Theorem 1 will be discussed under the fol-
lowing different parameter constraints:

I . soliton solutions as ci ≠ 0, ni = 0, i = 1, ...,N;
II . line breathers as ci ≠ 0, ni = 0, i = 1, ...,N;
III . rational solutions (lumps) as ci = 0,

∑N

k=1
nk ≥ 1, i = 1, ...,N;

IV . semi-rational solutions (mixed solutions of lumps and solitons) as 
∑N

i=1
�ci� > 0,

∑N

k=1
nk ≥ 1.

Remark 2  To construct solitons, line breathers, rational and semi-rational solutions 
on the constant background, we set the size of the determinants to be even in Theo-
rem 1. Meanwhile, to derive solutions on the periodic background, we take the odd 
size of the determinants.

(8)F = �n+1, G = �n,

(9)

m
(n)

i,j
= ci�i,je

−�i−�j +

(

−

pi

qj

)n
ni
∑

k=0

ai,k

(

pi�pi + ��
i
+ n

)ni−k

×

nj
∑

l=0

bj,l

(

qj�qj + ��
j
− n

)nj−l 1

pi + qj
,

(10)��
i
= −pix − 2p2

i
y −

1

2pi
t,

(11)��
j
= −qjx + 2q2

j
y −

1

2qj
t,

(12)�i = −pix − p2
i
y +

1

2pi
t + �i,0,

(13)�j = −qjx + q2
j
y +

1

2qj
t + �j,0.



1625

1 3

Journal of Nonlinear Mathematical Physics (2023) 30:1621–1640	

In the following, we take appropriate parameter constraints to construct solitons, 
line breathers and lumps of the sinh-Gordon equation (3).

3 � Dynamics of the Soliton Solutions

In this part, we study the dynamic behaviors of the soliton solutions of the sinh-
Gordon equation (3) on constant and periodic backgrounds, respectively. To this 
end, we take parameters ni = 0, (i = 1, 2, ...,N) in Theorem 1.

3.1 � One‑Soliton Solutions

To obtain one-soliton solutions on the constant background, we take N = 1 in 
Theorem 1. Then the first order determinant reads as

where

and p1, q1, �1,0, �1,0 are arbitrary complex numbers. Let us consider the potential �x , 
where

Here we require p1q1 < 0 and p1 + q1 > 0 to avoid singularity. We remark here that 
the last equation can be rewritten as

as p1 < 0, q1 > 0 or

as p1 > 0, q1 < 0 , where exp(�) = (p1 + q1)
√

−
q1

p1
 . Plots of one-soliton solutions 

(16) under different parameters are shown in Fig. 1 with different parameters.
We set p1 = � + �i, c1 = �i and q1 = −p∗

1
 with real �, �, � . The tau functions F 

and G have the expression
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Substituting F and G into the potential �x leads to

where � = �x + 2��y +
�

2(�2+�2)
t . In this case, solution (19) is periodic with periods 

�∕� in x, �∕2�� in y and 2�(�2
+ �2)∕� in t. Figures of this periodic one-soliton 

solution are depicted in Fig. 2.

3.2 � Two‑Soliton Solutions on the Constant Background

For N = 2 , we take c1 = c2 = 1 in Theorem 1. The tau function solutions F and G 
are expressed by 2 × 2 determinants
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Fig. 1   One-soliton solution �x (16) with parameter values a p1 = −2, q1 = 3, c1 = 1, y = 1, �1,0 = �1,0 = 0 ; 
b p1 = 4, q1 = −3, c1 = 1, y = 2, �1,0 = �1,0 = 0
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with

In what follows, we analyze the asymptotic behaviors of two-soliton solutions. For 
convenience, we set y = 0 and then the potential �x is expressed as

where

(21)
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Fig. 2   Profiles of periodic one-soliton (19) with parameters � = � = 1, c1 = 1, y = 1, �1,0 = �1,0 = 0 ; b 
Density plot of �x
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Without loss of generality, we assume pi + qi > 0, (i = 1, 2) and p2q2 < p1q1 < 0 . 
We denote the left-moving soliton along �1 = 0 as Soliton 1 and the right-moving 
soliton along �2 = 0 as Soliton 2. The asymptotic behaviours for the two-soliton 
solutions are analysed in the following.

Before collision ( t → −∞):
Soliton 1 ( �1 ≈ 0, �2 → +∞)

where �1 is defined by exp(�1) =
(p1+q1)(p1+q2)(p2+q1)

(p1−p2)(q1−q2)

√

−
q1

p1
.

Soliton 2 ( �2 ≈ 0, �1 → −∞)

where �2 is defined by exp(�2) = (p2 + q2)
√

−
q2

p2
.

After collision ( t → +∞):
Soliton 1 ( �1 ≈ 0, �2 → −∞)

where �3 is defined by exp(�3) = (p1 + q1)
√

−
q1

p1
.

Soliton 2 ( �2 ≈ 0, �1 → +∞)

where �4 is defined by exp(�4) =
(p2+q2)(p1+q2)(p2+q1)

(p1−p2)(q1−q2)

√

−
q2

p2
.

From the asymptotic analysis, we find that the collision of two solitons is com-
pletely elastic, i.e., their shapes and velocities keep unchanged after the interaction. 
In particular, Soliton 1 has a phase shift � and Soliton 2 has an opposite phase shift 
−� with exp(�) = (p1+q2)(p2+q1)

(p1−p2)(q1−q2)
 after the collision. We depict the plots of the interac-

tion of two solitons and the corresponding density plots on the constant background 
in Figs.  3, 4 and 5, respectively. We observe three types of two-soliton solutions. 
Figure 3 displays the interaction of two bright solitons. Figure 4 shows the interac-
tion of two solitons both under the horizon. Figure 5 exhibits the interaction of two 
solitons with one under the horizon and the other above the horizon.

(24)�x →
2(p1 + q1)

2

(q1 − p1) + 2
√

−p1q1 cosh(�1 − �1)
,

(25)�x →
2(p2 + q2)

2

(q2 − p2) + 2
√

−p2q2 cosh(�2 − �2)
,

(26)�x →
2(p1 + q1)

2

(q1 − p1) + 2
√

p1q1 cosh(�1 − �3)
,

(27)�x →
2(p2 + q2)

2

(q2 − p2) + 2
√

p2q2 cosh(�2 − �4)
,
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3.3 � Two‑Soliton Solutions on the Periodic Background

In order to derive two-soliton solutions on the periodic background, we take N = 3 
and q3 = −p∗

3
 in Theorem  1. Then the tau functions F and G have the following 

determinant expressions

with entries
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|
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|

|

|
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|
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|

|
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|

|

|

|

|

|
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(0)

3,2
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3,3

|

|

|

|

|

|

|

|

|

|

,

Fig. 3   Two-soliton solution �x on the constant background at y = 0 and the corresponding density plot 
with parameters p1 = −1, q1 =

5

3
, p2 = −

1

5
, q2 =

3

5
, �i,0 = �i,0 = 0, c1 = c2 = 1

Fig. 4   Two-soliton solution �x on the constant background at y = 0 and the corresponding density plot 
with parameters p1 = 2, q1 = −

5

4
, p2 = 1, q2 = −

3

5
, �i,0 = �i,0 = 0, c1 = c2 = 1



1630	 Journal of Nonlinear Mathematical Physics (2023) 30:1621–1640

1 3

We put p3 = � + �i, q3 = −� + �i, c1 = c2 = 1, c3 = �i , and

We choose p1, q1, p2, q2 the same values as those in Fig.  3 and 
p3 = −q∗

3
= 2 + 5i, c3 = 2i . Then we can generate two solitons on the periodic back-

ground (see Fig. 6).

4 � Dynamics of the Line Breather Solutions

In this part, we study the dynamics of line breather solutions of sinh-Gordon 
equation (3) on both constant and periodic backgrounds. To construct line breather 
solutions, we take parameters ni = 0, i = 1, 2, ...,N . For simplicity, we consider the 
line breather solutions on constant and periodic backgrounds by setting N = 2 and 3, 
respectively.

4.1 � Line Breather Solutions on the Constant Background

To construct line breather solutions of sinh-Gordon equation (3) on the constant back-
ground, we choose pi, qi, (i = 1, 2, ...,N) to be purely imaginary and pi ≠ −qi . For 

(29)m
(n)

i,j
= ci�i,j +

(

−

pi

qj

)n 1

pi + qj
e�i+�j , 1 ≤ i, j ≤ 3, n = 0, 1.

(30)�i + �i = −(pi + qi)x + (q2
i
− p2

i
)y +

(

1

2pi
+

1

2qi

)

t + �i,0 + �i,0, i = 1, 2,

(31)�3 + �3 = −2�i
[

x − 2�y −
1

2(�2 + �2)
t
]

+ �3,0 + �3,0.

Fig. 5   Two-soliton solution �x on the constant background at y = 0 and the corresponding density plot 
with parameters p1 = −1, q1 = 2, p2 = 5, q2 = −3, �i,0 = �i,0 = 0, c1 = c2 = 1
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N = 2 , we set p1 = q2 = pi, q1 = p2 = qi, c1 = � + �i, c2 = −c∗
1
 , where p, q, �, � are 

real numbers, p ≠ −q and � are nonzero. The potential �x has the expression

where

and

(32)�x = 2
(

ln
F

G

)

x
,

(33)
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|

|

|

|

|
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1
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,

(35)�1 + �1 = (p + q)
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− ix + (p − q)y −
i

2pq
t
]

+ �1,0 + �1,0,

(36)�2 + �2 = (p + q)
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− ix + (q − p)y −
i

2pq
t
]

+ �2,0 + �2,0,

Fig. 6   Two-soliton solution �x on the periodic background at y = 0 and the corresponding density plot 
with parameters p1 = −1, q1 =

5

3
, p2 = −

1

5
, q2 =

3

5
, p3 = 2 + 5i, q3 = −2 + 5i, �

i,0 = �
i,0 = 0, c1 = c2 =

1, c3 = 2i
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To illustrate the dynamics of �x (32), we select the parameters 
� = 0, � = −1, p =

1

10
, q =

2

5
, y = 0 . In this case, the line breather solution admits

with the periods 2�

p+q
 in x and 4pq�

p+q
 in t. The plot of the line breather is depicted in 

Fig. 7 with parameter values � = 0, � = −1, p =
1

10
, q =

2

5
, y = 0 . One can find that 

the figure appears periodicity. The maximum and minimum value of |�x| under these 
parameters are approximately 1.5152 and 0.3332, respectively.

4.2 � Line Breather Solutions on the Periodic Background

For N = 3 , we choose pi, qj, i, j = 1, 2, 3 to be purely imaginary and 
p1 = q2 = pi, q1 = p2 = qi, p3 = q3 = mi, c1 = � + �i, c3 = c2 = −c∗

1
 to construct 

line breather solutions on the periodic background. In this case, we have potential 
�x = 2

(

ln
F

G

)

x
, where

(37)

b1 =
1

(p + q)(−� + �i)
, b2 =

1

(p + q)(−� − �i)
, b12 = −

(p − q)2

4pq(p + q)(�2 + �2)
.

(38)�x =

50i
(

4e
3i

4
(2x+25t)

+ 9e
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4
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2
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− 34e
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4
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) .
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|

,

Fig. 7   Line breather solution �x (38) on the constant background and the corresponding density plot with 
parameters � = 0, � = −1, p =

1

10
, q =

2

5
, y = 0
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Here �1, �2, �3, �1, �2, �3 are given by (10)–(13). By taking the same parameter values 
as those in Fig. 7 and p3 = q3 = i, c3 = −i , �x owns the expression

We depict the line breather solution (41) on the periodic background (see Fig. 8). 
The line breathers on the periodic background exhibit higher amplitudes than those 
on the constant background. As shown in Fig. 8, the maximum and the minimum 
values of |�x| are approximately 4.8392 and 0.1342, respectively.
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1
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1
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1
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1
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1
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1

2mi

|

|

|

|

|

|

|

|

.

(41)
�
x
= (58436224e2i(2x+13t) + 182613200e

1

4
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1

4
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− 16008300e
3

4
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− 786671424e
3

2
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+ 410879700e
3

4
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4
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4
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2
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− 23716e
1

2
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1

4
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4
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2
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2
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4
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4
i(2x+25t)

− 106722ei(t+2x) − 6561)].

Fig. 8   Line breather solution �x (41) on the periodic background and the corresponding density plot with 
parameters � = 0, � = −1, p =

1

10
, q =

2

5
, p3 = q3 = i, c3 = −i, y = 0
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5 � Dynamics of the Rational Solutions

In this part, we derive rational solutions to the sinh-Gordon equation (3) and 
investigate dynamic behaviors. In order to obtain rational solutions, we take 
ci = 0, (ni = 1, i = 1, 2..., ) in Theorem  1. Rational solutions of algebraic soliton 
types to the sinh-Gordon equation (3) were studied in [5], but lump type rational 
solutions have not been reported. In the following we consider lump type rational 
solutions to the potential F

G
 both on constant and periodic backgrounds.

5.1 � Rational Solutions on the Constant Background

We take the determinant size N = 2 and then

with matrix entries

Here �′
i
, �′

j
 are defined in (10)-(13), and ai,1, bj,1, pi, qj are arbitrary complex num-

bers. Actually, when we take q∗
1
= p1, q

∗

2
= p2, p2 + q2 = −(p1 + q1), a1,1 = a2,1 =

b1,1 = b2,1 = 0, y = 0 , the regularity of F
G

 can be verified by a similar process in [4].
By taking p1 = q∗

1
=

7

10
−

7

10
i, p2 = q∗

2
= −

7

10
+

7

10
i, y = 0 , we get

The positivity of the denominator ensures the regular property of the rational solu-
tion (44). Figure 9 displays lumps on the constant background. The figure depicts 
four peaks and four troughs. When |p1| = |p2| , the density plot Fig. 9f demonstrates 
that the center part is almost a circle. When |p1| ≠ |p2| , the density plots Fig. 9d and 
e show that the center part is close to an ellipse.

5.2 � Rational Solutions on the Periodic Background

In order to construct rational solutions to the sinh-Gordon equation (3) on the peri-
odic background, we take N = 3 , q3 = −p∗

3
 and p3, c3 to be purely imaginary in 

Theorem 1. Then the tau functions are expressed by

(42)F =

|

|

|

|

|

|
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|
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|

,
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m
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(

−

pi

qj

)n
[

(

��
i
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pi

pi + qj
+ n

)

×

(

��
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+ bj,1 −

qj

pi + qj
− n

)

+

piqj

(pi + qj)
2

]

1

pi + qj
, i, j = 1, 2.

(44)

F

G
=

−390625t4 + (−3001250x2 + 3062500i)t2 + 12005000xt − 5764801x4 − 11764900ix2 + 6002500

390625t4 + 3001250t2x2 + 5764801x4 + 6002500
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with matrix entries

and

(45)F =

|

|
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Fig. 9   Rational solutions of F/G given by (42) and the corresponding density plots on the con-
stant background with parameters y = 0, a1,1 = a2,1 = b1,1 = b2,1 = 0, �i,0 = 0, �j,0 = 0 , 
a p1 = q∗

1
= 1 −

i

2
, p2 = q∗

2
= −1 +

i

2
 ; b p1 = q∗

1
=

1

2
+ i, p2 = q∗

2
= −

1

2
− i ; c 

p1 = q∗
1
=

7

10
−

7

10
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2
= −

7

10
+

7

10
i ; d, e and f are density plots corresponding to a–c respectively
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Here �i, �j, �′i , �
′

j
 are defined in (10)-(13), and ai,1, bj,1, pi, qj are arbitrary complex 

numbers.
By taking the same parameter values of pi, qi, i = 1, 2 as those in Fig.  9 and 

q3 = −p∗
3
 , p3, c3 to be purely imaginary, we generate the rational solutions on the 

periodic background (see Fig. 10).

6 � Dynamics of the Semi‑Rational Solutions

In this part, we study the dynamics of semi-rational solutions on the constant and 
periodic backgrounds to the sinh-Gordon equation. For this purpose, we set 
ci ≠ 0, ni = 1, i = 1, 2..., in Theorem 1 and then the matrix entries m(n)

i,j
 are combina-

tions of polynomials and exponential functions. In the following, we consider the 
potential F

G
 and construct semi-rational solutions that consist of lumps and solitons.

6.1 � Semi‑Rational Solutions on the Constant Background

We take N = 2 in Theorem 1 to construct semi-rational solutions of the sinh-Gordon 
equation (3) on the constant background. In this case, the tau functions F and G are 
determinants

Fig. 10   Rational solutions F/G given by (45) and the corresponding density plots on the peri-
odic background with parameters, a p3 = −q∗

3
= −3i, c3 = 5i ; b p3 = −q∗

3
= −3i, c3 = 5i ; c 

p3 = −q∗
3
= −

3

2
i, c3 = 5i , and other parameter values are same as in Fig. 9. Besides, d–f are density plots 

corresponding to a–c respectively
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with entries

and ai,1, bj,1, pi, qj are arbitrary complex numbers. Similar as subsection 5.1, the poten-
tial F/G is regular when q∗

1
= p1, q

∗

2
= p2, (p2 + q2) = −(p1 + q1), a1,1 = a2,1 = b1,1

= b2,1 = 0, c2 = −c
∗

1
 . By setting p1 = q∗

1
=

7

10
−

7

10
i, p2 = q∗

2
= −

7

10
+

7

10
i and 

c2 = −c∗
1
= 2 + 2i , the semi-rational solution F/G depicts the interaction between 

solitons and lumps. As shown in Fig. 11, one soliton stands under the horizon, while 
the other one locates above the horizon with its amplitude decreasing as y → 0 and 
merges into the background around y = 0 . As y > 0 , the soliton travels below the 
horizon and its amplitude becomes larger.
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Fig. 11   Semi-rational solutions F/G given by (48) and the corresponding density plots on the constant 
background with parameters a1,1 = a2,1 = b1,1 = b2,1 = 0, �i,0 = 0, �j,0 = 0, c1 = −c∗
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6.2 � Semi‑Rational Solutions on the Periodic Background

Semi-rational solutions of the sinh-Gordon equation (3) on the periodic background 
are derived by setting N = 3 , q3 = −p∗

3
 and p3, c3 to be purely imaginary in 

Theorem 1. In this case, we have

with entries

and

Here �i, �j, �′i , �
′

j
 are defined in (10)–(13), and ai,1, bj,1, pi, qj are arbitrary complex 

numbers.
Setting q3 = −p∗

3
= −i, c3 = 2i and pi, qi, (i = 1, 2) the same values as those in 

Fig. 11, we derive semi-rational solutions consisting of solitons and lumps on the 
periodic background. The plots are shown in Fig. 12.

7 � Conclusion

The KP hierarchy reduction method is a powerful method to investigate exact solu-
tions of integrable equations and present Gram determinant structures of N−soliton 
solutions. Based on this approach, we give rational and semi-rational solutions in 
the N × N determinant form of the sinh-Gordon equation. Under different size of the 
determinant and parameters constraints, we obtain soliton solutions, line breathers, 
lump solutions and their interactions. For even N, we present local solutions on con-
stant backgrounds. For odd N, we construct solutions on the periodic background. 
We study dynamic behaviors for solitons, line breathers, lumps and their interac-
tions on both the constant and periodic backgrounds. Here the periodic backgrounds 
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are caused by the trigonometric functions. Recently, solitons and rational solutions 
on elliptic functions attract much attention. How to construct solutions of the sinh-
Gordon equation on those elliptic functions is left to be studied.
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