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Abstract
This paper is devoted to the study of existence and multiplicity of weak solutions to 
a Hamiltonian integro-differential system. The main tool used is the theory of min–
max based on Mountain-Pass theorem. Hamiltonian integro-differential considered 
system is of Fredholm type and the imposed Dirichlet boundary conditions are 
occurred at the integral bounds. Furthermore, we demonstrate some cases in which 
the weak solutions are equivalent with classical solutions

Keywords  Hamiltonian system · Fredholm integro-differential equations · Weak 
solution · Classical solution · Variational method

Mathematics Subject Classification  34Bxx · 34Kxx

1  Introduction

A Hamiltonian system is in fact a mathematical formality introduced by Hamil-
ton for studying the evolution equations in physical systems. The advantage of this 
explanation is that it uncover important insight about the dynamics. It plays impor-
tant role in classical and celestial mechanics by studying periodic solutions of Ham-
iltonian systems.

Mawhin and Willem [1] studied the periodic solutions of the following convex 
Hamiltonian system
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where H ∶ [0, T] × RN
→ R is measurable in t for every q ∈ Rn and continuously dif-

ferentiable and convex in q for a.e. t ∈ [0, T] . The readers are refereed to see [2–11] 
for more information about Hamiltonian systems and related problems. Ge and Zhao 
[12] have studied the existence of multiple solutions of the following four point 
boundary value problem:

where, the matrix P is symmetric. Also, Wen Lian et. al. [13] have studied the exist-
ence of multiple solutions to the following three-point differential Hamiltonian 
system

with some conditions on P(t) (that is a matrix) and H(t, x(t)).
Research on integro-differential equations of the integer order and even frac-

tional order in scientific sources shows that they are used in many fields. Readers 
can study [14, 15] and references therein. On the other hand, in general, there 
are different methods for checking the existence of the solutions to the boundary 
value problems, the most important of which are the fixed point method based 
on the Green function through the upper and lower solutions, and the variational 
methods [1, 16–32].

In this paper, we study the existence of weak solutions for the following system 
of integro-differential equations

where t ∈ (0, 1) , A ∶ [0, 1] → ℝ
n×n is a continuously symmetric matrix, i.e., 

AT (t) = A(t) being continuous in t, the kernel K(., .) ∈ C1(]0, 1[) , H ∶ ℝ
n
→ ℝ is 

differentiable scaler function such that its partial derivatives are continuously dif-
ferentiable, and

First of all, to achieve our purpose, we recall one basic optimization principle for 
extreme eigenvalues of symmetric matrixes:

Lemma 1.1  ([33]) If A is a real symmetric n × n matrix, then

(1)
{

q̈ + ∇H(t, q(t)) = 0, t ∈ (0, T)

q(0) − q(T) = q̇(0) − q̇(T) = 0,

(2)
{(

P(t)x�(t)
)�

= ∇H(t, x(t)), t ∈ (0, 1)

x�(0) = �x(�), x�(1) = �x(�),

(3)
{(

P(t)x�(t)
)�
+ ∇H(t, x(t)) = 0, a.e.t ∈ (0, 1)

x(0) = 0, x(1) = �x(�),

(4)
{(

A(t)u�(t)
)�

= ∫ 1

0
K(t, s)∇H(s, u(t))ds,

u(0) = u(1) = 0.

∇H(t, x) =

⎡
⎢⎢⎢⎣

�x1H(t, x)

�x2H(t, x)

...

�xnH(t, x)

⎤
⎥⎥⎥⎦
.
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where �1 and �n are respectively, its largest and smallest eigenvalues.

As a result, we can extend preceding lemma for ‖x‖ ≠ 1 , by normalization in the 
form of below:

2 � Variational Structure on the Problem

Consider the sobolev Banach space

with respect to the norm

In confronting with our boundary values, we consider its closed subspace

H1([0, 1],ℝn) is reflexive, so is X.

Lemma 2.1  ([34]) If x ∈ C1[0, 1] and x(0) = 0 , then we have

By preceding lemma, the norm (11) is equivalent to

After that, we apply this norm.

Lemma 2.2  ([13]) X is compactly embedded into C([0, 1],ℝn) there exists a positive 
embedding constant k such that ‖u‖∞ ≤ k‖u‖ �‖u‖∞ = maxt∈[0,1] �u(t)�

�
.

Definition 2.3  A function u ∶ [0, 1] → ℝ
n is said to be a weak solution of problem 

(4), if u ∈ X and

�1 = max{xTAx � ‖x‖ = 1}, �n = min{xTAx � ‖x‖ = 1}.

(5)�1 = max

�
xTAx

‖x‖2 �x ≠ 0

�
, �n = min

�
xTAx

‖x‖2 �x ≠ 0

�
.

H1([0, 1],ℝn) =
{
u ∈ L2([0, 1],ℝn) ∣ ∫

1

0

|u(t)|2dt + ∫
1

0

|u�(t)|2dt < ∞
}
,

(6)‖u‖H1([0,1],ℝn) =

�
∫

1

0

�u(t)�2dt + ∫
1

0

�u�(t)�2dt
� 1

2

.

X ∶= H1

0
([0, 1],ℝn) =

{
u ∈ H1([0, 1],ℝn) ∣ u(0) = u(1) = 0

}
.

�
1

0

|x(t)|2dt ≤ 4

�2 �
1

0

|x�(t)|2.

(7)‖u‖ =

�
∫

1

0

�u�(t)�2dt
� 1

2

.
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for all C∞
0
(]0, 1[,ℝn).

Now define the functional Ψ(u) ∶ ℝ
n
→ ℝ as

It is clear that Ψ is well defined and we can say more:

Lemma 2.4  The critical points of the functional Ψ(u) are exactly weak solutions of 
(4).

Proof  Since A as function is continuous at t, and K and H are continuously differen-
tiable, so is Ψ(u) , and whose Gâteaux derivative at point u in direction v, given by

By applying divergence theorem, we conclude:

(8)
∫

1

0

≺ (A(t)u�(t))�,𝜙(t) ≻ dt − ∫
1

0

≺ ∫
1

0

K(t, s)∇H(s, u(t))ds,𝜙(t) ≻ dt = 0,

(9)Ψ(u) = ∫
1

0

[1
2
≺ A(t)u�(t), u�(t) ≻ +∫

1

0

K(t, s)H(s, u(t))ds
]
dt.

(10)

≺ Ψ�(u), v ≻=
d

d𝜃
[Ψ(u + 𝜃v)|𝜃=0 = d

d𝜃

[
∫

1

0

(1
2
≺ A(t)u�(t) + 𝜃v�(t)), (u�(t) + 𝜃v�(t))

≻ + ∫
1

0

K(t, s)H(s, u(t) + 𝜃v(t))ds
)
dt
]
𝜃=0

= ≺ ∫
1

0

[1
2

(
≺ A(t)v�(t), u�(t) + 𝜃v�(t) ≻ + ≺ A(t)(u�(t) + 𝜃v�(t)), v�(t) ≻

)
+

∫
1

0

K(t, s)∇H(s, u(t) + 𝜃v(t)), v(t) ≻ ds
]
dt ∣𝜃=0

= ∫
1

0

[1
2

(
≺ A(t)v�(t), u�(t) ≻ + ≺ A(t)u�(t), v�(t) ≻

)
+

∫
1

0

K(t, s) ≺ ∇H(s, u(t), v(t) ≻ ds
]
dt =

∫
1

0

[
≺ A(t)u�(t), v�(t) ≻ +∫

1

0

K(t, s) ≺ ∇H(s, u(t)), v(t) ≻ ds
]
dt.

≺ Ψ�(u), y ≻=

− ∫
1

0

≺ (A(t)u�(t))�, v�(t) ≻ dt + ∫
1

0
∫

1

0

K(t, s) ≺ ∇H(s, u(t), v(t) ≻ dsdt =

−

(
∫

1

0

≺ (A(t)u�(t))�, v�(t) ≻ dt − ∫
1

0

≺ ∫
1

0

K(t, s)∇H(s, u(t), v(t)ds ≻ dt

)
.
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On the other hand the assumption, u is a critical point of Ψ , implies

This means u is exactly a weak solution of (4).□

From now on, we will focus on finding critical points for functional Ψ . Our main 
tool is a famous min–max Theorem named Mountain Pass as follows:

Theorem 2.5  ([35]) Assume X be a real banach space and I ∈ C1(X,R) satisfies the 
Palais–Smale condition. Suppose also 

1.	 I(0) = 0,

2.	 there exist constants r, 𝛼 > 0 such that I(u) > 𝛼 if ‖u‖ = r,

3.	 there exists an element v ∈ X with ‖v‖ > r , I(v) ≤ 0.

define

Then

is a critical value of I.

3 � Main Result

Now we can turn to the main theorem:

Theorem 3.1  Assume that the following conditions hold:

(�
�
) {�i(t)} is the eigenvalue of A(t) and 

0 < a ≤ min
0≤t≤1 min

1≤j≤n 𝜆j(t) ≤ max
0≤t≤1 max

1≤j≤n 𝜆j(t) ≤ b;

(�
�
) for partial derivatives Hxi

 , we have lim|x|→0
min
0≤t≤1

∫ 1

0
K(t,s)Hxi

(s,x)ds

|x| = 0;

(�
�
) there is constant 𝜇 > 0 such that a

2
−

b

𝜇
> 0 and � ≥ 0 such that for |x| ≥ � , 

we have

≺ Ψ�(u), y ≻= 0

Γ ∶= {g ∈ (C[0, 1],X)| g(0) = 0, g(1) = v}.

c = inf
g∈Γ

max
0≤t≤1 I(g(t))
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Then problem (4) has a unique nontrivial weak solution.

Proof  It is sufficient to show that functional Ψ , defined in (9), satisfies all condi-
tions of Theorem 2.5. The first step is to show (PS)-condition holds. In this order, 
assume {uk} ⊂ X be a sequence such that {Ψ(uk)} is bounded, i.e. there exists 
L > 0 such that |Ψ(uk)| ≤ L , and Ψ�(uk) → 0 as k → ∞ . We should prove that 
{uk} admits a convergence subsequence in X. By definition of symmetric matrix, 
≺ A(t)u�(t), u�(t) ≻=≺ u�(t),A(t)u�(t) ≻ . So by definition of Ψ , and taking into 
account (H1) and (5) one has

In similar way, by (10) and (H1) we get

For k large enough, put u ∶= uk , and E ∶= {t ∈ [0, 1]| |u(t)| ≥ �} , combining (11) 
and (12) implies:

�
1

0

�K(t, s)H(s, x(t))ds − �
1

0

K(t, s)(x,∇H(s, x(t)))ds ≥ 0.

(11)
Ψ(u) =�

1

0

�1
2
≺ A(t)u�(t), u�(t) ≻ +�

1

0

K(t, s)H(s, u(t))ds
�
dt

≥a

2
‖u‖2 − �

1

0
�

1

0

K(t, s)H(s, u(t))dsdt;

(12)

1

𝜇
≺ Ψ�(u), u ≻=

1

𝜇 �
1

0

�
≺ A(t)u�(t), u�(t) ≻ +�

1

0

K(t, s) ≺ ∇H(s, u(t), u(t) ≻ ds
�
dt

≤ 1

𝜇

�
�

1

0

b�u�(t)�2dt − �
1

0
�

1

0

K(t, s) ≺ ∇H(s, u(t), u(t) ≻ dsdt
�

=
1

𝜇

�
b‖u‖2 − �

1

0
�

1

0

K(t, s) ≺ ∇H(s, u(t), u(t) ≻ dsdt
�
.

(13)

L ≥Ψ(u)
≥ 1

𝜇
≺ Ψ�(u), u ≻ +(

a

2
−

b

𝜇
)‖u‖2+

1

𝜇 �
1

0
�

1

0

�
K(t, s)

�
H(s, u(t))− ≺ ∇H(s, u(t)), u(t) ≻

��
dsdt

=
1

𝜇
≺ Ψ�(u), u ≻ +(

a

2
−

b

𝜇
)‖u‖2+

�E

1

𝜇 �
1

0

�
K(t, s)

�
H(s, u(t))− ≺ ∇H(s, u(t)), u(t) ≻

��
dsdt

+ �[0,1]⧵E �
1

0

�
K(t, s)

�
H(s, u(t))− ≺ ∇H(s, u(t)), u(t) ≻

��
dsdt.
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The first term on the right side of (13) tend to zero, by (�
�
) , a

2
−

b

𝜇
> 0 and the third 

term is positive. For fourth term, since |u(t)| < 𝛼 , it is clear that is bounded by a con-
stant independently of k. So {uk} is bounded in X. Whereas X is reflexive, {uk} has a 
weakly convergence subsequence. Going to a subsequence, Assume uk

w
→ u in X. 

According to compactly embedding in lemma 2.2, uk → u in C∞
0
(]0, 1[,ℝn) . By 

properties of inner product, we conclude

Due to (�
�
),

On the other hand uk → u in C∞
0
(]0, 1[,ℝn) . Hence |uk(t) − u(t)| → 0 for t = 0, 1 and

as k → ∞ . Consequently, (15) implies

But uk ∈ X , so uk(0) = uk(1) = 0 , hence u(0) = u(1) = 0 , i.e. u ∈ X . That is 
‖uk − u‖ → 0 in X. Then (PS)-condition holds. It is obvious that Ψ(0) = 0 . For the 
second step, according to (H2) , lim

u→0

∫ 1

0
K(t,s)Hui

(s,u)ds

|u| = 0 that means for all 
𝜖i > 0(1 ≤ i ≤ n) there is a 0 < 𝛿 ≤ 1 such that |u| ≤ � concludes 
| ∫ 1

0
K(t, s)Hui

(s, u)ds| ≤ �i|u| . Equivalently, for all 𝜖 = max
1≤i≤n 𝜖i > 0 we have

By integrating both side of above inequality and applying lemma 2.1 we have

Therefore

(14)
≺ Ψ�(uk) − Ψ�(u), uk − u ≻=≺ Ψ�(uk), uk − u ≻ − ≺ Ψ�(u), uk − u ≻→ 0, (k → ∞)

(15)

≺ Ψ�(uk) − Ψ�(u), uk − u ≻=≺ A(t)u�
k
(t) − u�(t), u�(t) ≻ dt

+�
1

0
�

1

0

K(t, s) ≺ ∇H(s, uk(t)) − ∇H(s, u(t)), uk(t) − u(t) ≻ dsdt

≥ a�
1

0

|u�
k
(t) − u�(t)|2dt

+�
1

0
�

1

0

K(t, s) ≺ ∇H(s, uk(t)) − ∇H(s, u(t)), uk(t) − u(t) ≻ dsdt.

∫
1

0
∫

1

0

K(t, s) ≺ ∇H(s, uk(t)) − ∇H(s, u(t)), uk(t) − u(t) ≻ dsdt → 0

∫
1

0

|u�
k
(t) − u�(t)|2dt → 0 (k → ∞)

(16)|�
1

0

K(t, s)∇H(s, u(t))ds| ≤ �

2
|u|2

(17)�
1

0
�

1

0

K(t, s)∇H(s, u(t))dsdt ≤ �

2 �
1

0

|u(t)|2dt ≤ 2�

�2 �
1

0

|u�(t)|2dt,
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By setting � = a�2

8
 , r = � , � =

a�2

4
 , we conclude that Ψ(u) ≥ � . So condition (2) in 

theorem 2.5 holds. To complete the proof, it is sufficient to show that condition (3) 
holds. Notice that by (H3) , there exist constants c,M > 0 such that

Thus

which yields Ψ(uz) → −∞ as z → ∞ . So the desired result is achieved.□

Now consider the following condition:
(�

�
) ∇H is locally Lipschitz continuous function in (0, 1) ×ℝ.

Theorem 3.2  Under the hypothesis of theorem 3.1, if H also satis (H4) , then system 
(4) possess a positive and a negative solution.

Proof  Define

The arguments of theorem 3.1 proof show that

satisfies the hypotheses of Mountain Pass theorem. Indeed ∇H satisfies (H2) . Also 
(H3) holds for x > 0 while H̃ = ∇H̃ = 0 for x ≥ 0 . Assumption (H3) was required to 
verify (PS) and (3) conditions. But H̃ ≥ 1

�
∇H̃ for large enough |x| and this is suffi-

(18)Ψ(u) ≥ a

2
‖u‖2 − 2�

�2 �
1

0

�u�(t)�2dt = �a
2
−

2�

�2

�‖u‖2 ≥ �a
2
−

2�

�2

�‖u‖2
∞
.

(19)�
1

0

K(t, s)H(s, x(t))ds ≤ M − c|x|� ∀t ∈ [0, 1], x ∈ ℝ
n.

(20)�
1

0
�

1

0

K(t, s)H(s, u(t))dsdt ≤ M − c�
1

0

|u(t)|�dt

(21)

Ψ(uz) = �
1

0

�1
2
≺ A(t)zu�(t), zu�(t) ≻ +�

1

0

K(t, s)H(s, zu(t)),𝜙(t)ds
�
dt

≤ bz2

2 �
1

0

�u�(t)�2dt + �
1

0
�

1

0

K(t, s)H(s, zu(t)),𝜙(t)dsdt

≤ bz2

2
‖u‖2 +M − cz𝜇 �

1

0

�u(t)�𝜇dt

(22)�H(t, x) =

{
0, x ≤ 0;

H(t, x), x > 0.

Ψ̃(u) =
1

2
‖u‖2 − ∫

1

0
∫

1

0

K(t, s)H(s, u(t))dsdt
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cient to get (PS)-condition. Notice that (19) holds for x ≥ 0 so choose u ∈ X�{0} in 
(21) to be nonnegative function, condition (3) in theorem 2.5 holds. Consequently 
by the Mountain Pass theorem the system

has a weak solution, u ≢ 0 . By (H4) and [remark 2.22,[27]], u is a classical solution 
of (4). Let A = {t ∈ [0, 1]|u(t) < 0} . Then by definition of H̃ we have

Therefore the maximum principle shows u ≡ 0 in A . This means A = � . Hence 
u ≥ 0 in [0, 1]. The negative solution of (4) is produced in similar way. □

Theorem 3.3  Assume that conditions H1 and H3 holds. Furthermore the following 
hypotheses holds:

(�
�
) ∫ 1

0
K(t, s)H(s,−x)ds = ∫ 1

0
K(t, s)H(s, x)ds;

(�
�
) lim|x|→0

min
0≤t≤1

∫ 1

0
K(t,s)Hxi

(s,x)ds

|x|2 = −∞.

Then BVP (4) has infinity many pairs of nontrivial weak solutions.

Proof  Condition (H6) means for any m ∈ ℕ there is 𝛿 > 0 such that

So the conclusion comes from [theorem 1.1,[12]].

4 � Concluding Remarks

In this paper, we have studied and researched on a class of important model namely 
Hamiltonian integro-differential system of Fredholm type with Dirichlet bound-
ary conditions at the integral bounds (also bounds of the problem domain). It have 
been given and proved some good results on the existence and multiplicity of weak 
solutions to a Hamiltonian integro-differential system by applying the theory of 
min–max based on Mountain-Pass theorem. Furthermore, we showed that it is pos-
sible to extract also classical solutions through weak results.
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(23)
{(

A(t)u�(t)
)�

= ∫ 1

0
K(t, s)∇H̃(s, u(t))ds,

u(0) = u(1) = 0.

(
A(t)u�(t)

)�
= 0 ∀t ∈ [0, 1]

≺ �
1

0

K(t, s)∇H(s, x)ds, x ≻≤ −4b(m + 1)2𝜋2|x(t)|2 < −4bm2𝜋2|x(t)|2, 0 < |x| ≤ 𝛿.
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