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Abstract
The fast growing solutions of the following linear differential equation (∗) is investi-
gated by using a more general scale [p, q],�-order, 

where Ai(z) are entire functions in the complex plane, i = 0, 1,… , k − 1 . The growth 
relationships between entire coefficients and solutions of the equation (∗) is found by 
using the concepts of [p, q],�-order and [p, q],�-type, which extend and improve some 
previous results.

Keywords Linear differential equations · Entire functions · [p, q],�-order · [p, q],�
-type

Mathematics Subject Classification 34M10 · 30D35

1  Introduction and Main Results

We assume that the reader is familiar with the fundamental results and the standard 
notation of Nevanlinna theory in the complex plane ℂ , see [8, 15] for more details. 
Considering the linear differential equation

f (k) + Ak−1(z)f
(k−1) + ⋅ ⋅ ⋅ + A0(z)f = 0, (∗)

(1.1)L(f ) ∶= f (k) + Ak−1(z)f
(k−1) +⋯ + A0(z)f = 0,
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where A0(z),… ,Ak−1(z) are entire functions in ℂ and k(≥ 2) is integer. Usually, order 
and hyper order are used to study the growth of solutions of Eq. (1.1), for example, 
see [7, 10, 14, 15, 18, 19, 20, 21] and therein references. For the fast growing entire 
function, the iterated order is defined to measure their growing. It is well-known that 
Kinnunen firstly used the idea of iterated order to study the fast growing of solutions 
of Eq. (1.1) in [13]. Since then, the iterated order of solutions of Eq. (1.1) is very 
interesting topic, many results concerning iterated order of solutions of Eq. (1.1) 
have been obtained, for example [3, 9] and therein references. To estimate precisely 
the fast growing of entire functions, the concept of [p, q]-order is defined in [12]. 
From then, many results concerning [p, q]-order of solutions of Eq. (1.1) have been 
found by different researchers, for example [16, 17] and theirin references.

In [4], Chyzhykov and Semochko have pointed out that the definition of [p, q]-
order have weaknesses is that it do not cover arbitrary growth, and given Examples 
1.4 and 1.7 in [4] to show the case. And the same time, they given more general 
growth scale of meromorphic function as follows.

Definition 1 ([4]) Let � be an increasing unbounded function on [1,+∞) , and  f be a 
meromorphic function. The �-orders of  f are defined by

If  f  is an entire function, then the �-orders are defined by

Remark 1 ([4]) Let � ∈ Φ and  f  be an entire function. Then

The properties of Φ and � will be shown in the following Sect. 2.  Furthermore, 
Chyzhykov and Semochko studied the growth of solutions of Eq. (1.1) by using the 
concept of �-order.

Theorem 1.1 ([4]) Let � ∈ Φ , A0(z),… ,Ak−1(z) be entire functions. Then all non-
trivial solutions f of Eq. (1.1) satisfy

Theorem  1.2 ([4]) Let � ∈ Φ , and l = max
{
j|�0

�
(Aj) ≥ �, j = 0,… , k − 1

}
. Then 

Eq. (1.1) possesses at most l entire linearly independent solutions f with 𝜌1
𝜑
(f ) < 𝛽.

�
0
�
(f ) = lim

r→+∞
sup

�(eT(r,f ))

log r
,

�
1
�
(f ) = lim

r→+∞
sup

�(T(r, f ))

log r
.

�̃�
0
𝜑
(f ) = lim

r→+∞
sup

𝜑(M(r, f ))

log r
,

�̃�
1
𝜑
(f ) = lim

r→+∞
sup

𝜑(logM(r, f ))

log r
.

𝜌
j
𝜑
(f ) = �̃�

j
𝜑
(f ), j = 0, 1.

sup
{
�
1
�
(f )|L(f ) = 0

}
= sup

{
�
0
�
(Aj)|j = 0,… , k − 1

}
.



934 Journal of Nonlinear Mathematical Physics (2023) 30:932–955

1 3

Theorem  1.3 ([4]) Let � ∈ Φ , A0(z),… ,Ak−1(z) be entire functions such that 
𝜌
0
𝜑
(A0) > max

{
𝜌
0
𝜑
(Aj), j = 1,… , k − 1

}
 . Then all nontrivial solutions f of Eq. (1.1) 

satisfy �1
�
(f ) = �

0
�
(A0).

Recently, Belaïdi defined the concept of �-type of meromorphic functions which 
is used to study the growth of solutions of Eq. (1.1), and the following Theorem 1.4 
is obtained.

Definition 2 ([2]) Let � be an increasing unbounded function on [1,+∞) , and f be 
a meromorphic function with �i

�
(f ) ∈ (0,+∞), i = 0, 1 . The �-types of f are defined 

by

If  f  is an entire function, then the �-types of f are defined by

Theorem 1.4 ([2]) Let � ∈ Φ , A0(z),… ,Ak−1(z) be entire functions. Assume that

and

Then all nontrivial solutions f of Eq. (1.1) satisfy �̃�1
𝜑
(f ) = �̃�

0
𝜑
(A0).

Motivated to the [p, q]-order of meromorphic function. We introduce the concepts 
of [p, q],�-order and [p, q],�-type, where p ≥ q ≥ 1 . For all r ∈ (0,+∞) , exp1 r = er , 
expn+1 r = exp(expn r) and log1 r = log r and logn+1 r = log(logn r) , n ∈ N . We also 
denote exp0 r = r = log0 r , exp−1 r = log1 r . The [p, q],�-order and [p, q],�-type are 
defined as follows, respectively.

Definition 3 Let � be an increasing unbounded function on [1,+∞) , and f be a 
meromorphic function. The [p, q],�-orders of  f  are defined by

�
0
�
(f ) = lim

r→+∞
sup

exp
{
�(eT(r,f ))

}

r
�0
�
(f )

,

�
1
�
(f ) = lim

r→+∞
sup

exp {�(T(r, f ))}

r
�1
�
(f )

.

𝜏
0
𝜑
(f ) = lim

r→+∞
sup

exp {𝜑(M(r, f ))}

r
�̃�0
𝜑
(f )

,

𝜏
1
𝜑
(f ) = lim

r→+∞
sup

exp {𝜑(logM(r, f ))}

r
�̃�1
𝜑
(f )

.

max
{
�̃�
0
𝜑
(Aj), j = 1,… , k − 1

} ≤ �̃�
0
𝜑
(A0) = 𝜌0 < +∞,

max
{
𝜏
0
M,𝜑

(Aj) ∶ �̃�
0
𝜑
(Aj) = �̃�

0
𝜑
(A0)

}
< 𝜏

0
M,𝜑

(A0) = 𝜏.
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If  f is an entire function, then the [p, q],�-orders of f are defined by

Definition 4 Let � be an increasing unbounded function on [1,+∞) , and f be a 
meromorphic function with �i

[p,q],�
(f ) ∈ (0,+∞), i = 0, 1 . The [p, q],�-types of f are 

defined by

If f is an entire function with �̃�i
[p,q],𝜑

(f ) ∈ (0,+∞), i = 0, 1 , then the [p, q],�-types of f 
are defined by

The following two examples show that [p, q],�-order is indeed superior to �-order 
when studying the same fast growth functions.

Example 1 It follows from [5] that exp4(�(log r)�) is convex in log r . Then there 
exists an entire function f that satisfies

where 𝛼, 𝛽 > 0.
For �(r) = (log2 r)

1

� , we can get that

�
0
[p,q],�

(f ) = lim
r→+∞

sup
�(elogp−1 T(r,f ))

logq r
,

�
1
[p,q],�

(f ) = lim
r→+∞

sup
�(logp−1 T(r, f ))

logq r
.

�̃�
0
[p,q],𝜑

(f ) = lim
r→+∞

sup
𝜑(elogp M(r,f ))

logq r
,

�̃�
1
[p,q],𝜑

(f ) = lim
r→+∞

sup
𝜑(logp M(r, f ))

logq r
.

�
0
[p,q],�

(f ) = lim
r→+∞

sup
exp

{
�(elogp−1 T(r,f ))

}

[logq−1 r]
�
0
[p,q],�

(f )
,

�
1
[p,q],�

(f ) = lim
r→+∞

sup
exp

{
�(logp−1 T(r, f ))

}

[logq−1 r]
�
1
[p,q],�

(f )
.

𝜏
0
[p,q],𝜑

(f ) = lim
r→+∞

sup
exp

{
𝜑(elogp M(r,f ))

}

[logq−1 r]
�̃�
0
[p,q],𝜑

(f )
,

𝜏
1
[p,q],𝜑

(f ) = lim
r→+∞

sup
exp

{
𝜑(logp M(r, f ))

}

[logq−1 r]
�̃�
1
[p,q],𝜑

(f )
.

log4 T(r, f ) = (� + o(1))(log r)� ,

�
1
�
(f ) = lim sup

r→+∞

�(T(r, f ))

log r
= lim sup

r→+∞

[exp2((� + o(1))(log r)�)]
1

�

log r
= +∞,
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however,

Example 2 It follows from [5] that exp2(�(log r)�) is convex in log r . Then there 
exists an entire function  f  that satisfies

where 𝛼, 𝛽 > 0.
For �(r) = (log2 r)

1

� , we can get that

however,

Here, we study the growth of solutions of Eq. (1.1) by using the concepts of 
[p, q],�-order and [p, q],�-type, Theorems 1.5–1.8 are obtained which are generaliza-
tion of previous results from Chyzhykov-Semochko [4] and Belaïdi [2].

Theorem 1.5 Let � ∈ Φ , A0(z),… ,Ak−1(z) be entire functions. Then all nontrivial 
solutions f of Eq. (1.1) satisfy

Theorem  1.6 Let � ∈ Φ , A0(z),… ,Ak−1(z) be entire functions, 
m = max

{
j|�0

[p,q],�
(Aj) ≥ �, j = 0,… , k − 1

}
. Then Eq. (1.1) possesses at most m 

entire linearly independent solutions f with 𝜌1
[p,q],𝜑

(f ) < 𝜆.

Theorem  1.7 Let � ∈ Φ , A0(z),… ,Ak−1(z) be entire functions such that 
𝜌
0
[p,q],𝜑

(A0) > max
{
𝜌
0
[p,q],𝜑

(Aj), j = 1,… , k − 1
}

 . Then all nontrivial solutions  f of 
Eq. (1.1) satisfy �1

[p,q],�
(f ) = �

0
[p,q],�

(A0).

Theorem 1.8 Let � ∈ Φ , A0(z),… ,Ak−1(z) be entire functions. Assume that

and

�
1
[3,1],�

(f ) = lim sup
r→+∞

�(log2 T(r, f )

log r
= lim sup

r→+∞

(�(log r)�)
1

�

log r
= �

1

� .

log2 T(r, f ) = (� + o(1))(log r)� ,

�
1
�
(f ) = lim sup

r→+∞

�(T(r, f ))

log r
= �

1

� ,

�
1
[3,2],�

(f ) = lim sup
r→+∞

�(log2 T(r, f ))

log2 r
= lim sup

r→+∞

(log2[(� + o(1))(log r)�])
1

�

log2 r
= 0.

sup
{
�
1
[p,q],�

(f )|L(f ) = 0
}
= sup

{
�
0
[p,q],�

(Aj)|j = 0,… , k − 1
}
.

max
{
�̃�
0
[p,q],𝜑

(Aj), j = 1,… , k − 1
} ≤ �̃�

0
[p,q],𝜑

(A0) = 𝜌0 < +∞,

max
{
𝜏
0
[p,q],𝜑

(Aj) ∶ �̃�
0
[p,q],𝜑

(Aj) = �̃�
0
[p,q],𝜑

(A0)

}
< 𝜏

0
[p,q],𝜑

(A0) = 𝜏.
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Then all nontrivial solutions f of Eq. (1.1) satisfy �̃�1
[p,q],𝜑

(f ) = �̃�
0
[p,q],𝜑

(A0).

2  Properties of [p,q],'‑order

In [4], Chyzhykov and Semochko defined the class of positive unbounded increasing 
function on [1,+∞) by Φ such that �(et) is slowly growing, i. e.,

First, we recall properties of functions from the class Φ.

Proposition 2.1 ([4]) If � ∈ Φ , then

Remark 2 If � is non-decreasing, then (2.2) is equivalent to the definition of the 
class Φ.

Next, we obtain some basic properties of [p, q],�-order by using standard method.

Proposition 2.2 Let � ∈ Φ , and f be an entire function. Then

Proof First, we prove that this is true when j = 1 , and it can be proved for the case 
of j = 0 by using similar reason as the case of j = 1.

According to the monotonicity of function � and the following inequality

we get that

Next, by (2.3) and choose R = kr, k > 1 , we have

∀c > 0 ∶
𝜑(ect)

𝜑(et)
→ 1, t → +∞.

(2.1)∀m > 0, ∀k ≥ 0 ∶
𝜑
−1(log xm)

xk
→ +∞, x → +∞;

(2.2)∀𝛿 > 0 ∶
log𝜑−1((1 + 𝛿)x)

log𝜑−1(x)
→ +∞, x → +∞.

𝜌
j

[p,q],𝜑
(f ) = �̃�

j

[p,q],𝜑
(f ), j = 0, 1.

(2.3)T(r, f ) ≤ logM(r, f ) ≤ R + r

R − r
T(r, f ), 0 < r < R,

𝜌
1
[p,q],𝜑

(f ) ≤ �̃�
1
[p,q],𝜑

(f ).
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In fact, by the properties of function �,

Hence,

It is implies that

Therefore, this is completely proved.   ◻

Proposition 2.3 Let � ∈ Φ , and let f , f1, f2 be three meromorphic functions. Then the 
following statements hold. 

 (i) �
j

[p,q],�
(f1 + f2) ≤ max

{
�
j

[p,q],�
(f1), �

j

[p,q],�
(f2)

}
, j = 0, 1.

 (ii) �
j

[p,q],�
(f1f2) ≤ max

{
�
j

[p,q],�
(f1), �

j

[p,q],�
(f2)

}
, j = 0, 1.

 (iii) �
j

[p,q],�
(
1

f
) = �

j

[p,q],�
(f ) for f ≠ 0, j = 0, 1.

 (iv) for a ∈ ℂ⧵{0},we have �
j

[p,q],�
(af ) = �

j

[p,q],�
(f ), �

j

[p,q],�
(af ) = �

j

[p,q],�
(f ), j=0,1.

Proof (i) We prove that this is true when j = 1 , and similarly it can be proved for the 
case of j = 0 . Let a = �

1
[p,q],�

(f1) , b = �
1
[p,q],�

(f2) . Without loss of generality, suppose 
that a ≤ b < +∞ . Now by the definition of �1

[p,q],�
-order, for any 𝜀 > 0 and suffi-

ciently large r,

It follows from the properties of Nevanlinna characteristic functions that

�(logp M(r, f ))

logq r
≤ �(logp−1

R+1

R−1
T(R, f ))

logq r
≤ �(logp−1

k+1

k−1
T(kr, f ))

logq r

≤ (1 + o(1))�(logp−1 T(kr, f ))

logq kr

logq kr

logq r
, r → +∞.

∀𝛼 > 1 ∶ 𝜑(𝛼t) ≤ 𝜑(t𝛼) ≤ (1 + o(1))𝜑(t), t → +∞.

�(logp−1
k+1

k−1
T(kr, f ))

logq r
≤ �(

k+1

k−1
logp−1 T(kr, f ))

logq r

≤ (1 + o(1))�(logp−1 T(kr, f ))

logq kr

logq kr

logq r
, r → +∞.

𝜌
1
[p,q],𝜑

(f ) ≥ �̃�
1
[p,q],𝜑

(f ).

�(logp−1 T(r, fk))

logq r
≤ �

1
[p,q],�

(fk) + �,

�(logp−1 T(r, fk)) ≤ (b + �)logq r,

T(r, fk) ≤ expp−1[�
−1((b + �)logq r)], k = 1, 2.
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Hence,

It is implies that

The properties (ii), (iii) and (iv) can be proved by using similar way as in the proof 
of the case (i).   ◻

Proposition 2.4 Let � ∈ Φ , and f1, f2 be two meromorphic functions. If 
𝜌
j

[p,q],𝜑
(f1) < 𝜌

j

[p,q],𝜑
(f2), j = 0, 1 , then

Proof Obviously, we can easily conclude that this is true by Proposition 2.3.   ◻

Proposition 2.5 Let � ∈ Φ , and f1, f2 be two meromorphic functions. Then the fol-
lowing statements hold. 

 (i) If 0 < 𝜌
j

[p,q],𝜑
(f1) < 𝜌

j

[p,q],𝜑
(f2) < +∞, 0 < 𝜏

j

[p,q],𝜑
(f1) < 𝜏

j

[p,q],𝜑
(f2), j = 0, 1, then

 (ii) If 0 < 𝜌
j

[p,q],𝜑
(f1) = 𝜌

j

[p,q],𝜑
(f2) = 𝜌

j

[p,q],𝜑
(f1 + f2), j = 0, 1, then

 Moreover, if � j
[p,q],�

(f1) ≠ �
j

[p,q],�
(f2), then 

 (iii) If 0 < 𝜌
j

[p,q],𝜑
(f1) = 𝜌

j

[p,q],𝜑
(f2) = 𝜌

j

[p,q],𝜑
(f1f2), j = 0, 1, then

 Moreover, if � j
[p,q],�

(f1) ≠ �
j

[p,q],�
(f2), then 

T(r, f1 + f2) ≤ T(r, f1) + T(r, f2) + O(1)

≤ 3 expp−1
(
�
−1[(b + �) logq r]

)

≤ expp−1
(
�
−1[(b + 3�) logq r]

)
.

�(logp−1 T(r, f1 + f2))

logq r
≤ b + 3�.

�
1
[p,q],�

(f1 + f2) ≤ max
{
�
1
[p,q],�

(f1), �
1
[p,q],�

(f2)
}
.

(2.4)�
j

[p,q],�
(f1 + f2) = �

j

[p,q],�
(f1f2) = �

j

[p,q],�
(f2), j = 0, 1.

�
j

[p,q],�
(f1 + f2) = �

j

[p,q],�
(f1f2) = �

j

[p,q],�
(f2).

�
j

[p,q],�
(f1 + f2) ≤ max

{
�
j

[p,q],�
(f1), �

j

[p,q],�
(f2)

}
.

�
j

[p,q],�
(f1 + f2) = max

{
�
j

[p,q],�
(f1), �

j

[p,q],�
(f2)

}
.

�
j

[p,q],�
(f1f2) ≤ max

{
�
j

[p,q],�
(f1), �

j

[p,q],�
(f2)

}
.
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Proof We just prove the case of j = 1 , and the case of j = 0 is very similar.
(i) By the definition of the �1

[p,q],�
-type, for any given 𝜀 > 0 , there exists a 

sequence 
{
rn
}
 which tending to infinity and N1 ∈ Z+ , such that for n > N1,

On the other hand, there exists N2 ∈ Z+ , such that for n > N2,

Obviously,

Set N = max
{
N1,N2

}
 . By the properties of � and n > N , we have

It follows from Proposition 2.4 that �1
[p,q],�

(f1 + f2) = �
1
[p,q],�

(f2) . By the monotonicity 
of � , we have

And then

Since 𝜌1
[p,q],𝜑

(f1 + f2) = 𝜌
1
[p,q],𝜑

(f2) > 𝜌
1
[p,q],𝜑

(f1) = 𝜌
1
[p,q],𝜑

(−f1) , then

Thus �1
[p,q],�

(f2) = �
1
[p,q],�

(f1 + f2).
Next we prove that �

1
[p,q],�

(f1f2) = �
1
[p,q],�

(f2) . Obviously, 
T(r, f1f2) ≥ T(r, f2) − T(r, f1) − log 2 . By using similar discussion as in the proof 
above, we obtain easily that

Since 𝜌1
[p,q],𝜑

(f1f2) = 𝜌
1
[p,q],𝜑

(f2) > 𝜌
1
[p,q],𝜑

(f1) = 𝜌
1
[p,q],𝜑

(
1

f1
) , then

�
j

[p,q],�
(f1f2) = max

{
�
j

[p,q],�
(f1), �

j

[p,q],�
(f2)

}
.

T(rn, f2) ≥ expp−1

{
�
−1
[
log

(
(�1

[p,q],�
(f2) − �

)
[logq−1 rn]

�
1
[p,q],�

(f2))

]}
.

(2.5)T(rn, f1) ≤ expp−1

{
�
−1
[
log

(
(�1

[p,q],�
(f1) + �

)
[logq−1 rn]

�
1
[p,q],�

(f1))

]}
.

T(r, f1 + f2) ≥ T(r, f2) − T(r, f1) − log 2.

T(rn, f1 + f2) ≥ expp−1

{
�
−1
[
log

(
(�1

[p,q],�
(f2) − 2�

)
[logq−1 rn]

�
1
[p,q],�

(f2))

]}
.

e�(logp−1 T(rn,f1+f2))

[logq−1 rn]
�
1
[p,q],�

(f1+f2)
≥ �

1
[p,q],�

(f2) − 2�.

�
1
[p,q],�

(f1 + f2) ≥ �
1
[p,q],�

(f2).

�
1
[p,q],�

(f2) = �
1
[p,q],�

(f1 + f2 − f1) ≥ �
1
[p,q],�

(f1 + f2).

�
1
[p,q],�

(f1f2) ≥ �
1
[p,q],�

(f2).

�
1
[p,q],�

(f2) = �
1
[p,q],�

(f1f2
1

f1
) ≥ �

1
[p,q],�

(f1f2).
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So, �1
[p,q],�

(f2) = �
1
[p,q],�

(f1f2).
(ii) By (2.5), we have

Hence, by the monotonicity of �,

Without loss of generality, suppose 𝜏1
[p,q],𝜑

(f1) < 𝜏
1
[p,q],𝜑

(f2) . Then, by (2.6) and 
�
1
[p,q],�

(f1 + f2) = �
1
[p,q],�

(f1) = �
1
[p,q],�

(−f1) , we get

By (2.6) and (2.7), �1
[p,q],�

(f1 + f2)=max
{
�
1
[p,q],�

(f1), �
1
[p,q],�

(f2)
}

.
(iii) is proved by using similar reason as in the proof of (i) and (ii).   ◻

The following Corollary can be obtain from (i) and (ii) of Proposition 2.5.

Corollary 2.6 Let � ∈ Φ , and let f1, f2 be two meromorphic functions. 

 (i) If   0 < 𝜌
j

[p,q],𝜑
(f1) = 𝜌

j

[p,q],𝜑
(f2) = 𝜌

j

[p,q],𝜑
(f1 + f2), j = 0, 1, then 

 (ii) If   0 < 𝜌
j

[p,q],𝜑
(f1) = 𝜌

j

[p,q],𝜑
(f2) = 𝜌

j

[p,q],𝜑
(f1f2), j = 0, 1, then 

Proposition 2.7 Let � ∈ Φ , and f be a meromorphic function. Then

Proof Set �1
[p,q],�

(f ) = � . From the definition of �1
[p,q],�

-order, for any 𝜀 > 0 , there 
exists r0 > 1 , such that for all r ≥ r0,

Obviously, T(r, f � ) ≤ 2T(r, f ) + m(r,
f
�

f
) . By the Lemma of logarithmic deriva-

tive (p.34 in [8]), we have

T(r, (f1 + f2)) ≤ T(r, f1) + T(r, f2) + O(1)

≤ expp−1

{
�
−1
[
log

(
max

{
�
1
[p,q],�

(f1), �
1
[p,q],�

(f2)
}
+ 3�

)
[logq−1 r]

�
1
[p,q],�

(f1+f2))

]}
.

(2.6)�
1
[p,q],�

(f1 + f2) ≤ max
{
�
1
[p,q],�

(f1), �
1
[p,q],�

(f2)
}
.

(2.7)

�
1
[p,q],�

(f2) = �
1
[p,q],�

(f1 + f2 − f1)

≤ max
{
�
1
[p,q],�

(f1), �
1
[p,q],�

(f1 + f2)
}

= �
1
[p,q],�

(f1 + f2).

�
j

[p,q],�
(f1) ≤ max

{
�
j

[p,q],�
(f1 + f2), �

j

[p,q],�
(f2)

}
.

�
j

[p,q],�
(f1) ≤ max

{
�
j

[p,q],�
(f1f2), �

j

[p,q],�
(f2)

}
.

�
j

[p,q],�
(f

�

) = �
j

[p,q],�
(f ), j = 0, 1.

logp−1 T(r, f ) = O
{
�
−1[(� + �)(logq r)]

}
.
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where E ⊂ [0,+∞) is of finite linear measure. By Lemma 3.2 in Sect. 3 and for all 
sufficiently large r,

It is implies that �1
[p,q],�

(f ) ≥ �
1
[p,q],�

(f
�

).
On the other hand, we prove the inequality �1

[p,q],�
(f ) ≤ �

1
[p,q],�

(f
�

) . The definition 
of �1

[p,q],�
(f

�

) = � implies that for any given above 𝜀 > 0 , there exists r1 > 1 , such 
that for all r > r1,

By the properties of � and

we can get that

By the monotonicity of � , we get

It is implies that �1
[p,q],�

(f ) ≤ �
1
[p,q],�

(f
�

) .   ◻

3  Auxiliary Results

In the proof of Theorems 1.5 and 1.6, the classical reduced order method is adopted 
for Eq. (1.1), which aims to find the estimation of m(r,Aj)(j = 0,… , k − 1) by using 
the estimation of m(r, f

(k)

f
)(k ≥ 1) . The following lemma is an estimation of m(r, f

(k)

f
).

Lemma 3.1 Let f be a meromorphic function of order �1
[p,q],�

(f ) = � , k ∈ ℕ , and 
� ∈ Φ . Then for any 𝜀 > 0,

logp−1 T(r, f
�

) ≤ logp−1 {O(log rT(r, f ))} + logp−1 T(r, f )

= O
{
�
−1[(� + �)(logq r)]

}
, r ∉ E,

�[logp−1 T(r, f
�

)]

logq r
≤ � + �.

logp−1 T(r, f
�

) ≤ �
−1[(� + �)(logq r)].

T(r, f ) ≤ O(T(2r, f
�

) + log r), r → +∞,

logp−1 T(r, f ) ≤ O(logp−1 T(2r, f
�

) + logp 2r)

≤ O(�−1[(� + �)(logq 2r) + (logp 2r)])

≤ O(�−1[(� + 2�)(logq 2r)]), r → +∞.

�(logp−1 T(r, f )) ≤ (1 + o(1))(� + 2�) logq 2r ≤ (� + 3�) logq 2r.

m

(
r,
f (k)

f

)
= O

{
expp−2[�

−1(logq r
�+�)]

}
,
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outside, possibly, an exceptional set E of finite linear measure.

Proof Let k = 1 . The definition of �1
[p,q],�

-order implies that for any 𝜀 > 0 , there 
exists r0 > 1 , such that for all r > r0,

It follows from (3.1) and the lemma of logarithmic derivative that

where E ⊂ (0,+∞) is of finite linear measure.
Now, we assume that for some k ∈ ℕ,

Since N(r, f (k)) ≤ (k + 1)N(r, f ) , we deduce

It follows from (3.2) and (3.3) that m
(
r,

f (k+1)

f (k)

)
= O(expp−2[�

−1 logq r
�+�]) , r ∉ E . 

Thus,

  ◻

The following lemma is needed to prove Theorems 1.5 and 1.6.

Lemma 3.2 ([1]) Let g ∶ [0,+∞) → ℝ and h ∶ [0,+∞) → ℝ be monotone nonde-
creasing functions such that g(r) ≤ h(r) outside an exceptional set E of finite linear 
measure. Then for any 𝛼 > 1 , there exists r0 > 0 such that g(r) ≤ h(�r) for all r > r0.

Wiman-Valiron theory is needed in proving our results, which can be found 
[15]. Let f (z) =

+∞∑
n=0

anz
n be an entire function. Then

(3.1)T(r, f ) = O
{
expp−1[�

−1(logq r
�+�)]

}
.

(3.2)
m

(
r,
f
�

f

)
= O(log T(r, f ) + log r)

= O
{
expp−2[�

−1(logq r
�+�)]

}
, r ∉ E,

m

(
r,
f (k)

f

)
= O

{
expp−2[�

−1(logq r
�+�)]

}
, r ∉ E.

T(r, f (k)) = m(r, f (k)) + N(r, f (k))

≤ m

(
r,
f (k)

f

)
+ m(r, f ) + (k + 1)N(r, f )

≤ (k + 1)T(r, f ) + O
{
expp−2[�

−1(logq r
�+�)]

}

= O
{
expp−1[�

−1(logq r
�+�)]

}
.

m

(
r,
f (k+1)

f

)
≤ m

(
r,
f (k+1)

f (k)

)
+ m

(
r,
f (k)

f

)

= O
{
expp−2[�

−1(logq r
�+�)]

}
, r ∉ E.
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are called the maximal term and the central index of f, respectively.

Lemma 3.3 ([15, p. 51]) Let f be a transcendental entire function, let 0 < 𝛿 <
1

4
 and 

z such that |z| = r and |f (z)| > M(r, f )𝜈(r, f )−
1

4
+𝛿 . Then there exists a set E ⊂ ℝ+ of 

finite logarithmic measure such that

holds for integer m ≥ 0 and r ∉ E.

The following estimation of the radius r of the polynomial P(z) is used in the 
proof of Theorem 1.5.

Lemma 3.4 ([15, p.10]) Let P(z) = anz
n + an−1z

n−1 +⋯ + a0 be a polynomial, 
where an ≠ 0 . Then all zero of P(z) lie in the discs D(0, r) of radius

We need the following two lemmas to get estimations of T(r, f) and m(r, f), which 
is used in proving Theorems 1.6 and 1.8.

Lemma 3.5 Let f be a meromorphic function with �0
[p,q],�

(f ) = �0 ∈ (0,+∞). Then, 
for all 𝜇(< 𝜌0) , there exists a set E ∈ [1,+∞) of infinite logarithmic measure, such 
that 𝜑(elogp−1 T(r,f )) > 𝜇 logq r holds for all r ∈ E.

Proof The definition of �0
[p,q],�

-order implies that there exists a sequence (Rj)
+∞

j=1
 

satisfying

From the equality above, for any � ∈ (0, �0 − �) , there exists an integer j1 such that 
for j ≥ j1,

Since 𝜇 < 𝜌0 − 𝜀 , there exists an integer j2 such that for j ≥ j2,

It follows from this inequality and (3.4) that for j ≥ j3 = max
{
j1, j2

}
 and for any 

r ∈ [Rj, (1 +
1

j
)Rj],

�(r, f ) = max
{
|an|rn ∶ n ≥ 0

}
, �(r, f ) = max

{
n ∶ |an|rn = �(r, f )

}

f (m)(z) =

(
�(r, f )

z

)m

(1 + o(1))f (z)

r ≤ 1 + max
0≤k≤n−1

(||||
ak

an

||||

)
.

(
1 +

1

j

)
Rj < Rj+1, lim

j→+∞

𝜑(elogp−1 T(Rj,f ))

logq Rj

= 𝜌0.

(3.3)𝜑(elogp−1 T(Rj,f )) > (𝜌0 − 𝜀) logq Rj.

𝜌0 − 𝜀

𝜇
logq Rj > logq

(
1 +

1

j

)
Rj.
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Set E =

+∞⋃
j=j3

[Rj, (1 +
1

j
)Rj] . It is easy to show that E is of infinite logarithmic 

measure,

  ◻

We can also prove the following result by using similar reason as in the proof 
of Lemma 3.5.

Lemma 3.6 Let � ∈ Φ , and f be an entire function with �̃�0
[p,q],𝜑

(f ) = 𝜌0 ∈ (0,+∞) 
and 𝜏0

[p,q],𝜑
(f ) ∈ (0,+∞) . Then for any given 𝛽 < 𝜏

0
[p,q],𝜑

(f ) , there exists a set 
E ∈ [1,+∞) of infinite logarithmic measure such that for all r ∈ E,

The following lemma is used to prove Theorem 1.7 for the case of q = 1.

Lemma 3.7 ([9]) Let f be a solution of Eq. (1.1), and let 1 ≤ 𝛾 < +∞ . Then for all 
0 < r < R , where 0 < R < +∞,

where C > 0 is a constant which depends on � and the initial value of f in a point z0 , 
where Aj ≠ 0 for some j = 0,… , k − 1 , and where

The following logarithmic derivative estimation was found in [6] from 
Gundersen.

𝜑(elogp−1 T(r,f )) ≥ 𝜑(elogp−1 T(Rj,f )) > (𝜌0 − 𝜀) logq Rj

=
𝜌0 − 𝜀

𝜇
𝜇

logq Rj

logq r
logq r

≥ 𝜌0 − 𝜀

𝜇

logq Rj

logq

(
1 +

1

j

)
Rj

𝜇 logq r

> 𝜇 logq r.

mlE ∶= ∫
E

dr

r
=

+∞∑

j=j3

(1+
1

j
)Rj

∫
Rj

dr

r
=

+∞∑

j=j3

log

(
1 +

1

j

)
= +∞.

exp
{
𝜑(elogp M(r,f ))

}
> 𝛽(logq−1 r)

𝜌0 .

m
�
(r, f )� ≤ C

(
k−1∑

j=0
�

2�

0 �
r

0

|Aj(se
i�)|

�

k−j dsd� + 1

)
,

m
�
(r, f )� =

1

2� ∫
2�

0

(| log+ |f (rei�)||)�d�.
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Lemma 3.8 ([6]) Let f be a transcendental meromorphic function, and let 𝛼 > 1 be a 
given constant. Then there exists a set E ⊂ [1,+∞) with finite logarithmic measure 
and a constant B > 0 that depends only on � , and i, j, 0 ≤ i < j ≤ k − 1 , such that for 
all z satisfying �z� = r ∉ [0, 1]

⋃
E,

Lemma 3.9 Let � ∈ Φ and A0(z),… ,Ak−1(z) be entire functions. Then, every non-
trivial solution f of  Eq. (1.1) satisfies

Proof Set

By the definition of �̃�0
[p,q],𝜑

(Aj) , for any 𝜀 > 0 and for sufficiently large r,

By Lemma 3.7 for � = 1 , we have

It follows from (3.5), (3.6) and Proposition 2.2 that

  ◻

4  Proofs of Theorems 1.5 and 1.6

The classical way of reducing the order is adopted for Eq. (1.1) in proofs of Theo-
rems 1.5 and 1.6, and T(r,Aj)(j = 0, 1,… , k − 1) is estimated by T(r, f

(k)

f
)(k ≥ 1) in 

reducing the order.
To state our proving concisely, let E represents the finite logarithmic measure, I 

represents the infinite logarithmic measure and F represents the finite linear measure 
in the proofs of Theorems 1.5–1.8. Next we start prove our results by using the simi-
lar way as in the proofs of Theorems 1.1–1.4.

|||||

f (j)(z)

f (i)(z)

|||||
≤ B

{
T(�r, f )

r
(log� r) logT(�r, f )

}j−i

.

�̃�
1
[p,q],𝜑

(f ) ≤ max
{
�̃�
0
[p,q],𝜑

(Aj) ∶ j = 0, 1,… , k − 1
}
.

𝛽 = max
{
�̃�
0
[p,q],𝜑

(Aj) ∶ j = 0, 1,… , k − 1
}
.

(3.4)M(r,Aj) ≤ expp−1
{
�
−1((� + �) logq r)

}
, j = 0,… , k − 1.

(3.5)T(r, f ) = m(r, f ) ≤ 2�C(1 +

k−1∑

j=0

rM(r,Aj)).

�̃�
1
[p,q],𝜑

(f ) ≤ max
{
�̃�
0
[p,q],𝜑

(Aj) ∶ j = 0, 1,… , k − 1
}
.
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Proof of Theorem 1.5 Set �[p,q],� = sup
{
�
1
[p,q],�

(f )|L(f ) = 0
}

 , and

�[p,q],� = sup
{
�
0
[p,q],�

(Aj)|j = 0, 1,… , k − 1
}

.
First, we prove that �[p,q],� ≤ �[p,q],� . If �[p,q],� = +∞ , it is trivial. Hence we just 

consider the case of 𝛾[p,q],𝜑 < +∞ . Let f1,… , fk be a solution base of Eq. (1.1) with 
𝜌
1
[p,q],𝜑

(fj) < +∞, j = 1,… , k . It is clear that W = W(f1,… , fk) ≠ 0 by the properties 
of the Wronsky determinant.

It follows from Propositions 2.3 and 2.7 that 𝜌1
[p,q],𝜑

(W) < ∞ . By properties of the 
Wronsky determinant ([15, p.55]),

where

In view of Proposition 2.3 we can conclude that 𝜌1
[p,q],𝜑

(Ai) < ∞, i = 0, 1,… , k − 1.
By Lemma 3.1 to fi, i = 1,… , k,

We now apply the standard order reduction procedure ( [15, p.53–57]). Denote

Ak = 1 , and �(−1)
1

∶=
f

f1
 , i.e., (�(−1)

1
)
�

∶= �1 . Hence,

Substituting (4.1) into (1.1) and using the fact that f1 solves (1.1), we obtain

where

Ak−s(z) = −Wk−s(f1,… , fk) ⋅W
−1, s ∈ {1,… , k},

Wj(f1,… , fk) =

||||||||||||||||

f1 ⋯ fk
⋮ ⋮ ⋮

f
(j−1)

1
⋯ f

(j−1)

k

f
(k)

1
⋯ f

(k)

k

f
(j+1)

1
⋯ f

(j+1)

k

⋮ ⋮ ⋮

f
(k−1)

1
⋯ f

(k−1)

k

||||||||||||||||

.

m

(
r,
f
(l)

i

fi

)
= O

{
expp−2[�

−1(logq r
�[p,q],�+�)]

}
, r ∉ F, l = 1, 2,… , k.

�1(z) ∶=
d

dz

(
f (z)

f1(z)

)
,

(4.1)f (l) =

l∑

m=0

(
l

m

)
f1
(m)

�1
(k−1−m), l = 0,… , k.

(4.2)�1
(k−1) + A1,k−2(z)�1

(k−2) +⋯ + A1,0(z)�1 = 0,

A1,j = Aj+1 +

k−j−1∑

m=1

(
j + 1 + m

m

)
Aj+1+m

f
(m)

1

f1
, j = 0,… , k − 2.
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By 𝛾[p,q],𝜑 < +∞ and Proposition 2.7, the meromorphic functions

are solutions of (4.2) of finite �1
[p,q],�

-order.
Next, we claim that

when

In fact, we prove it by induction on i following [15]. By equality (4.2) for j = k − 2 , 
we have A1,k−2 = Ak−1 + k

f �

f
 . By Lemma 3.1 and (4.4),

We assume that

Since

by Lemma 3.1, (4.4) and (4.6), we have

We may now proceed as above the order reduction procedure for (4.2). In each 
reduction step, we obtain a solution base of meromorphic functions of finite �1

[p,q],�
-

order according to (4.3), and the implication (4.4) and (4.5) remains valid. Hence, 
we finally obtain an equation of the form w�

+ B(z)w = 0 , and w is any solution of 
the equation with 𝜌1

[p,q],𝜑
(w) < ∞ . Then

(4.3)�1,j(z) =
d

dz

(
fj+1(z)

f1(z)

)
, j = 1,… , k − 1,

(4.4)m(r,Ai) = O
{
expp−2[�

−1(logq r
�[p,q],�+�)]

}
, r ∉ F, i = 0,… , k − 1,

(4.5)m(r,A1,j) = O
{
expp−2[�

−1(logq r
�[p,q],�+�)]

}
, r ∉ F, j = 0,… , k − 2,

m(r,Ak−1) ≤ m(r,A1,k−2) + m(r,
f �

f
) + O(1)

= O
{
expp−2[�

−1(logq r
�[p,q],�+�)]

}
.

(4.6)m(r,Ai) = O
{
expp−2[�

−1(logq r
�[p,q],�+�)]

}
, i = k − 1,… , k − l.

A1,k−(l+2) = Ak−(l+1) +

l+1∑

m=1

(
m + k − l − 1

m

)
Am+k−l−1

f
(m)

1

f1
,

(4.7)

m(r,Ak−(l+1)) ≤ m(r,A1,k−(l+2)) + m(r,Ak−1) +⋯ + m(r,Ak−l)

+ m(r,
f
�

f
) +⋯ + m(r,

f
(l+1)

1

f1
) + O(1)

= O
{
expp−2[�

−1(logq r
�[p,q],�+�)]

}
, r ∉ F.

m(r,B) = m

(
r,
w

�

w

)
= O

{
expp−2[�

−1(logq r
�[p,q],�+�)]

}
, r ∉ F.
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Observing the reasoning corresponding to (4.4) and (4.5) in the subsequent reduc-
tion steps,

It implies that

By Lemma 3.2 and Proposition 2.1, for sufficiently large r, j = 0,… , k − 1,

Hence, �(e
logp−1 T(r,Aj))

logq r
≤ �[p,q],� + 2� . This implies that �[p,q],� ≤ �[p,q],�.

We next prove the converse inequality under the assumption that 𝛼[p,q],𝜑 < +∞.
By Lemma 3.3, there exists a set E ⊂ ℝ+ of finite logarithmic measure, such that 

for all z satisfies |f (z)| = M(r, f ) and |z| = r ∉ E,

Substituting (4.8) into (1.1),

The definition of �̃�0
[p,q],𝜑

-order and Proposition 2.2 yields that for any 𝜀 > 0 there 
exists r0 > 1 , such that for all r ≥ r0,

By Lemma 3.4 and Proposition 2.1,

It follows from [11, p.36–37] that

m(r,Aj) = O
{
expp−2[�

−1(logq r
�[p,q],�+�)]

}
, r ∉ F, j = 0,… , k − 1.

T(r,Aj) = O
{
expp−2[�

−1(logq r
�[p,q],�+�)]

}
, r ∉ F, j = 0, 1,… , k − 1.

T(r,Aj) = O
{
expp−2[�

−1(logq(2r)
�[p,q],�+�)]

}

≤ O
{
expp−2[�

−1(logq r
�[p,q],�+2�)]

}
.

(4.8)f (i)(z) =

(
�(r, f )

z

)i

(1 + o(1))f (z), i = 0,… , k.

�(r, f )k + zAk−1(z)�(r, f )
k−1(1 + o(1)) +⋯

+ zk−1A1(z)�(r, f )(1 + o(1)) + zkA0(z)(1 + o(1)) = 0.

M(r,Aj) < expp−1[𝜑
−1(logq r

𝛼[p,q],𝜑+𝜀)], j = 0, 1,… , k − 1.

�(r, f ) ≤ 1 + max
0≤j≤k−1 |z

k−jAj(z)(1 + o(1))|

≤ 1 + max
0≤j≤k−1 2r

k−j expp−1[�
−1(logq r

�[p,q],�+�)]

≤ 1 + 2rk expp−1[�
−1(logq r

�[p,q],�+�)]

≤ expp−1[�
−1(logq r

�[p,q],�+2�)], r ∉ E.
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This implies that �[p,q],� ≤ �[p,q],�.
  ◻

Proof of Theorem 1.6 By the assumption there exist two numbers �1 and � such that 
�
0
[p,q],�

(Am) ≥ � and 𝜌0
[p,q],𝜑

(Al) ≤ 𝜆1 < 𝜆 for l = m + 1,… , k − 1.
Let f1,… , fm+1 be linearly independent solutions of (1.1) such that �1

[p,q],�
(fi) < 𝜆 , 

i = 1,… ,m + 1 . If m = k − 1 , then all f1,… , fk are of 𝜌1
[p,q],𝜑

(fi) < 𝜆 , this contradict 
with Theorem 1.5. Hence, m < k − 1 . Applying the order reduction procedure as in 
the proof of Theorem 1.5. We use the notation �0 instead of f, and A0,0,… ,A0,k−1 
instead of A0,… ,Ak−1 . On the general reduction step, we obtain an equation of the 
form

where

and the functions

determine at each reduction step a solution base of (4.9) in terms of the preceding 
solution base. We may express (1.1) and the mth reduction steps by the following 
Table. The rows correspond to (4.9) for �0,… , �m , i.e., the first row corresponds to 
(1.1), and columns from k to 0 give the coefficients of these equations, while the last 
column lists those solutions with 𝜌1

[p,q],𝜑
(f ) < 𝜆.

k k-1 . m m-1 . 0 𝜌
1

[p,q],𝜑
(f ) < 𝜆

�0 1 A0,k−1 . �
�,� A0,m−1 . A0,0 �0,1,… , �0,m+1

�1 1 . A1,m �
�,�−� . A1,0 �1,1,… , �1,m

. . . . . .

. . . . . .

. . . . . .

T(r, f ) ≤ logM(r, f ) ≤ log�(r, f ) + log(�(2r, f ) + 2)

≤ �(r, f ) log r + log(2�(2r, f ))

≤ expp−1[�
−1(logq r

�[p,q],�+2�)] log r + log(2 expp−1[�
−1(logq(2r)

�[p,q],�+2�)])

≤ expp−1[�
−1(logq r

�[p,q],�+3�)] + log 2 + expp−2[�
−1(logq(2r)

�[p,q],�+2�)]

≤ expp−1[�
−1(logq r

�[p,q],�+4�)].

(4.9)�
(k−j)

j
+ Aj,k−j−1(z)�

(k−j−1)

j
+⋯ + Aj,0(z)�j = 0, j = 1,… , k − 1,

(4.10)Aj,l = Aj−1,l+1 +

k−l−j∑

n=1

(
l + 1 + n

n

)
Aj−1,l+1+n

�
(n)

j−1,1

�j−1,1

,

�j,l(z) =
d

dz

(
�j−1,l+1(z)

�j−1,1(z)

)
, l = 1,… , k − j, �0 = f , �j(z) =

d

dz

(
�j−1(z)

�0,j−1(z)

)
,
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k k-1 . m m-1 . 0 𝜌
1

[p,q],𝜑
(f ) < 𝜆

�
m−1 A

m−1,m A
m−1,m−1 . A

m,0 �
m−1,1,�m−1,1

�
m

A
m,m A

m,m−1 . �
�,� �

m,1

By Lemma 3.1 and (4.10), we see that in the second row, corresponding to the 
first reduction step, m(r,A1,l) = O

{
expp−2[�

−1(logq r
�1+�)]

}
 , r ∉ F , l = m,… , k − 2 , 

while 𝜆1 + 𝜀 < 𝜆 and m(r,A1,m−1) ≠ O
{
expp−2[�

−1(logq r
�1+�)]

}
 , r ∉ F.

Similarly, in each reduction step (4.10) implies that

when l = m + 1 − j,… , k − (j + 1) , i.e., for all coefficients to the left from the bold-
face coefficient Aj,m−j , while for j = 1,… ,m,

In particular,

Applying Lemma 3.5 to the coefficient Am,0 with the constant � , and obtain that

On the other hand, after the mth reduction step, by (4.10), (4.11) and Lemma 3.1, we 
have

That implies that

Since 𝜌0
[p,q],𝜑

(𝜈m,1) < 𝜆1 , in view of Propositions 2.3 and 2.7,

Therefore,

By Lemma 3.2, for sufficiently large r,

(4.11)m(r,Aj,l) = O
{
expp−2[�

−1(logq r
�1+�)]

}
, r ∉ F,

m(r,Aj,m−j) ≠ O
{
expp−2[�

−1(logq r
�1+�)]

}
, r ∉ F.

m(r,Am,0) ≠ O
{
expp−2[�

−1(logq r
�+�)]

}
, r ∉ F.

(4.12)T(r,Am,0) > expp−2[𝜑
−1(logq r

𝜆+𝜀)], r → +∞, r ∈ I.

Am,0 = −
�
(k−m)

m,1

�m,1

− Am,k−m−1

�
(k−m−1)

m,1

�m,1

−⋯ − Am,1

�
�

m,1

�m,1

.

m(r,Am,0) = O
{
expp−2[�

−1(logq r
�1+�)]

}
, r ∉ F.

N(r,Am,0) = O
{
expp−2[�

−1(logq r
�1+�)]

}
, r ∉ F.

T(r,Am,0) = O
{
expp−2[�

−1(logq r
�1+�)]

}
, r ∉ F.

(4.13)
T(r,Am,0) = O

{
expp−2[�

−1(logq(2r)
�1+�)]

}

= O
{
expp−2[�

−1(logq r
�1+2�)]

}
.
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By (4.12) and (4.13), we obtain the contradiction with our assumption. Hence, there 
exists at most m linearly independent solutions Eq. (1.1) with 𝜌1

[p,q],𝜑
(f ) < 𝜆 .   ◻

5  Proofs of Theorems 1.7 and 1.8

Proof of Theorem  1.7 Let   f   be a nontrivial solution of Eq. (1.1). We denote 
�
1
[p,q],�

(f ) = �1 and �0
[p,q],�

(A0) = �0 . The inequality �0 ≤ �1 follows from Theo-
rem 1.6 when m = 0 and � = �0.

To prove the conserve inequality, by Lemma 3.7 for � = 1 , Proposition 2.1 and 
the definition of �0

[p,q],�
-order, for any 𝜀 > 0,

Therefore,

It is implies that �1 ≤ �0 , and then Theorem 1.7 is proved.   ◻

Proof of Theorem 1.8 Suppose that f  is a nontrivial solution of Eq. (1.1). From (1.1), 
we can write

If max
{
�̃�
0
[p,q],𝜑

(Aj), j = 1,… , k − 1
}
< �̃�

0
[p,q],𝜑

(A0) = 𝜌0 < +∞ , and by Theo-
rem 1.7, then

Suppose that

m(r, f ) ≤ C

(
k−1∑

j=0
�

2�

0 �
r

0

|Aj(se
i�)|

1

k−j dsd� + 1

)

≤ C

(
k max
0≤j≤k−1�

2�

0 �
r

0

|Aj(se
i�)|

1

k−j dsd� + 1

)

≤ C max
0≤j≤k−1�

r

0

(expp−1[�
−1(logq s

�0+�)])
1

k−j ds

≤ C �
r

0

expp−1[�
−1(logq s

�0+�)]ds

≤ Cr expp−1[�
−1(logq r

�0+�)]

≤ expp−1[�
−1(logq r

�0+2�)].

�(logp−1 T(r, f ))

logq r
≤ �0 + 2�.

(5.1)|A0(z)| ≤
|||||

f (k)(z)

f (z)

|||||
+ |Ak−1(z)|

|||||

f (k−1)(z)

f (z)

|||||
+⋯ + |A1(z)|

|||||

f
�

(z)

f (z)

|||||
.

�̃�
1
[p,q],𝜑

(f ) = �̃�
0
[p,q],𝜑

(A0).
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and

First, we prove that 𝜌1 = �̃�
1
[p,q],𝜑

(f ) ≥ �̃�
0
[p,q],𝜑

(A0) = 𝜌0 . By assumption there exists a 
set K ⊆ {1, 2,… , k − 1} such that

and

Thus, we choose �1 and �2 satisfying

For sufficiently large r,

and

where 0 < 𝛼 < 𝜌0 . By Lemma 3.6, there exists a set I ⊂ [1,+∞) with infinite loga-
rithmic measure, such that for all r ∈ I,

By Lemma 3.8, there exists a constant B > 0 and a set E ⊂ [1,+∞) having finite 
logarithmic measure, such that for all z satisfying �z� = r ∉ E

⋃
[0, 1],

Set 𝜌1 = �̃�
1
[p,q],𝜑

(f ) . By Proposition 2.2, for any given � ∈ (0,max
{

�2−�1

2
, �0 − �1

}
) 

and sufficiently large �z� = r ∉ E
⋃
[0, 1],

max
{
�̃�
0
[p,q],𝜑

(Aj), j = 1,… , k − 1
}
= �̃�

0
[p,q],𝜑

(A0) = 𝜌0 < +∞

max
{
𝜏
0
[p,q],𝜑

(Aj) ∶ �̃�
0
[p,q],𝜑

(Aj) = �̃�
0
[p,q],𝜑

(A0)

}
< 𝜏

0
[p,q],𝜑

(A0) = 𝜏 < +∞.

�̃�
1
[p,q],𝜑

(Aj) = �̃�
0
[p,q],𝜑

(A0) = 𝜌0, j ∈ K,

�̃�
0
[p,q],𝜑

(Aj) < �̃�
0
[p,q],𝜑

(A0), j ∈ {1, 2,… , k − 1} ⧵ K.

max
{
𝜏
0
[p,q],𝜑

(Aj) ∶ j ∈ K
}
< 𝜆1 < 𝜆2 < 𝜏

0
[p,q],𝜑

(A0) = 𝜏.

(5.2)
|||Aj(z)

||| ≤ expp−1
{
�
−1[log(�1(logq−1 r)

�0)]
}
, j ∈ K,

(5.3)
|||Aj(z)

||| ≤ expp−1
{
�
−1[log(�1(logq−1 r)

�)]
}

≤ expp−1
{
�
−1[log(�1(logq−1 r)

�0)]
}
, j ∈ {1, 2,… , k − 1} ⧵ K,

(5.4)||A0(z)
|| > expp−1

{
𝜑
−1[log(𝜆2(logq−1 r)

𝜌0)]
}
.

|||||

f (j)(z)

f (z)

|||||
≤ B[T(2r, f )]k+1, j = 1, 2,… , k.
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Hence, substituting (5.2),(5.3), (5.4) and (5.5) into (5.1), for sufficiently large 
|z| = r ∈ I ⧵ (E ∪ [0, 1]),

Obviously, I ⧵ (E ∪ [0, 1]) is of infinite logarithmic measure. By (5.6), there exists a 
sequence of points 

{
|zn|

}
=
{
rn
}
⊂ I⧵(E ∪ [0, 1]) tending to +∞ , such that

By the monotonicity of the function �−1 , we obtain that �1 ≥ �2 . This contradiction 
implies

On the other hand, by Lemma 3.9, we have

Hence, every nontrivial solution f of Eq. (1.1) satisfies �̃�1
[p,q],𝜑

(f ) = �̃�
0
[p,q],𝜑

(A0).   ◻

6  Conclusions

We define new measure [p, q],�-order to describe the growing of meromorphic func-
tion, and the new measure is used to study the growth of solutions of complex dif-
ferential equations.
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(5.5)

|||||

f (j)(z)

f (z)

|||||
≤ B(T(2r, f ))k+1

≤ B
{
expp−1[�

−1(logq(2r)
�1+�)]

}k+1
, j = 1, 2,… , k.

(5.6)

expp−1
{
�
−1[log(�2(logq−1 r)

�0)]
}

≤ kB expp−1
{
�
−1[log(�1(logq−1 r)

�0)]
}
∗
{
expp−1[�

−1(logq(2r)
�1+�)]

}k+1

≤ expp−1
{
�
−1[log((�1 + 2�)(logq−1 r)

�0)]
}
.

expp−1
{
�
−1[log(�2(logq−1 rn)

�0 )]
} ≤ expp−1

{
�
−1[log((�1 + 2�)(logq−1 rn)

�0)]
}
.

�̃�
1
[p,q],𝜑

(f ) ≥ �̃�
0
[p,q],𝜑

(A0).

�̃�
1
[p,q],𝜑

(f ) ≤ max
{
�̃�
0
[p,q],𝜑

(Aj) ∶ j = 1,… , k − 1
}
= �̃�

0
[p,q],𝜑

(A0).
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