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Abstract
In this article, a meshless numerical technique based on radial basis functions 
(RBFs) is proposed for the solution of singular perturbed, obstacle, and second-
order boundary value problems. First, the unknown function and their derivatives are 
approximated by RBFs which reduces the given problem into a system of algebraic 
equations which is easy to solve. The shape parameter involved in RBFs is chosen 
by the hit and trial method. Despite this, the convergence of the scheme is briefly 
discussed numerically. The nonlinear terms are linearized by quasi-linearization 
technique. The main objective of this paper is to show that the meshless RBFs-based 
method is convenient for various classes of boundary value problems. Efficiency and 
performance of the proposed technique are examined by calculating absolute error 
norms. Obtained accurate results confirm applicability and efficiency of the method.

Keywords Radial basis functions · Quasi-linearization · Singular perturbed BVPs · 
Obstacle BVPs

1 Introduction

Ordinary differential equations (ODEs) have considerable applications in physics, 
economics, biological and chemical process. The population growth model, change 
in climate and Newton law of cooling etc, are modeled by ODEs. In this article, we 
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describe numerical solution of linear and nonlinear second order ODEs, the singular 
perturbed BVPs and the system of obstacle BVPs.

Consider a general form of ODE given as

where £ is any second order differential operator which may be linear or nonlinear 
and h(v) is any smooth function. One can decompose £ as,

where L is linear and N nonlinear differential operator. The corresponding boundary 
condition are described as:

where a and b are real constant.
Next, we consider a singular perturbed second order BVP of the form

subject to boundary conditions (1.3). Here � is a positive small parameter, h(v) 
and b(v) are sufficiently smooth functions. Equation (1.4) has great importance by 
its nature of singularity in various field of applied sciences and engineering. This 
equation arises in quantum mechanics, newtonian fluid mechanics, fluid dynamics, 
convection diffusion process, aerodynamics and chemical reactor process etc. The 
solution of such model is described by various methods reported in [1, 2] and the 
references there in.

These methods usually required to: define boundary layer for the problem, and 
introduce new models in the inner region by re-scaling independent variable in the 
original model and incorporate these new models in a sense to attain a uniform 
definite solution. Ultimately to generate a new model according to these methods, 
is not an easy job. Therefore, a class of numerical technique have been used for the 
solution of such type of problems. All singular perturbed problems are taken from 
[3, 4], where the authors used spline technique and non-polynomial sextic spline 
technique for the approximate solution.

Finally, we consider a system of obstacle BVPs as follow:

with corresponding boundary conditions defined in Eq. (1.3). The function w 
and w′ are continuous in [� , �] . Further h(v) and b(v) are smooth functions and 
the parameter a, b, p are specific real constants. The mathematical formulation of 
unilateral, contact, equilibrium and obstacle problems happen in area of structural 
analysis, optimal control, elasticity, economics, transportation sciences and 
computer networking can be studied in the form of above system. Several techniques 

(1.1)£(w(v)) = h(v), � ≤ v ≤ �,

(1.2)L(w(v)) + N(w(v)) = h(v),

(1.3)w(�) = a, w(�) = b,

(1.4)�w
��

+ h(v)w = b(v), where � ≤ v ≤ �,

(1.5)w
��

(v) =

⎧⎪⎨⎪⎩

h(v), 𝛼 ≤ v < 𝛾 ,

b(v)w(v) + h(v) + p, 𝛾 ≤ v ≤ 𝜂,

h(v), 𝜂 < v ≤ 𝛽,
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have been applied for the solution of Eq. (1.5). Noor [5] added their contribution 
in computation of system of BVPs using VIM. Rashidinia [6] introduced non-
polynomial spline technique (NPST) to describe solution of obstacle BVPs. 
Similarly B-spline approach and many other technique were also used for such 
models, see [7, 8] and the references there in.

In the present work, we applied the collocation method based on RBFs for the 
solution of above mentioned BVPs. RBFs is the convenient and most powerful 
technique to solve multivariate problems. Owing to its fast convergence, ease 
implementation, low computational cost, simple to understand and flexibility to 
higher dimensions RBFs technique have given preference over the traditional 
methods. The researchers have used RBF based meshless method for solution 
of various class of Partial differential equations (PDEs), e.g. Marjan [9–11] 
applied Kansa method to approximate solution of complex modified Korteweg-de 
Vries, Kuramoto–Sivashinsky equation and time fractional PDEs. Haq [12, 13] 
studied KdV-Burgers’ and Kawahara equation using RBF approximation method. 
Dehgan [14] studied numerical solution of nonlinear Klein-Gordon equation, 
whereas Khattak [15] obtained numerical solution of nonlinear PDEs using 
meshfree collocation method. Recently, Hussain and their co-worker used the 
meshless RBFs for various classes of fractional PDEs [16–18]. In this article, 
we experienced the application of RBFs meshless method for numerical solution 
of boundary value problems. For computation we use MATLAB 2013, using 
Intel core-i7 computer having 4GB Ram. Rest of the paper is organized as in 
Sect. 2 methodology of the scheme is discussed, in Sect. 3 quasi-linearization for 
nonlinear term is defined, in Sect. 4 numerical problems have been given while at 
the end paper is finalized with conclusion.

2  Description of the Proposed Method

In this section, we explain mesh-free collocation method using RBFs for general 
BVPs defined in Eq. (1.1) along with boundary conditions given in Eq. (1.3). Let 
us approximate w(v) by

where Υ(rj) are RBFs, ⋋ ’s are unknown coefficients and ‖ ⋅ ‖ is the Euclidean norm. 
Application of differential operators L and N in Eq. (2.1) leads to

(2.1)w(v) =

M�
j=1

⋋jΥ(rj) = A�, rj = ‖v − vj‖,

(2.2)L(w(v)) =

M∑
j=1

⋋jL(Υ(rj)) =

M∑
j=1

⋋jΥL(rj),
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Plugging these values in Eq. (1.2) and using boundary conditions defined in (1.3) we 
get

In more compact form Eqs. (2.4–2.5) can be written as

Here H is M ×M matrix, B and ⋋ are M × 1 vectors. Hon et  al. [19] studied the 
invertibility of matrix H. The entries of matrix H and vector B are as follow:

where w(�) and w(�) are the given boundary conditions, and for j = 1, ...,M the Hd 
and Hb can be written as:

In Eq. (2.4 or 2.7) the nonlinear operator N is linearized using quasilinearization 
technique. From Eq. (2.6) the unknowns vector ⋋ can be computed easily which 
then provide solution at any nodal point via Eq. (2.1).

2.1  Stability Analysis

To check the stability of the system (2.6), we use a spectral radius of the 
amplification matrix. Let w denote approximate solution while u represent the exact 
solution, and then the error can be defined as:

(2.3)N(w(v)) =

M∑
j=1

⋋jN(Υ(rj)) =

M∑
j=1

⋋jΥN(rj).

(2.4)
M∑
j=1

[ΥL(rij) + ΥN(rij)]⋋j = h(vi), i = 2, 3, ...M − 1,

(2.5)

M�
j=1

[Υ(rij)]⋋j = w(vi), i = 1,M,

rij = ‖vi − vj‖.

(2.6)H⋋ = B ⇒ ⋋ = H−1B.

H = [Hd + Hb], and B = [w(�), h2 h3....... hM , w(�)]
t,

(2.7)[Hd]ij =

{
ΥL(rij) + ΥN(rij), i = 2, ...,M − 1,

0, i = 1,M,

(2.8)[Hb]ij =

{
0, i = 2, ...,M − 1,

Υ(rij), i = 1,M.

(2.9)En = un − wn,
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From Eq. (2.1) we know wn = A�n ⇒ �n = A−1wn , by putting the value of � for any 
n in Eq. (2.6) and after rearranging we have

Similarly if u is the exact solution of ODE then it must satisfy the difference 
equation such that [22]

Substituting the values from Eqs. (2.9) and (2.11) in Eq. (2.9) we have:

here M = AH−1FA−1 is the amplification matrix. The scheme (2.10) is stable when 
the spectral radius �(M) of matrix M is such that �(M) ≤ 1 , where �(M) = max(�i)

N
i=1

 
and � are the eigenvalue of matrix M.

2.2  Quasilinearization

Quasilinearization technique is generalization of Newton–Raphson method for a 
functional equations. It converges quadratically. Consider a nonlinear mth order 
differential equation as

Using quasilinearization technique, Eq. (2.13) reduces to following form

which is mth order linear differential equation in iterated form and s denotes number 
of iterations. From Eq. (2.14) one can easily compute � at (s + 1)th iteration, when 
it is known at sth iteration. For better understanding, we consider a second order 
nonlinear differential equation of the form

where � ′ is another function, then by using Eq. (2.14) we linearize Eq. (2.15) as

Eq. (2.16) is always a linear differential equation and can be solved recursively, 
where �s(v) is known and one can use for obtaining �s+1(v).

(2.10)wn+1 = AH−1FA−1wn.

(2.11)un+1 = AH−1FA−1un.

(2.12)En+1 = un+1 − wn+1 = AH−1FA−1En = MEn,

(2.13)� (m)(v) = g(v,� ,�
�

,�
��

, ...,� (m−1)), where v ∈ Γ.

(2.14)

�
(m)

s+1
= g(v,� ,�

�

,�
��

, ...,� (m−1)) +

m−1∑
i=0

(� i
s+1

− � i
s
)g� i(v,�s,�

�

s
,�

��

s
, ...,� (m−1)

s
),

(2.15)�
��

(v) = g(v,� ,�
�

), for v ∈ Γ

(2.16)
�

��

s+1
(v) = g(v,�s,�

�

s
) + (�s+1 − �s)g� (v,�s,�

�

s
) + (�

�

s+1
− �

�

s
)g� � (v,�s,�

�

s
)
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3  Numerical Experiment

In this section we apply the proposed method to some linear, nonlinear and 
to the afore discussed models. The nonlinear term should be linearized by 
quasilinearization technique. The obtained result are compared with available results 
in the literature.

3.1  Second Order ODEs

Problem 1 Consider second order linear convection diffusion equation [21].

with boundary conditions

The exact solution is

Comparing the given equation with the general form of ODE (1.2), we have

The matrix H in Eq. 2.6 has entries for j = 1, ...,M are

and vector B is

The solution is computed using multiquadric (MQ) and inverse multiquadric (IMQ) 
RBFs with the value of shape parameters c = 0.5, 0.6 , respectively. The value of c 
has been selected on trial basis in both type of RBFs. In Table 1 the results of MQ, 
IMQ are compared with that of wavelet solution given in [21]. Where i represent 
index of nodal points vi = � + (i − 1)dv , and M is the total number of collocation 
points. For this problem we choose M = 32 and dv = (� − �)∕M , where � , � are the 
end points of the given domain. From the table it is clear that the results of both MQ 
and IMQ are better than that of [21]. Also we observe that the results of IMQ are 
better than that of MQ. In Fig. 1 approximate solution of both type of RBFs are plot-
ted against the exact solutions which show good agreement. The error plot are also 
given for both the cases which show accuracy of the proposed method.

(3.1)−
d2w

dv2
+ q

dw

dv
= 0 v ∈ (0, 1), q > 0,

(3.2)w(0) = 1, w(1) = 0.

w(v) =
eq − eqv

eq − 1
.

(3.3)L = −
d2

dv2
+ q

d

dv
, N = 0, h = 0.

(3.4)H =

{
−Υ

��

(rij) + qΥ(rij), i = 2, ...,M − 1,

Υ(rij), i = 1,M,

(3.5)B = [1, 0, ...0, 0]t.
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Problem 2 Consider the inhomogeneous linear differential equation.

with exact solution

(3.6)d2w

dv2
= e4v, v ∈ (−1, 1),

Table 1  Comparison of absolute errors for problem 1

i Exact MQ IMQ  [21]

Approximate Error Approximate Error Approximate Error

2 0.998853 0.998854 1.44e − 06 0.998853 4.53e − 07 0.999008 1.55e − 04

4 0.995943 0.995945 1.12e − 06 0.995944 3.59e − 07 0.996417 4.74e − 04

6 0.991967 0.991968 1.16e − 06 0.991967 6.80e − 07 0.992925 9.58e − 04

8 0.986531 0.986533 1.48e − 06 0.986532 6.15e − 07 0.987979 1.44e − 03

10 0.979102 0.979104 1.44e − 06 0.979103 8.97e − 07 0.981312 2.20e − 03

12 0.968947 0.968949 1.32e − 06 0.968948 7.42e − 07 0.971869 2.92e − 03

14 0.955068 0.955069 1.29e − 06 0.955069 9.70e − 07 0.959141 4.07e − 03

16 0.936096 0.936097 1.06e − 06 0.936097 7.02e − 07 0.941114 5.01e − 03

18 0.910166 0.910167 1.07e − 06 0.910166 4.14e − 07 0.916814 6.64e − 03

20 0.874722 0.874724 1.41e − 06 0.874723 3.78e − 07 0.882400 7.67e − 03

22 0.826277 0.826279 1.41e − 06 0.826278 5.62e − 07 0.836009 9.71e − 03

24 0.760061 0.760062 7.97e − 07 0.760061 5.47e − 07 0.770309 1.02e − 02

26 0.669553 0.669554 7.94e − 07 0.669553 3.15e − 07 0.681744 1.21e − 02

28 0.545845 0.545845 7.90e − 07 0.545845 4.35e − 07 0.556317 1.04e − 02

30 0.376755 0.376755 3.27e − 07 0.376755 3.17e − 07 0.387239 1.04e − 02

32 0.145636 0.145636 8.46e − 08 0.145636 9.63e − 08 0.147787 2.15e − 03
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Fig. 1  Solution profiles, and absolute errors for problem 1
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The boundary conditions are extracted from the exact solution. Comparing the given 
equation with the general form of ODE (1.2), we have

In the proposed scheme (2.6), the matrix H has entries for j = 1, ...,M are

and vector B is

The given problem has been solved using MQ, IMQ RBFs with shape parameter 
c = 1, 1.4 , collocation points M = 32 and step size dv = (� − �)∕M . Here also the 
shape parameter have been calculated experimentally. The computed solutions are 
matched with exact solution at different nodal points shown in Table  2 where i 
represent index of nodal points vi = � + (i − 1)dv . In the same table absolute error 
is also recorded for different collocation points showing well agreement between 
exact and computed solutions. Figure 2 displayed exact vs numerical solutions and 
absolute error plots. it is obvious from the figure that the RBFs numerical solution 
approaches to the true solution in the given domain.

Problem 3 Consider the second order nonlinear boundary value problem.

(3.7)w(v) =
1

16
e4v.

(3.8)L =
d2

dv2
, h = e4v, N = 0.

(3.9)H =

{
Υ

��

(rij), i = 2, ...,M − 1,

Υ(rij), i = 1,M,

(3.10)B =
[
1

16
e−4, e4v2 , ..., e4vM−1 ,

1

16
e4
]t
.

Table 2  Comparison of absolute errors for problem 2

i Exact MQ IMQ

Approximate Error Approximate Error

1 0.0011447 0.0011417 2.9371299e − 06 0.0011452 5.4601649e − 07

4 0.0024233 0.0024199 3.4505875e − 06 0.0024251 1.8057971e − 06

7 0.0051303 0.0051300 2.1514398e − 07 0.0051207 9.5581721e − 06

9 0.0084584 0.0084594 1.0308650e − 06 0.0084273 3.1058786e − 05

13 0.0229924 0.0229959 3.4911689e − 06 0.0229933 8.7601508e − 07

18 0.0802515 0.0802649 1.3344864e − 05 0.0802643 1.2771170e − 05

22 0.2181464 0.2181550 8.6437486e − 06 0.2181281 1.8319903e − 05

25 0.4618160 0.4618304 1.4403061e − 05 0.4617876 2.8350234e − 05

28 0.9776644 0.9776790 1.4573598e − 05 0.9776591 5.3716060e − 06
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with the exact solution is given as

The nonlinear part is linearized by quasi-linearization we have

Using Eq. (3.13) in Eq. (3.11) and simplifying, we get

where s is number of iteration. The entries of matrix H and vector B for j = 1, ...,M 
then becomes

and vector B is

The unknowns ⋋j ’s are updated as

(3.11)d2w

dv2
=

1

2
(1 + v + w)3, w(0) = 0, w(1) = 1.

(3.12)w(v) =
2

(2 − v) − v − 1
.

(3.13)
1

2

(
1 + v + ws+1

)3
=

1

2

((
1 + v + ws

)3
+ 3(ws+1 − ws)(1 + v + ws)

2
)
.

(3.14)

d2ws+1

dv2
−

3

2
(1 + v + ws)2ws+1 =

1

2

{
(1 + v + ws)3 + 3ws(1 + v + ws)2

}
,

(3.15)H =

{
Υ

��

(rij) −
3

2
(1 + vi + ws

i
)2Υ(rij), i = 2, ...,M − 1,

Υ(rij), i = 1,M,

(3.16)B =
[
0,

1

2
(1 + vi + ws

i
)3 −

3

2
(1 + vi + ws

i
)2ws

i
, 0
]t
, i = 2, ...,M − 1.
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224 Journal of Nonlinear Mathematical Physics (2023) 30:215–234

1 3

providing initial guess w0 , the approximate solution can be found using MQ, IMQ 
and Gaussain RBFs with c = 0.2, 0.4 and 7, and number of collocation points 
M = 64 . The computed results are compared with exact at various collocation 
points given in Table 3 where i shows index of nodal point vi = � + (i − 1)dv and 
dv = (� − �)∕M . It is clear from the table that the results of three RBFs are head to 
head with each other. The graphical solution and absolute error are plotted in Fig. 3 
which shows well agreement between exact and computed solution.

3.2  Singular Perturbed Boundary Value Problem

Problem 4 Consider a second order perturbed value problem taken from [3].

having exact solution

where � is small positive parameter. Comparing Eq. (3.18) with Eq. (1.2), we have

(3.17)H⋋
s+1 = Bs,

(3.18)�
d2w

dv2
+ w = 0, w(0) = 0, w(1) = 1,

(3.19)w(v) = sin (v∕
√
�)∕sin (1∕

√
�), � ≠ (n�)−2,

Table 3  Comparison of absolute errors for problem 3

i Exact MQ IMQ Gaussain

Approxi- 
mate

Error Approxi-
mate

Error Approxi-
mate

Error

2 −0.007750 −0.007750 3.16065e − 08 −0.007750 4.56055e − 08 −0.007750 7.80471e − 08

6 −0.037477 −0.037474 3.52001e − 08 −0.037474 3.10838e − 08 −0.037474 7.46567e − 08

10 −0.064999 −0.064994 4.19182e − 08 −0.064994 1.30476e − 07 −0.064994 7.20436e − 08

14 −0.090088 −0.090081 4.65351e − 08 −0.090081 2.72776e − 08 −0.090081 7.11901e − 08

18 −0.112472 −0.112472 5.30068e − 08 −0.112472 3.53488e − 08 −0.112472 7.06101e − 08

22 −0.131863 −0.131863 5.93136e − 08 −0.131863 7.82175e − 08 −0.131863 7.14518e − 08

26 −0.147907 −0.147906 6.63444e − 08 −0.147907 4.75268e − 07 −0.147906 7.23898e − 08

30 −0.160196 −0.160196 7.30215e − 08 −0.160196 1.12846e − 07 −0.160196 7.31308e − 08

34 −0.168257 −0.168256 8.26917e − 08 −0.168257 2.09451e − 07 −0.168257 7.50145e − 08

38 −0.171532 −0.171532 9.01468e − 08 −0.171532 3.36645e − 08 −0.171532 7.96367e − 08

42 −0.169361 −0.169361 1.00873e − 07 −0.169361 4.86710e − 08 −0.169361 8.34988e − 08

46 −0.160956 −0.160956 1.12788e − 07 −0.160956 1.24273e − 07 −0.160956 8.94361e − 08

50 −0.145372 −0.145372 1.25603e − 07 −0.145372 2.82776e − 07 −0.145372 9.73975e − 08

54 −0.121458 −0.121458 1.40596e − 07 −0.121459 3.05708e − 07 −0.121458 1.07605e − 07

58 −0.087808 −0.087807 1.58336e − 07 −0.087808 9.09728e − 08 −0.087808 1.20764e − 07

62 −0.042677 −0.042677 1.78333e − 07 −0.042677 8.56921e − 08 −0.042677 1.37098e − 07
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In the proposed scheme (2.6), for j = 1, ...,M the matrix H has entries

and vector B is

The problem has been studied for different number of collocation points M and � 
using MQ(c = 0.5 ), IMQ(c = 1 ) RBFs. In Table 4 the computed maximum absolute 

(3.20)L = �
d2

dv2
+ 1, h = 0, N = 0

(3.21)H =

{
�Υ

��

(rij) + Υ(rij), i = 2, ...,M − 1,

Υ(rij), i = 1,M,

(3.22)B = [0, 0, ..., 0, 1]t.
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Fig. 3  Solutions profile, and absolute errors for problem 3
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errors are compared with [3]. From the table it is verified that RBFs results are supe-
rior than that of spline method given in [3]. Solution profile and absolute errors for 
M = 64 and � = 1∕64 are displayed in Fig. 4 which shows that approximate RBF 
solution is reasonably accurate in the given domain.

Problem 5 Consider second order singular perturbed problem [4]

Table 4  Comparison of absolute 
errors for problem 4

RBFs � Absolute error

M = 64 M = 128 M = 256

1/4 1.3770e − 07 2.0357e − 07 5.5841e − 07

MQ 1/8 3.9152e − 06 4.6739e − 07 1.8083e − 06

cMQ = 0.5 1/16 7.7427e − 07 1.7399e − 06 4.4278e − 06

1/32 5.3249e − 06 4.5166e − 05 2.1428e − 05

1/64 3.5528e − 06 2.9004e − 05 1.3580e − 05

IMQ 1/4 4.8677e − 07 5.1404e − 07 5.9287e − 07

cIMQ = 1 1/8 1.0284e − 06 4.1760e − 06 3.7321e − 06

1/16 1.8170e − 06 4.2990e − 07 2.3293e − 06

1/32 5.7800e − 06 1.0123e − 06 5.7657e − 05

1/64 6.2371e − 06 8.3304e − 05 9.5596e − 05

Spline technique 1/4 0.12e − 03 0.29e − 04 0.74e − 05

 [3] 1/8 0.47e − 02 0.12e − 02 0.29e − 03

1/16 0.18e − 02 0.44e − 03 0.11e − 03

1/32 0.98e − 02 0.25e − 02 0.62e − 03

1/64 0.87e − 02 0.22e − 02 0.55e − 03
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where � is small positive parameter, and w = w(v) is smooth function. The 
corresponding boundary conditions are

The analytical solution of the problem is

From given equation the operators are identified as

In the proposed scheme (2.6), the matrix H has entries

and vector B is

For numerical computation, we choose various values of � and collocation points 
M in order to compare our result with those given in [4]. Two different RBFs, MQ 
and Gaussian are used in this computation with c = 0.26, 6.96 . The maximum abso-
lute errors listed in Table 5 showing that the present method gives better accuracy 
than non-polynomial spline technique in [4]. It is also observed that the accuracy 
improves as number of collocation point increases. The approximate vs exact solu-
tion and absolute error for M = 64 , � = 1∕64 are displayed in Fig. 5 which shows 
good agreement between approximate and exact solution.

3.3  Obstical value problem

Problem 6 Consider the system of second order differential equation [23].

−�
d2w

dv2
+ w = v, 0 ≤ v ≤ 1,

w(0) = 1, w(1) = 1 + exp

�
−1√
�

�
.

w(v) = v + exp

�
−v√
�

�
.

(3.23)L = −�
d2

dv2
+ 1, h = v, N = 0.

(3.24)H =

{
−�Υ

��

(rij) + Υ(rij), ∀j and i = 2, ...,M − 1,

Υ(rij), ∀j and i = 1,M,

(3.25)B =

�
1, v2, ..., vN−1, 1 + exp

�
−1√
�

��t

.
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subject to the boundary conditions w(0) = w(�) = 0 , where w, w′ are continuous at 
v = �∕4, 3�∕4 . The exact solution of the system is given as

where �1 = � + 4 coth (�∕4) and �1 = � sinh (�∕4) + 4 cosh (�∕4).

In the proposed scheme (2.6), the matrix H is of the form

where the entries of H1, H2 and H3 for j = 1, ...,M are

(3.26)w
��

(v) =

⎧⎪⎨⎪⎩

0, 0 ≤ v < 𝜋∕4,

w − 1, 𝜋∕4 ≤ v ≤ 3𝜋∕4,

0, 3𝜋∕4 < v ≤ 𝜋,

(3.27)w(v) =

⎧⎪⎨⎪⎩

4v

𝛼1
, 0 ≤ v < 𝜋∕4,

1 −
4

𝛽1
cosh(

𝜋

2
− v), 𝜋∕4 ≤ v ≤ 3𝜋∕4,

4

𝛼1
(𝜋 − v), 3𝜋∕4 < v ≤ 𝜋,

(3.28)H =
[
H1,H2,H3

]
,

(3.29)H1 =

{
Υ

��

(rij), i = 2, ...,M − 1,

Υ(rij), i = 1,M,

(3.30)H2 =

{
Υ

��

(rij) − Υ(rij), i = 2, ...,M − 1,

Υ(rij), i = 1,M,

Table 5  Comparison of absolute errors for problem 5

� M = 16 M = 32 M = 64 M = 128

1/16 3.4621e − 06 4.9742e − 07 1.1583e − 07 6.8842e − 08

MQ 1/32 1.1492e − 05 1.0135e − 06 1.9613e − 07 1.1283e − 07

cMQ = 0.26 1/64 3.4730e − 05 2.8301e − 06 6.0192e − 07 4.4143e − 07

1/128 2.0876e − 04 7.2972e − 06 1.2652e − 06 5.0019e − 07

1/256 7.1651e − 04 3.3211e − 05 6.1672e − 06 5.4573e − 07

Gaussain 1/16 2.1319e − 06 1.7768e − 07 1.6100e − 07 1.1508e − 07

cGaussain = 6.96 1/32 2.7914e − 06 6.2731e − 07 1.2921e − 07 1.8513e − 07

1/64 1.9921e − 05 7.5438e − 07 1.1756e − 07 1.0882e − 07

1/128 1.4793e − 04 3.8982e − 06 3.9476e − 07 8.0783e − 07

1/256 6.2960e − 04 1.5443e − 05 1.0701e − 06 8.4400e − 07

NPST 1/16 7.376e − 05 4.938e − 06 3.147e − 07 1.977e − 08

 [4] 1/32 2.771e − 04 1.947e − 05 1.260e − 06 7.959e − 08

1/64 9.787e − 04 7.448e − 05 4.982e − 06 3.174e − 07

1/128 3.645e − 03 2.773e − 04 1.948e − 05 1.260e − 06

1/256 1.292e − 02 9.787e − 04 7.448e − 05 4.982e − 06
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The vector B can be written as

where

(3.31)H3 =

{
Υ

��

(rij), i = 2, ...,M − 1,

Υ(rij), i = 1,M.

(3.32)B =
[
B1,B2,B3

]t
,

(3.33)B1 =
[
w(0), 0, ..., 0,w(�∕4)

]t
,

(3.34)B2 =
[
w(�∕4),−1, ...,−1,w(3�∕4)

]t
,

(3.35)B3 =
[
w(3�∕4), 0, ..., 0,w(�)

]t
.
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Fig. 5  Solution profiles, and absolute errors for problem 5
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The problem is solved in the given domain [0,�], for different number of collocation 
points M. Three different RBFs, MQ, IMQ and Gaussain have been used. In Table 6 
the obtained maximum absolute errors are compared with the errors reported in 
[23]. From the table it is observed that MQ RBF gives better accuracy than IMQ and 
Gaussain RBFs when M = 16 . However, as M increases the three RBFs produces 
nearly same accurate solution which is better than those reported in [23]. In Fig. 6 

Table 6  Comparison of maximum absolute error for problem 6

M MQ IMQ Gaussain  [23] CPU

16 4.5909e − 06 2.5175e − 04 8.5206e − 04 3.6374e − 04 0.04539
32 2.1460e − 06 5.7457e − 06 6.7993e − 05 9.7774e − 05 0.10975
64 2.2311e − 06 2.3536e − 06 2.0882e − 06 2.5281e − 05 0.30672
128 8.5624e − 07 9.8644e − 07 8.0863e − 07 6.4235e − 06 0.57062
256 2.4430e − 07 3.3018e − 07 1.8294e − 07 1.6187e − 06 0.82061
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Fig. 6  Solutions profiles and absolute errors for problem 6
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approximate solution and absolute errors are plotted for M = 32 . From the figure it 
is shows that exact and approximate solution are in well agreement.

Problem 7 Consider a second order system of Eq. [5].

the boundary conditions w(0) = w(�) = 0 and w, w
′ are continuous at 

v = �∕4, 3�∕4 . The exact solution of the system is given by

The scheme for this problem can be easily derived by adjusting the entries of matrix 
H in Eqs. (3.28–3.31) and entries of vector B in Eqs. (3.32–3.33). The solution 
has been produced using MQ, IMQ and Gaussain RBFs for various number of 
collocation points M. The obtained maximum absolute errors are listed in Table 7. 
From this table it is noted that the three RBFs produce almost same accuracy. The 
computed solutions and point wise absolute errors are displayed in Fig. 7 for M = 32 
which showing that computed solution approaches to the true solution.

4  Conclusion

In this paper, a meshfree method using RBFs is formulated to solve various BVPs. 
The method is applied for the approximate solutions of second order linear and 
nonlinear BVPs, singular perturbed BVPs and obstacle BVPs. The scheme has 
been applied to seven test problems and the obtained results have been recorded in 
tabulated as well as in graphical forms. The performance of the method has been 
assessed in terms of absolute errors and number of collocation points. The reported 
results overall illustrate that present method gives better accuracy in comparison to 

(3.36)w
��

(v) =

⎧
⎪⎨⎪⎩

−w(v) − 1, 0 ≤ v ≤ 𝜋∕4,

0, 𝜋∕4 < v < 3𝜋∕4,

−w(v) − 1, 3𝜋∕4 ≤ v ≤ 𝜋,

(3.37)w(v) =

⎧
⎪⎨⎪⎩

cos(v) + sin(v) − 1, 0 ≤ v < 𝜋∕4,√
2 − 1, 𝜋∕4 < v < 3𝜋∕4,

sin(v) − cos(v) − 1, 3𝜋∕4 ≤ v ≤ 𝜋,

Table 7  Comparison of absolute 
errors for problem 7

M MQ IMQ Gaussain

16 8.90360e − 07 5.99668e − 07 2.96160e − 06

32 4.61317e − 07 1.32046e − 06 1.37553e − 06

64 2.21513e − 07 4.89586e − 07 6.20249e − 07

128 3.23827e − 07 6.30874e − 07 4.08536e − 07

256 6.50052e − 07 1.25204e − 07 5.63414e − 07
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existing methods available in literature. In light of calculated results, it is clear that 
RBFs scheme is suitable to apply for such problems.
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