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Abstract
In this work, we apply the �-dressing method to study the mixed Chen–Lee–Liu 
derivative nonlinear Schrödinger equation (CLL–NLS) with non-normalization 
boundary conditions. The spatial and time spectral problems associate with CLL–
NLS equation which are derived from local 2 × 2 matrix. A CLL–NLS hierachy 
with source is proposed by using recursive operator. Based on the �-equation, the 
N-solitons of the CLL–NLS equation are constructed by choosing a special spectral 
transformation matrix. Further more, the explicit two-soliton is obtained.

Keywords  CLL–NLS equation · �-Dressing method · Lax pair · Recursive operator · 
Soliton solution

1  Introduction

The explicit solutions of integrable models can provide an important guarantee 
for the analysis of their various properties, so finding a method to solve integrable 
models extensively is always an important research topic for a long period of time. 
The nonlinear Schrödinger equation (NLS) is one of the basic equations of quan-
tum mechanics [1]. By now, several versions of DNLS equations were introduced 
to investigate the effect of high-order perturbations. Among them, there are three 
celebrate DNLS equations as follows:

DNLS-I equation or Kaup–Newell equation [2]

DNLS-II equation or Chen–Lee–Liu equation [3]

(1.1)rt + rxx ± i(|r|2r)x = 0.
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DNLS-III equation or Gerdjikov–Ivanov equation [4]

The DNLS equations have great applications in nonlinear optics and plasma 
physics. It can be used to describe large amplitude magnetohydrodynamic waves in 
plasma and also picosecond pulse in single-modle nonlinear fiber.

Chen–Lee–Liu derivative nonlinear Schrödinger equation (CLL-NLS equation) 
was firstly put forward by Kundu [5]

which is a completely integrable model, and it can be derived from the modified 
NLS equation which ignores the mean flow term in hydrodynamics [6]. In recent 
years, many excellent methods have been put forward by the deep study in integra-
ble system, such as Darboux transformation [7, 8], Hirota bilinear method [9–11], 
similarity reduction [12], Riemann-Hilbert approach [13–17] and inverse scatter-
ing method [18, 19]. Among these but not limited to these methods, Zhang et  al. 
obtained higher-order solutions of Eq. (1.4), Hu et al. gave spectral analysis of Lax 
pair and presented the RH problem of Eq. (1.4) [20].

However, as we know, there is still no research work on CLL–NLS equation by 
using �-dressing method. The �-dressing method was first proposed by Zakharov 
and Shabat [21], in subsequent works, this concept have been applied to different 
types of equations: (1 + 1)-dimensional and (2 + 1)-dimensional integrable differen-
tial equations such as KE equation [22], coupled GI equation [23], Sawada-Kotera 
equation [24] et al.

In this paper, different from considering the normalization boundary condi-
tion �(k) → I at infinite, we mainly consider �-equation with non-normalization 
�(k) → D at infinite, where D is a non-degenerate matrix function of x and t . The 
spectral problem and hierachies can be obtained by giving boundary condition 
matrix function D more general. In Sect. 2, starting from a �-equation, we presented 
the general Lax pair for CLL-NLS equation using the �-dressing method. In Sect. 3, 
we derived CLL-NLS hierarchy with source based on the relation between �-dress-
ing transformation matrix and its potential matrix. In Sect. 4, a formula for N-soliton 
solutions of CLL–NLS equation is constructed and we gave explicit two-soliton 
solutions for CLL–NLS equation for example.

2 � Spectral analysis and Lax pair

2.1 � The spatial spectral problem

Consider a matrix � problem with a non-normalization boundary condition

(1.2)irt + rxx − i|r|2rx = 0.

(1.3)irt + rxx − i|r|2rx + 1

2
|r|4r = 0.

(1.4)irt + rxx+|r|2r − |r|2rx = 0,
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where D = D(x, t) is a non-degenerate matrix function of arbitrary independent vari-
able x and t , �(x, t, k) and R(x, t, k) are 2 × 2 matrix, R(x, t, k) is spectral transform 
matrix.

Then the Eq. (2.1) admits a solution

where Ck denotes the Cauchy-Green integral operator acting on the left. We can 
obtain a formal solution of the �-problem Eq. (2.1)

There are some necessary notations we need to fix first to making our presenta-
tion easy to understand and self-contained. For details refer [25], we define two 
pairings as follow

Which can be shown to admit properties

For matrix functions f (k) and g(k) , simple calculation shows that non-normal-
ization � problem

In the research of integrable systems, the Lax pairs of nonlinear equations are 
very important. There are many effective methods emerged base on their Lax 
pairs such as Darboux transformation, inverse scattering transformation, Rie-
mann–Hilbert method that have been extensively studied. Here we show that spa-
tial-time spectral problems for the general non-normalization boundary equation 
which can be established. We especially obtain the spatial-time spectral problems 
of CLL-NLS equation starting from Eq. (2.1).

Proposition 1  Let the transform matrix R satisfy

where �3 is the Pauli matrix, then the solution � of� Eq. (2.1) satisfies the follow-
ing spatial problem for CLL-NLS Eq. (1.4).

where

(2.1)��(x, t, k) = �(x, t, k)R(x, t, k), �(x, t, k) → D, k → ∞,

(2.2)�(x, t, k) = D +
1

2�i �
�(�)R(�)

� − k
d� ∧ d� ≡ D + �RCk,

(2.3)�(x, t, k) = D ⋅ (I − RCk)
−1.

(2.4)⟨f , g⟩ = 1

2�i ∬ f (k)gT (k)dk ∧ dk, ⟨f ⟩ = ⟨f , I⟩ = 1

2�i
f (k)dk ∧ dk,

(2.5)⟨f , g⟩T = ⟨g, f ⟩, ⟨fR, g⟩T =
�
f , gRT

�
, ⟨fCk, g⟩ = −⟨f , gCk⟩.

(2.6)g(k)[f (k)Ck]Ck + [g(k)Ck]f (k)Ck = [g(k)Ck][f (k)Ck].

(2.7)Rx = ik2[R, �3],

(2.8)�x = DxD
−1� + i[⟨�R⟩, �3]D−1� − ik[�3,�],
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and compared with the case where the boundary condition is an identity matrix, 
Eq. (2.9) satisfied some symmetry conditions as follows

where Mmn represents the m row and n column elements of matrix M, D−1 is the 
inverse matrix of D.

Remark 1.  Let Q and D satisfies

the �–Eq. (2.1) leads to a spatial spectral problem for CLL-NLS Eq. (1.4)

where the complex number k is a associated spectral parameter.

Proof .  Making use of Eqs. (2.3) and (2.7), we obtain

Direct computation gives

Since RCk = I − I ⋅ (I − RCk), we find

Substituting the Eqs. (2.13–2.14), we find Eq. (2.8). By virtue of Eq. (2.9) and 
first equation of Eq. (2.10), we have Eq. (2.11).

(2.9)Q = −i[�3, ⟨�R⟩]D−1 =

�
0 u

−u 0

�
,

u = −2i⟨�R⟩12D−1
22
, u = −2i⟨�R⟩21D−1

11
,

Dx +

(
1

2
i�3 −

3

4
iQ2�3

)
D = 0,

(2.10)
Dt −

(
9

8
iQ4�3 + 2ik2�3 −

i

2
�3 − 2kQ3 − iQ2�3 + (−4k3 + 2k)Q −

1

4
[Q,Qx]

)
D = 0,

(2.11)�x + ik2[�3,�] =

(
kQ −

i

2
�3 +

i

4
Q2�3

)
� ,

(2.12)
�x = Dx(I − RCk)

−1 + ik�R�3Ck(I − RCk)
−1 − ik��3RCk(I − RCk)

−1.

(2.13)

k�RCk = ⟨�R⟩ + k(� − D),

k2�RCk = ⟨��R⟩ + k⟨�R⟩ + k2� − k2D,

k3�RCk =
�
�2�R

�
+ k⟨��R⟩ + k2⟨�R⟩ + k3� − k3D,

k4�RCk =
�
�3�R

�
+ k

�
�2�R

�
+ k2⟨��R⟩ + k3⟨�R⟩ + k4� − k4D.

(2.14)RCk(I − RCk)
−1 = (I − RCk)

−1 − I.
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2.2 � The time spectral problem

Proposition 2  Suppose that transform matrix R satisfies the linear equation

where

which comprises both a polynomial part Ωp(k) and a singular part Ωs(k) and 
�(�2) is a scalar function. Based on the �-Eq.  (2.1), the time spectral problem of 
CLL-NLS equation can be given as follow

Remark 2.  As �(�2) = 0, Eq. (2.17) reduces to

which together with the spatial spectral Eq. (2.11) gives the Lax pair of the CLL-
NLS equation (1.4).

Proof.  In the time spectral problem, we first use the polynomial dispersion relation 
only Ω = Ωp = 2ik4�3. From Eqs. (2.2), (2.3) and (2.16), we find that

Furthermore, making use of Eq. (2.13), then Eq. (2.19) is changed to

By using Eqs. (2.7), (2.8) and (2.9), we obtain

(2.15)Rt = [R,Ω],

(2.16)Ω = Ωp + Ωs = 2ik4�3 +
1

2�i ∬
�2�(�2)�3

�2 − k2
d� ∧ d�,

(2.17)

�t + 2ik4[�3,�] = [−
i

8
Q4�3 −

1

2
kQ3 − ik2Q2�3 + (−2k3 + k)Q +

1

4
(QQx − QxQ) − ikQx�3

+2ik2�3 −
i

2
�3]� −

1

2
k�(k2)��3C−k −

1

2
��3�

−1k�(k2)Ck� + �Ωs.

(2.18)
�t + 2ik4[�3,�] = [−

i

8
Q4�3 −

1

2
kQ3 − ik2Q2�3 + (−2k3 + k)Q

+
1

4
(QQx − QxQ) − ikQx�3 + 2ik2�3 −

i

2
�3]� ,

(2.19)
�t = DtD

−1� + 2ik4�RCk�3(I − RCk)
−1 − 2ik4��3(I − RCk)

−1 + 2ik4��3.

(2.20)

�t = DtD
−1� − 2ik4[�3,�] + 2i

��
�3�R

�
, �3

�
D−1�

+2i
��
�2�R

�
, �3

�
D−1

�⟨�R⟩D−1 + k
�
� + 2i

�⟨��R⟩, �3
�
D−1

�⟨��R⟩D−1

+⟨�R⟩D−1⟨�R⟩D−1 + k⟨�R⟩D−1 + k2
�
� + 2i

��⟨�R⟩, �3
�
D−1

��
�2�R

�
D−1

+⟨��R⟩D−1⟨�R⟩D−1 + ⟨�R⟩D−1⟨��R⟩D−1
��
�

+2i
��⟨�R⟩, �3

�
D−1

�⟨�R⟩D−1⟨�R⟩D−1⟨�R⟩D−1 + k⟨�R⟩D−1⟨�R⟩D−1

+k⟨��R⟩D−1 + k2⟨�R⟩D−1 + k3
��
� .
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Hence, we note that � obeys the parity properties

By which, we can show that

Substituting them into Eq. (2.20), we find

By virtue of Eqs. (2.21) and (2.9), we have some calculation results as follow

Substituting Eq. (2.23) into Eq. (2.22) leads to the time-dependent linear equation

On the other hand, we consider the singular dispersion relation Ωs , similarly, we 
have

By Eq. (2.2), we can express Ωs in another form

Resorting Eqs. (2.2) and (2.5), �RΩsCk in Eq. (2.25) satisfies

(2.21)
⟨�R⟩off

x
= i

��
�2�R

�
, �3

�
+ Q⟨��R⟩diag + i

4
Q2�3⟨�R⟩off −

i

2
�3⟨�R⟩off .

�diag(−k) = �diag(k), �off (−k) = −�off (k),

[
�3,

⟨
�2n−1�R

⟩]
= 0, n = 1, 2, ...,N.

(2.22)

�t = DtD
−1� − 2ik4[�3,�] + 2i

��
�2�R

�
, �3

�
D−1

�⟨�R⟩D−1 + k
�
�

+2i
��⟨�R⟩, �3

�
D−1

��
�2�R

�
D−1 + ⟨��R⟩D−1⟨�R⟩D−1

+⟨�R⟩D−1⟨��R⟩D−1
��
� + 2i

��⟨�R⟩, �3
�
D−1

�⟨�R⟩D−1⟨�R⟩D−1⟨�R⟩D−1

+k⟨�R⟩D−1⟨�R⟩D−1 + k⟨��R⟩D−1 + k2⟨�R⟩D−1 + k3
��
� .

⟨�R⟩off =
i

2
�3QD, ⟨�R⟩off

x
=

i

2
�3QxD −

1

4
QD +

3

8
Q3D,

(2.23)
⟨
�2�R

⟩off
= −

1

4
QxD −

i

8
�3QD +

3

16
i�3Q

3D,

�
�2�R

�
+ ⟨�R⟩D−1⟨��R⟩ =

�
−
i

2
Q4�3 +

i

2
Q2�3 −

1

2
QQx

�
� .

(2.24)
�t + 2ik4[�3,�] = [−

i

8
Q4�3 −

1

2
kQ3 − ik2Q2�3 + (−2k3 + k)Q

+
1

4
(QQx − QxQ) − ikQx�3 + 2ik2�3 −

i

2
�3]� .

(2.25)�t =
(
�RΩsCk − �Ωs

)
(I − RCk)

−1 + �Ωs.

Ωs =
1

4�i ∬
��

(
�2
)
�3

� − k
d� ∧ d� +

1

4�i ∬
��

(
�2
)
�3

� + k
d� ∧ d�.
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Hence, we have

By using the relations

we find that

by which, then Eq. (2.25) gives a time-dependent linear equation with the singu-
lar dispersion relation

which together with Eq. (2.24) gives time spectral Eq. (2.17).

3 � Recursive operators and CLL‑NLS hierarchy

In this section, we derive the CLL-NLS hierarchy with source. In order to prove this 
we define matrix M as following form

which M is depends on x and t , then we can prove the following proposition.

Proposition 3  Q defined by Eq. (2.9) satisfies a coupled hierarchy with a source M.

(2.26)
�RΩsCk = �Ωs −

1

4�i ∬
��

(
�2
)
�(�)�3

� − k
d� ∧ d�

−
1

4�i ∬
��

(
�2
)(
I + �(�)R(�)C−�

)
�3

� + k
d� ∧ d�.

(2.27)

�t = −
1

4�i

[
∬

��
(
�2
)(
I + �(�)R(�)C−�

)
�3

� + k
d� ∧ d�

]
(I − RCk)

−1

−
1

4�i

[
∬

��
(
�2
)
�(�)�3

� − k
d� ∧ d�

]
(I − RCk)

−1 + �Ωs.

1

� − k

1

� − �
=

1

� − k

(
1

� − k
−

1

� − �

)
,

1

� − k

1

� + �
=

1

� + k

(
1

� − k
−

1

� + �

)
,

(2.28)

1

k − �
(I − RCk)

−1 =
1

k − �
�−1(�)�(k),

1

k + �

(
I + �RC−�

)
(I − RCk)

−1 =
1

k + �
� ,

(2.29)�t = −
1

2
k�(k2)��3C−k −

1

2
��3�

−1k�(k2)Ck� + �Ω,

(3.1)M = ��3� ,

(3.2)Qt + 2�n�3Λ
2nQ = M0 + i

[
�3,

⟨
k2�

(
k2
)
M(k)

⟩]
, n = 1, 2, ...,N,
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where

Proof.  Differentiating Q with respect to t gives

Because of Ck is the inverse operator of � then we have

and clearly

Using Eqs. (2.4) and (3.6), the Eq. (3.5) can be rewritten as follow

From the �-Eq. (2.1), we have

which leads to

We further simplify the first term in Eq. (3.7),

Using the condition Eq. (2.15), the first term of Eq. (3.10) can be written as

Hence, using Eqs. (2.4) and (2.15), Eq. (3.7) reduces to the following form

(3.3)Mx = (ik2 +
1

2
i −

1

4
iQ2)

[
M, �3

]
+ k[Q,M],

(3.4)
M0 = −

9

8
iQ5�3 − 4ik2Q�3 + iQ�3 + 2kQ3 + 2iQ3�3 − (2k − 4k3)Q2 −

1

4
[[Q,Qx],Q].

(3.5)Qt = −i[�3, ⟨�R⟩t]D−1 − i[�3, ⟨�R⟩]D−1
t
.

(3.6)
(�R)t = ��t(k) = �

(
Dt ⋅ (I − RCk)

−1 + D ⋅ (I − RCk)
−1
t

)

= DtD
−1�R + �Rt(I − RCk)

−1,

D−1
t

= −D−1DtD
−1.

(3.7)
Qt = −i

[
�3,

⟨
�Rt, I ⋅ (I + RTCk)

−1
⟩]
D−1 −

9

8
iQ5�3 − 4ik2Q�3

+iQ�3 + 2kQ3 + 2iQ3�3 − (2k − 4k3)Q2 −
1

4
[[Q,Qx],Q].

(3.8)��−1 = −R�−1,

(3.9)(�−1)T = D−1
⋅ (I + RTCk)

−1.

(3.10)

−i
[
�3,

⟨
�Rt, I ⋅

(
I + RTCk

)−1⟩]
D−1

= −i
[
�3,

⟨
�Rt,DD

−1
⋅

(
I + RTCk

)−1⟩]
D−1

= −i
[
�3,

⟨
�Rt,D

(
�−1

)T⟩]
D−1 = −i

[
�3,

⟨
�Rt�

−1
⟩]
.

(3.11)
−i
[
�3,

⟨
�Rt�

−1
⟩]

= −i
[
�3,

⟨
�(RΩ − ΩR)�−1, I

⟩]

= −i
[
�3,

⟨
�RΩ�−1, I

⟩]
+ i

[
�3,

⟨
�ΩR�−1, I

⟩]
.
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where

Here we shall consider Ωp = �nk
2n�3, �n = constant, then the term

−i
[
�3,

⟨
�Ω��−1

⟩]
− i

[
�3,

⟨(
��

)
Ω�−1

⟩]
 can be further simplified like

Noticing that Ωp = �nk
2n�3 is an analytic function on the k-plane, and the fact 

that Ωs → 0 as k → 0, so we have

Then we get

The Qt can be express as follows

where M0 is given as Eq.  (3.13). By using Eq.  (2.11), it can be checked that 
M(k) satisfies the equation

From Eq. (3.18), they satisfy the following equations

which lead to

(3.12)Qt = M0 − i
[
�3,

⟨
�Ω��−1

⟩]
− i

[
�3,

⟨(
��

)
Ω�−1

⟩]
,

(3.13)
M0 = −

9

8
iQ5�3 − 4ik2Q�3 + iQ�3 + 2kQ3 + 2iQ3�3 − (2k − 4k3)Q2 −

1

4
[[Q,Qx],Q].

(3.14)

−i
[
�3,

⟨
�Ω��−1

⟩
+

⟨(
��

)
Ω�−1

⟩]
= −i

[
�3,

⟨
�
(
�Ω�−1

)⟩
−

⟨
�
(
�Ω

)
�−1

⟩]

= −i
[
�3,

⟨
�
(
�Ωp�

−1
)⟩

+

⟨
�
(
�Ωs�

−1
)⟩

−

⟨
�
(
�Ωs

)
�−1

⟩
−

⟨
�
(
�Ωp

)
�−1

⟩]
.

(3.15)�
(
�Ωp

)
�−1 = 0,

⟨
�
(
�Ωs�

−1
)⟩

= 0.

(3.16)

−i
�
�3,

�
�Ω��−1

�
+

��
��

�
Ω�−1

��
= −i

�
�3,

�
�
�
�Ωp�

−1
��

−

�
�
�
�Ωs

�
�−1

��

= −i�n

�
�3,

�
�
�
k2n��3�

−1
���

+ i
�
�3,

�
�(k)��3�

−1
��

= −i�n

�
�3,

�
�
�
k2nM(k)

���
+ i

�
�3, ⟨�(k)M(k)⟩�.

(3.17)Qt = M0 − i�n

�
�3,

�
�
�
k2nM(k)

���
+ i

�
�3, ⟨�(k)M(k)⟩�,

(3.18)Mx = (ik2 +
1

2
i −

1

4
iQ2)

[
M, �3

]
+ k[Q,M].

(3.19)Mdiag
x

= k
[
Q,Moff

]
,

(3.20)Moff
x

= −i
(
k2 +

1

2
−

1

4
Q2

)[
�3,M

]
+ k

[
Q,Mdiag

]
,
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where

The operator Λ⋅ usually be called as recursion operator. We expand (Λ − k)−1 in 
the series

By using �kn−j = ��(k)�j,n+1, j = 1, 2, ..., we can derive that

Substituting it into Eq. (3.17) leads to the Eq. (3.2)

4 � N‑soliton solutions of CLL‑NLS equation

In this section, we will construct the N-soliton solutions of CLL-NLS equation.

Proposition 4  choose that spectral transform matrix R as

where kj and kj are 2N discrete spectrals in complex plane ℂ and 

�(k) = k2x + 2k4t.

Let Q̂ = QD, then we have

(3.21)Mdiag = �3 + �−1k
[
Q,Moff

]
,

(3.22)Moff = −i(Λ − k)−1Q,

(3.23)Λ⋅ =
i

2
�3

(
1

k
�x −

[
Q, �−1k[Q, ⋅]

]
−

1

k
i�3

(
1

2
Q2 − 1

))
.

(3.24)(Λ − k)−1 = −

∞∑
j=1

Λj−1

kj
.

(3.25)
∞∑
j=1

⟨
�kn−j

⟩
Λj−1Q = −ΛnQ.

(4.1)

R =

N∑
j=1

2�ie−i�(k)�3

(
0 cj

[
�
(
k − kj

)
+ �

(
k + kj

)]
−cj

[
�
(
k − kj

)
+ �

(
k + kj

)]
0

)
ei�(k)�3 ,

(4.2)Q̂ = −i
�
�3, ⟨�R⟩� =

�
0 E

−E 0

�
,
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5 � then the CLL‑NLS equation have solution

where M is N × N matrices, and Maug is (N + 1) × (N + 1) matrices defined by

Proof.  Substituting Eq. (4.1) into Eq. (4.2) leads to.

Substituting Eq. (4.1) into �-Eq. (2.2) and resorting the properties of � function, 
we can obtain

Replacing k in Eq. (4.6) with kn , and k in Eq. (4.7) with kj , we can obtain linear 
equations for �11

(
kn
)
 as follow

where

(4.3)u = 8qN exp

(
i∫

x

−∞

(
1

2
− 48||qN||2)dy

)
,

(4.4)qN(x, t) =
detMaug

detM
,

Maug =

(
0 Y

D M

)
, Y =

(
Y1, Y2, ..., YN

)
,

Yj = cje
−2i�(kj), D =

(
d1, d1,… , d1

)T
.

(4.5)E(x, t) = −8

N∑
j=1

cj�11

(
kj
)
e−2i�(kj).

(4.6)�11(k) = d1 − 4i

N∑
j=1

cje
2i�

(
kj

)
�12

(
kj

) kj

k2 − kj
2
,

(4.7)�12(k) = 4i

N∑
m=1

cme
−2i�(km)�11

(
km
) k

k2 − k2
m

.

(4.8)�
11

(
k
n

)
+

N∑
m=1

A
n,m

�
11

(
k
m

)
= d

1
, n = 1, 2, ...,N,

An,m = 16

N∑
j=1

kj
2
Dj

(
kn
)
Cm

(
kj

)
,
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We further introduce notations

then Eq. (4.10) reduce to linear system in matrix form

From which we can substituting �11 into Eq. (4.5), we can obtain

where qN is given by Eq.  (4.4). Clearly Eqs. (2.10) are compatible and admit a 
solution

By virtue of Eqs. (4.2) and (4.13), we can obtain

Taking the modulus on both sides of above equation, we have u = 8||qN||, substi-
tuting it to Eq. (4.14), we can obtain the N-soliton solution of CLL-NLS equation

Example.  For N = 2, the formula Eq.  (4.15) gives the two-soliton solutions of the 
CLL-NLS equation that are given by

where

and

(4.9)Cj(k) =
cj

k2 − k2
j

e−2i�(kj), Dj(k) =
−cj

k2 − kj
2
e
2i�

(
kj

)
, n = 1, 2, ...,N.

M = I +
(
An,m

)
,

(4.10)�̂11 =
(
�11

(
k1
)
, ...,�11

(
kN

))T
,

(4.11)M�̂11 = D =
(
d1, ..., d1

)T
.

(4.12)E(x, t) = 8d1qN ,

(4.13)d1 = exp(i∫
x

−∞

(
1

2
−

3

4
|u|2)dy).

(4.14)u = 8qN exp(2i∫
x

−∞

(
1

2
−

3

4
|u|2)dy).

(4.15)u = 8qN exp

(
2i∫

x

−∞

(
1

2
− 48||qN||2

)
dy

)
.

(4.16)u = 8q2 exp(2i∫
x

−∞

(
1

2
− 48||q2||2)dy), q2(x, t) = detMaug

detM
,

(4.17)

M =

�
1 + A11 A12

A21 1 + A22

�
, Maug =

⎛⎜⎜⎝

0 c1e
−2ixk2

1
−4itk4

1 c2e
−2ixk2

2
−4itk4

2

1 1 + A11 A12

1 A21 1 + A22

⎞⎟⎟⎠
,



213

1 3

Journal of Nonlinear Mathematical Physics (2023) 30:201–214	

where w1,w2 being two arbitrary constants.

6 � Conclusion

In this paper, we introduced the �-dressing method. Through the �-dressing method 
starting from a �-equation, we presented the spatial-time spectral problems for 
CLL–NLS equation. Then we derived CLL–NLS hierarchy with source based on 
the relation between �-dressing transformation matrix and its potential matrix, and 
the spectral problem and hierachies can be obtained by giving boundary condition 
matrix function D more general. In the end, we constructed a formula for N-soliton 
solutions of CLL–NLS equation.

In summary, the �-dressing method is powerful for analyzing spectral problem of 
integrable systems. In our future work, we will continue to using �-dressing method 
and Riemann-Hilbert approach to analyze the asymptotic behaviour for Eq.  (1.4) 
and other integrable system.
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−
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