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Abstract
In this paper, we study the affine generalized Ricci solitons on three-dimensional 
Lorentzian Lie groups associated canonical connections and Kobayashi-Nomizu 
connections and we classifying these left-invariant affine generalized Ricci solitons 
with some product structure.
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1 Introduction

The notion of generalized Ricci soliton or Einstein-type manifolds is introduced by 
Catino et al. as a generalization of Einstein spaces [5]. Study of the generalization 
Ricci soliton, over different geometric spaces is one of interesting topics in geome-
try and normalized physics. A pseudo-Riemannian manifold (M, g) is called an gen-
eralized Ricci soliton if there exists a vector field X ∈ X(M) and a smooth function 
� on M such that

for some constants �, �,�, � ∈ ℝ , with (�, �,�) ≠ (0, 0, 0) , where LX denotes the Lie 
derivative in the direction of X, X♭ denotes a 1-form such that X♭(Y) = g(X,Y) , S 
is the scalar curvature, and Ric is the Ricci tensor. The generalized Ricci soliton 
becomes 

(1)𝛼Ric +
𝛽

2
LXg + 𝜇X♭ ⊗ X♭ = (𝜌S + 𝜆)g,
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 (i) the homothetic vector field equation when � = � = � = 0 and � ≠ 0,
 (ii) the Ricci soliton equation when � = 1 , � = 0 , and � = 0,
 (iii) the Ricci-Bourguignon soliton ( or �-Einstein soliton equation when � = 1 and 

� = 0.

In the special case that (M, g) is a Lie group and g is a left-invariant metric, we say 
that g is a left-invariant generalized Ricci soliton on M if the Eq. (1) holds.

In [11, 14, 16, 17, 21, 22], Einstein manifolds associated to affine connections 
were studied and affine Ricci solitons had been studied in [7, 10, 12, 13, 15]. In 
[4], Calvaruso studied the Eq. (1) for � = 0 on three-dimensional generalized Lie 
groups. Also, in [20] Wang classified affine Ricci solitons associated to canonical 
connections and Kobayashi-Nomizu connections on three-dimensional Lorentzian 
Lie groups. In [8], Etayo and Santamaria investigated the canonical connection and 
the Kobayashi-Nomizu connection for a product structure. Motivated by [1, 19, 23, 
24], we consider the distribution V = span{e1, e2} and V⟂ = span{e3} for the three 
dimensional Lorentzian Lie group Gi , i = 1, ....., 7 , with product structure J such that 
Je1 = e1, Je2 = e2 , and Je3 = −e3 . Then we obtain affine generalized Ricci solitons 
associated to the canonical connection and the Kobayashi-Nomizu connection.

The paper is organaized as follows. In Sect. 2 we review some necessary concepts 
on three-dimensional Lie groups which be used throughout this paper. In the Sect. 3 
we state the main results and their proof.

2  Three‑Dimensional Lorentzian Lie Groups

In the following we give a brief description of all three-dimensional unimodular 
and non-unimodular Lie groups. Complete and simply connected three-dimensional 
Lorentzian homogeneous manifolds are either symmetric or a Lie group with left-
invariant Lorentzian metric [3].

2.1  Unimodular Lie Groups

Let {e1, e2, e3} be an orthonormal basis of signature (+ + −) . We denote the Lorent-
zian vector product on ℝ3

1
 induced by the product of the para-quaternions by × i.e.,

Then the Lie bracket [ , ] defines the corresponding Lie algebra � , which is unimodu-
lar if and only if the endomorphism L defined by [Z, Y] = L(Z × Y) is self-adjoint 
and non-unimodular if L is not self-adjoint [18]. By assuming the different types of 
L, we get the following four classes of unimodular three-dimensional Lie algebra 
[9]. 

�1:  If L is diagonalizable with eigenvalues {a, b, c} with respect to an orthonormal 
basis {e1, e2, e3} of signature (+ + −) , then the corresponding Lie algebra is 
given by 

e1 × e2 = −e3, e2 × e3 = −e1, e3 × e1 = −e2.
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�2:  Assume L has a complex eigenvalues. Then, with respect to an orthonormal 
basis {e1, e2, e3} of signature (+ + −) , one has 

 then the corresponding Lie algebra is given by 

�3:  Assume L has a triple root of its minimal polynomial. Then, with respect to 
an orthonormal basis {e1, e2, e3} of signature (+ + −) , the corresponding Lie 
algebra is given by 

�4:  Assume L has a double root of its minimal polynomial. Then, with respect to 
an orthonormal basis {e1, e2, e3} of signature (+ + −) , the corresponding Lie 
algebra is given by 

2.2  Non‑unimodular Lie Groups

Next we treat the non-unimodular case. Let � denotes a special class of the solva-
ble Lie algebra � such that [x, y] is a linear combination of x and y for any x, y ∈ � . 
From [6], the non-unimodular Lorentzian Lie algebras of non-constant sectional 
curvature not belonging to class � with respect to a pseudo-orthonormal basis 
{e1, e2, e3} with e3 time-like are one of the following: 

�5:  

�6:  

[e1, e2] = −ce3, [e1, e3] = −be2, [e2, e3] = ae1.

L =

⎛
⎜⎜⎝

a 0 0

0 c − b

0 b c

⎞
⎟⎟⎠
, b ≠ 0,

[e1, e2] = be2 − ce3, [e1, e3] = −ce2 − be3, [e2, e3] = ae1.

[e1, e2] = ae1 − be3, [e1, e3] = −ae1 − be2, [e2, e3] = be1 + ae2 + ae3, a ≠ 0.

[e1, e2] = −e2 − (2d − b)e3, [e1, e3] = −be2 + e3, [e2, e3] = ae1, d = ±1.

[e1, e2] = 0, [e1, e3] = ae1 + be2,

[e2, e3] = ce1 + de2, a + d ≠ 0, ac + bd = 0.

[e1, e2] = ae2 + be3, [e1, e3] = ce2 + de3,

[e2, e3] = 0, a + d ≠ 0, ac − bd = 0.
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�7:  
 
 

Throughout this paper, we assume that Gi, i = 1, 2, ....., 7 are the connected, 
simply connected three-dimensional Lie group equipped with a left-invariant 
Lorentzian metric g and having Lie algebra gi, i = 1, 2, ....., 7 , respectively. Let 
∇ be the Levi-Civita connection of Gi and R(X, Y)Z = [∇X ,∇Y ]Z − ∇[X,Y]Z be its 
curvature tensor. The Ricci tensor of (Gi, g) with respect to orthonormal basis 
{e1, e2, e3} of signature (+ + −) is defined by

We consider a product structure J on Gi by Je1 = e1, Je2 = e2, Je3 = −e3 . Similar 
[8], we consider the canonical connection and the Kobayashi-Nomizu connection as

respectively. We define

and the Ricci tensors of (Gi, g) associated to the canonical connection and the Kob-
ayashi-Nomizu connection are defined by

Let

Similar to definition of (LVg) where (LXg)(Y , Z) = g(∇YV , Z) + g(Y ,∇ZV) , we 
define

Definition 1 The Lie group (G, g, J) is called the affine generalized Ricci soliton 
associated to the connection ∇i, i = 0, 1 if it satisfies

where S̃i = gjkR̃ic
i

jk
.

Throughout this paper for prove of our results we use the results of [19, 20].

[e1, e2] = −ae1 − be2 − be3, [e1, e3] = ae1 + be2 + be3,

[e2, e3] = ce1 + de2 + de3, a + d ≠ 0, ac = 0.

Ric(X, Y) = −g(R(X, e1)Y , e1) − g(R(X, e2)Y , e2) + g(R(X, e3)Y , e3).

∇0

X
Y = ∇XY −

1

2
(∇XJ)JY , ∇1

X
Y = ∇0

X
Y −

1

4
[(∇YJ)JX − (∇JYJ)X],

Ri(X, Y)Z = [∇i
X
,∇i

Y
]Z − ∇i

[X,Y]
Z, i = 0, 1,

Rici(X,Y) = −g(Ri(X, e1)Y , e1) − g(Ri(X, e2)Y , e2) + g(Ri(X, e3)Y , e3), i = 0, 1.

R̃ic
i
(X, Y) =

Rici(X, Y) + Rici(Y ,X)

2
, i = 0, 1.

(Li
V
g)(Y , Z) ∶= g(∇i

Y
V , Z) + g(Y ,∇i

Z
V), i = 0, 1.

(2)𝛼�Ric
i
(Y , Z) +

𝛽

2
L
i
X
g(Y , Z) + 𝜇X♭ ⊗ X♭(Y , Z) = (𝜌�Si + 𝜆)g(Y , Z), i = 0, 1,
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3  Lorentzian Affine Generalized Ricci Solitons on 3D Lorentzian Lie 
Groups

In this section, we investigate the existence of left-invariant solutions to Eq. (2) on 
the Lorentzian Lie groups discussed in Sect. 2. We completely solve the correspond-
ing equations and obtain a complete description of all left-invariant affine general-
ized Ricci solitons.

Theorem 1 The left-invariant affine generalized Ricci soliton associated to the con-
nection ∇0 on the Lie group (G1, g, J,X) are the following: 

(i)  � = � = 0 , a + b − c = 0 , and for all x1, x2, x3, �, �, � such that (�, �,�) ≠ (0, 0, 0)

,
(ii)  � = 0 , a + b − c ≠ 0 , � = 0 , � ≠ 0 , x1 = x2 = 0 , � = �c(a + b − c) , and for all 

x3, �,
(iii)  � = 0 , a + b − c ≠ 0 , � ≠ 0 , c = � = � = 0 , and for all x1, x2, x3, �,
(iv)  � = 0 , a + b − c ≠ 0 , � ≠ 0 , c = � = 0,� ≠ 0 , x1 = x2 = 0 , and for all x3, �,
(v)  � ≠ 0 , x1 = x2 = 0 , � = (� −

1

2
�)c(a + b − c) , x2

3
=

�c(a+b−c)−�

�
 , and for all 

x3, �, �, �, a, b, c such that �c(a+b−c)−�
�

≥ 0.

Proof From [19, 20], we have

and

with respect to the basis {e1, e2, e3} . Therefore S̃ = −c(a + b − c) and 
X♭ ⊗ X♭(ei, ej) = 𝜖i𝜖jxixj where (�1, �2, �3) = (1, 1,−1) . Hence, by Eq. (2) there exists 
a affine generalized Ricci soliton associated to the connection ∇0 if and only if the 
following system of equations is satisfied

R̃ic
0

=

⎛⎜⎜⎝

−
1

2
c(a + b − c) 0 0

0 −
1

2
c(a + b − c) 0

0 0 0

⎞⎟⎟⎠

(L0

X
g) =

⎛⎜⎜⎜⎝

0 0 −
1

2
x2(a + b − c)

0 0
1

2
x1(a + b − c)

−
1

2
x2(a + b − c)

1

2
x1(a + b − c) 0

⎞⎟⎟⎟⎠
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Using the first and fourth equations of the system Eq. (3) we have �(x2
1
− x2

2
) = 0 . 

From the third and fiveth equations of the system Eq. (3) we get

Multiplying both sides of last equality by (x1 − x2) we conclude

The second equation of the system Eq. (3) implies that � = 0 , or x1 = 0 or x2 = 0 . 
Suppose that � = 0 . In this case, the system Eq. (3) reduces to

If a + b − c = 0 then the system Eq. (5) holds for any x1, x2 , and x3 . If a + b − c ≠ 0 
for the cases (ii)–(iv) the sytem Eq. (5) holds. Now we assume that � ≠ 0 and 
x1 = 0 , then x2 = 0 and the system Eq. (3) becomes

This shows that the case (v) holds.   ◻

Theorem 2 The left-invariant affine generalized Ricci soliton associated to the con-
nection ∇1 on the Lie group (G1, g, J,X) are the following: 

 (i)  � = 0 , c = 0 , � = 0 , � = 0 , and for all a, b, x1, x2, x3, �, � such that � ≠ 0,
 (ii)  � = 0 , c = 0 , � = 0 , � ≠ 0 , a = b = 0 , and for all x1, x2, x3, �, �,
 (iii)  � = 0 , c = 0 , � = 0 , � ≠ 0 , a = x1 = 0 , and for all b, x2, x3, �, �,
 (iv)  � = 0 , c = 0 , � = 0 , � ≠ 0 , a ≠ 0 , x2 = b = 0 , and for all x1, x3, �, �,

(3)

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−
1

2
�c(a + b − c) + �x2

1
= −�c(a + b − c) + �,

�x1x2 = 0,

−
�

4
x2(a + b − c) − �x1x3 = 0,

−
1

2
�c(a + b − c) + �x2

2
= −�c(a + b − c) + �,

�

4
x1(a + b − c) − �x2x3 = 0,

�x2
3
= �c(a + b − c) − �.

�

4
(x1 − x2)(a + b − c) − �x3(x1 + x2) = 0.

(4)�(x1 − x2)
2(a + b − c) = 0.

(5)

⎧⎪⎨⎪⎩

�c(a + b − c) = 0,

�x2(a + b − c) = 0,

�x1(a + b − c) = 0,

�c(a + b − c) = �.

(6)
{

−
1

2
�c(a + b − c) = −�c(a + b − c) + �,

�x2
3
= �c(a + b − c) − �.
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 (v)  � = 0 , c = 0 , � = 0 , � ≠ 0 , a ≠ 0 , x2 = x1 = 0 , and for all b, x3, �, �,
 (vi)  � = 0 , c ≠ 0 , � = �c(a + b) , b = 0 , � = a = 0 , and for all x1, x2, x3, �, � such 

that � ≠ 0,
 (vii)  � = 0 , c ≠ 0 , � = �c(a + b) , b = 0 , � ≠ 0 , a = 0 , and for all x1, x2, x3, �, �,
 (viii)  � = 0 , c ≠ 0 , � = �c(a + b) , b = 0 , � ≠ 0 , a ≠ 0 , x2 = 0 , and for all x1, x3, �, �,
 (ix)  � = 0 , c ≠ 0 , � = �c(a + b) , b ≠ 0 , � = 0 , a = x1 = 0 , and for all x2, x3, �, � , 

such that � ≠ 0,
 (x)  � = 0 , c ≠ 0 , � = �c(a + b) , b ≠ 0 , � = 0 , a ≠ 0 , x2 = x1 = 0 , and for all 

x3, �, � , such that � ≠ 0,
 (xi)  � ≠ 0 , x1 = 0 , x3 = 0 , c = 0 , � = x2 = 0 , for all a, b, �, �, �,
 (xii)  � ≠ 0 , x1 = 0 , x3 = 0 , c ≠ 0 , � = 0 , � = �c(a + b) , x2 = 0 , for all a, b, �, �,
 (xiii)  � ≠ 0 , x1 = 0 , x3 = 0 , c ≠ 0 , � ≠ 0 , b = 0 , � = x2 = a = 0 , for all �, �,
 (xiv)  � ≠ 0 , x1 = 0 , x3 = 0 , c ≠ 0 , � ≠ 0 , b = 0 , x2 ≠ 0 , � = �ca , � = 0 , x2

2
=

a�c

�
 

for all a, �,
 (xv)  � ≠ 0 , x1 = 0 , x3 ≠ 0 , x2 = 0 , x2

3
=

ac𝛼

𝜇
> 0 , for all a, b, c, �, �, �, � such that 

bc� = ac� = �c(a + b) − �,
 (xvi)  � ≠ 0 , x1 ≠ 0 , x2 = x3 = 0 , � = �c(a + b) , for all a, b, c, �, �, � such that 

�b = ac� = 0.

Proof From [19, 20], we have

and

with respect to the basis {e1, e2, e3} . Therefore S̃ = −c(a + b) and the Eq. (2) 
becomes

The second equation of the system Eq. (7) implies that � = 0 or x1 = 0 or x2 = 0 . 
We consider � = 0 , then the first equation yields bc� = 0 . If c = 0 then we get � = 0 
and the cases (i)-(v) hold. If we assume that c ≠ 0 and � = �c(a + b) and in this we 

R̃ic
1

=

⎛⎜⎜⎝

−bc 0 0

0 − ac 0

0 0 0

⎞⎟⎟⎠

(L1

X
g) =

⎛⎜⎜⎝

0 0 − ax2
0 0 bx1

−ax2 bx1 0

⎞⎟⎟⎠

(7)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−bc� + �x2
1
= −�c(a + b) + �,

�x1x2 = 0,

−
�

2
ax2 − �x1x3 = 0,

−ac� + �x2
2
= −�c(a + b) + �,

�

2
bx1 − �x2x3 = 0,

�x2
3
= �c(a + b) − �.
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obtain the cases (vi)-(x). Now, we consider the case � ≠ 0 and x1 = 0 . In this case 
the system Eq. (7) reduces to

The fourth equation of the system Eq. (8) implies that x2 = 0 or x3 = 0 . If x3 = 0 
then we obtain the cases (xi)-(xiv). If x3 ≠ 0 and x2 = 0 then the case (xv) holds. 
Also, if we consider � ≠ 0 and x1 ≠ 0 then x2 = 0 and the case (xvi) is true.   ◻

Theorem 3 The left-invariant affine generalized Ricci soliton associated to the con-
nection ∇0 on the Lie group (G2, g, J,X) are the following: 

 (i) � = 0 , � ≠ 0 , x1 = x2 = � = 0 , � = �(2b2 + ac) , for all a, b, c, x3, � such that 
b ≠ 0,

 (ii) � ≠ 0 , x2 = 0 , x1 = 0 , � = 0 , � = �(2b2 + ac) , x3 = 0 , for all �, �, a, b, c such 
that b ≠ 0.

 (iii) � ≠ 0 , x2 = 0 , x1 = 0 , � ≠ 0 , a = 2c , � = (2� − �)(b2 + c2) , x2
3
=

�

�
(b2 + c2) , 

for all �, �, b such that b ≠ 0 and �� ≥ 0,
 (iv) � ≠ 0 , x2 = 0 , x1 = −

�b

�
≠ 0 , x3 = 0 , � = �(2b2 + ac) , for all a, b, c, �, �, � 

such that � ≠ 0 , ��(2b2 + ac) + �2b2 = 0 , and ��(2c + a) − �2a = 0.

Proof From [19, 20], we have

and

with respect to the basis {e1, e2, e3} . Then S̃ = −(2b2 + ac) and the Eq. (2) becomes

(8)

⎧
⎪⎪⎨⎪⎪⎩

−bc� = −�c(a + b) + �,

�ax2 = 0,

−ac� + �x2
2
= −�c(a + b) + �,

x2x3 = 0,

�x2
3
= �c(a + b) − �.

R̃ic
0

=

⎛⎜⎜⎜⎝

−(b2 +
ac

2
) 0 0

0 − (b2 +
ac

2
)

bc

2
−

ab

4

0
bc

2
−

ab

4
0

⎞⎟⎟⎟⎠

(L0

X
g) =

⎛⎜⎜⎝

0 bx2 −
a

2
x2

bx2 − 2bx1
a

2
x1

−
a

2
x2

a

2
x1 0

⎞⎟⎟⎠
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At the first we assume � = 0 . In this case, the system Eq. (9) reduces to

The second equation of Eq. (10) implies that � = 0 or x2 = 0 . If � = 0 then � ≠ 0 
and the fourth equation of the system Eq. (10) yields a = 2c and replacing it in 
the first equation we obtain b2 + c2 = 0 which is a contradiction. Thus � ≠ 0 and 
x1 = x2 = � = 0.

Now we consider � ≠ 0 . Using the first and fourth equations of Eq. (9) we obtain

The second equation of the system Eq. (9) implies that x2 = 0 or x1 = −
�b

2�
 . If x2 ≠ 0 

then x1 = −
�b

2�
 and plugging it in Eq. (11) we get x2

2
+

�2b2

4�2
= 0 which is a contradic-

tion. Therefore x2 = 0 and in this case we have

The third equation of the system Eq. (12) implies that x1 = 0 or x3 = 0 . If x1 = 0 
then �(2c − a) = 0 . Thus � = 0 or a = 2c . In the case � = 0 we have � = �(2b2 + ac) 
and x3 = 0 . In the case � ≠ 0 and a = 2c we get � = (2� − �)(b2 + c2) and 
x2
3
=

�

�
(b2 + c2) . Now we assume that � ≠ 0 , x2 = 0 , x1 ≠ 0 , and x3 = 0 . In this case 

we have (iv).   ◻

Theorem 4 The left-invariant affine generalized Ricci soliton associated to the con-
nection ∇1 on the Lie group (G2, g, J,X) are the following: 

(9)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

−�(b2 +
ac

2
) + �x2

1
= −�(2b2 + ac) + �,

�

2
bx2 + �x1x2 = 0,

−
�a

4
x2 − �x1x3 = 0,

−�(b2 +
ac

2
) − �bx1 + �x2

2
= −�(2b2 + ac) + �,

�(
bc

2
−

ab

4
) +

�a

4
x1 − �x2x3 = 0,

�x2
3
= �(2b2 + ac) − �.

(10)

⎧
⎪⎪⎨⎪⎪⎩

−�(b2 +
ac

2
) = 0,

�x2 = 0,

�x1 = 0,

�(
bc

2
−

ab

4
) +

�a

4
x1 = 0,

�(2b2 + ac) = �.

(11)�x2
1
+ �bx1 = �x2

2
.

(12)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−�(b2 +
ac

2
) + �x2

1
= −�(2b2 + ac) + �,

�x2
1
+ �bx1 = 0,

x1x3 = 0,

−�(b2 +
ac

2
) − �bx1 = −�(2b2 + ac) + �,

�(
bc

2
−

ab

4
) +

�a

4
x1 = 0,

�x2
3
= �(2b2 + ac) − �.
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 (i)  � = 0 , � = 0 , � ≠ 0 , x1 = x2 = x3 = 0 , � = �(2b2 + c2 + ac) , for all �, a, b, c 
such that b ≠ 0,

 (ii)  � ≠ 0 , x2 = x3 = 0 , � = 0 , � = 0 , x1 = 0 , � = �(2b2 + c2 + ac) , for all �, a, b, c 
such that b ≠ 0,

 (iii)  � ≠ 0 , x2 = x3 = 0 , � ≠ 0 , c = 0 , � = 0 , x1 = 0 , � = �(2b2) , for all �, a, b, c 
such that b ≠ 0,

 (iv)  � ≠ 0 , x2 = x3 = 0 , � ≠ 0 , c = 0 , � ≠ 0 , a = 0 , x1 = −
�b

�
 , � = �(2b2 + c2) , for 

all �, a, b, c such that b ≠ 0 , ��b2 = �2(b2 + c2),
 (v)  � ≠ 0 , x2 = x3 = 0 , � ≠ 0 , c ≠ 0 , x1 =

�ab

�c
 , � = �(2b2 + c2 + ac) , for all 

�, �, a, b, c such that b ≠ 0 , �ab2 = −�c(b2 + ac) , �(�ab)2 = ��2c2(b2 + c2),
 (vi)  � ≠ 0 ,  x2 = 0 ,  x2

3
=

�

�
(b2 + c2) −

�2b2

4�2
≠ 0 ,  x1 =

�b

2�
 ,  � = �(2b2 + c2 + ac)

−�(b2 + c2) −
�2b2

2�
 , for all �, �, �, a, b, c such that b ≠ 0 , 2a�� = �2c , 

3�2b2 − 4��c(c − a) = 0,
 (vii)  � ≠ 0  ,  x2

2
= −

�

�
c(c − a) ≠ 0  ,  x1 = 0  ,  � = 0  ,  x3 =

�

�
(b2 + c2)  , 

� = −�(b2 + c2) + �(2b2 + c2 + ac) for all �, �, a, b, c such that b ≠ 0 , 
−4c(c − a)(b2 + c2) = a2b2 , �

�
≥ 0 , −c(c − a) ≥ 0,

 (viii)  � ≠ 0  ,  x2 ≠ 0  ,  x1 = −
�b

2�
 ,  � ≠ 0  ,  x3 =

a

2b
x2 = −

2��ab+c�2b

4�2
 , 

� = −�(b2 + c2) +
�2b2

4�
+ �(2b2 + c2 + ac) , for all �, �, a, b, c such that 

x2
2
= −(

�b

2�
)2 −

�

�
c(c − a) , x2

3
=

𝛼

𝜇
(b2 + c2) −

𝛽2b2

4𝜇2
> 0.

Proof From [19, 20], we have

and

with respect to the basis {e1, e2, e3} . Therefore S̃ = −(2b2 + c2 + ac) and the  Eq. (2) 
becomes

R̃ic
1

=

⎛⎜⎜⎝

−(b2 + c2) 0 0

0 − (b2 + ac) −
ab

2

0 −
ab

2
0

⎞⎟⎟⎠

(L1

X
g) =

⎛⎜⎜⎝

0 bx2 − ax2 + bx3
bx2 − 2bx1 cx1

ax2 + bx3 cx1 0

⎞⎟⎟⎠

(13)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−�(b2 + c2) + �x2
1
= −�(2b2 + c2 + ac) + �,

�

2
bx2 + �x1x2 = 0,

�

2
(−ax2 + bx3) − �x1x3 = 0,

−�(b2 + ac) − �bx1 + �x2
2
= −�(2b2 + c2 + ac) + �,

−�
ab

2
+

�

2
cx1 − �x2x3 = 0,

�x2
3
= �(2b2 + c2 + ac) − �.
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We first consider � = 0 . In this case, the system Eq. (13) becomes

Since b ≠ 0 , the first equation of Eq. (14) implies that � = 0 . Due to 
(�, �,�) ≠ (0, 0, 0) we conclude � ≠ 0 . Then the second equation of the system 
Eq. (14) yields x2 = 0 . Using, the third and fourth equations of Eq. (14) we obtain 
x1 = x3 = 0.

Now we consider � ≠ 0 . The second equation of the system Eq. (13) implies that 
x2 = 0 or x1 = −

�b

2�
 . If x2 = 0 then we get

From the second equation of the system Eq. (15) we obtain x3 = 0 or x1 =
�b

2�
 . If 

x3 = 0 then the cases (ii)-(v) hold. If x3 ≠ 0 and x1 =
�b

2�
 then the case (vi) holds. 

Now we assume that � ≠ 0 , x2 ≠ 0 and x1 = −
�b

2�
 . In this cases, the system Eq. (13) 

reduces to

Thus the cases (vii)-(viii) are true.   ◻

Theorem 5 The left-invariant affine generalized Ricci soliton associated to the con-
nection ∇0 on the Lie group (G3, g, J,X) are the following: 

 (i)  � = 0 , � = 0 , � ≠ 0 , x1 = x2 = 0 , for all �, a, b, c, x3 such that a ≠ 0,
 (ii)  � ≠ 0 , x1 = 0 , x2 = 0 , x3 = 0 , � = 0 , � = �(2a2 + b2) , for all �, a, b, c such 

that a ≠ 0,

(14)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

−�(b2 + c2) = 0,

�bx2 = 0,

�(−ax2 + bx3) = 0,

−�(b2 + ac) − �bx1 = 0,

−�ab + �cx1 = 0,

�(2b2 + c2 + ac) = �.

(15)

⎧⎪⎪⎨⎪⎪⎩

−�(b2 + c2) + �x2
1
+ �x2

3
= 0,

�

2
bx3 − �x1x3 = 0,

−�(b2 + ac) − �bx1 + �x2
3
= 0,

−�
ab

2
+

�

2
cx1 = 0,

�x2
3
= �(2b2 + c2 + ac) − �.

(16)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−�(b2 + c2) +
�2b2

4�
= −�(2b2 + c2 + ac) + �,

�

2
bx2 + �x1x2 = 0,

�(−ax2 + 2bx3) = 0,

−�(b2 + ac) +
�2b2

2�
+ �x2

2
= −�(2b2 + c2 + ac) + �,

−�
ab

2
−

c�2b

4�
− �x2x3 = 0,

�x2
3
= �(2b2 + c2 + ac) − �.
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 (iii)  � ≠ 0 , x1 = 0 , x2 =
�a

�
≠ 0 , x3 =

a�

2�
 , � = (2� − �)(a2 +

b2

2
) +

�2a2

�
 , for all 

�, �, a, b, c, � such that a ≠ 0 , ��b = �2b , �
2a2

4�2
=

�

�
(a2 +

b2

2
) −

�2a2

�2
.

Proof From [19, 20], we have

and

with respect to the basis {e1, e2, e3} . Then S̃ = −(2a2 + b2) and the Eq. (2) becomes

Let � = 0 . In this case, the system Eq. (17) reduces to

Since (�, �,�) ≠ (0, 0, 0) we get � ≠ 0 and x1 = x2 = 0 . Thus the case (i) holds. 
Using of the first and fourth equations of the system Eq. (17) we get

Now, we consider � ≠ 0 , in this case, the second equation of the system Eq. (17) 
implies that x1 = 0 or x2 =

�a

2�
 . If x1 ≠ 0 then x2 =

�a

2�
 . Substutiting it in Eq. (19) we 

have ( �a
2�
)2 + x2

1
= 0 which is a contradiction. Hence x1 = 0 and the system Eq. (17) 

and Eq. (19) become

R̃ic
0

=

⎛
⎜⎜⎜⎝

−(a2 +
b2

2
) 0

ab

4

0 − (a2 +
b2

2
)

a2

2
ab

4

a2

2
0

⎞
⎟⎟⎟⎠

(L0

X
g) =

⎛
⎜⎜⎜⎝

2ax2 − ax1 −
b

2
x2

−ax1 0
b

2
x1

−
b

2
x2

b

2
x1 0

⎞
⎟⎟⎟⎠

(17)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−�(a2 +
b2

2
) + �ax2 + �x2

1
= −�(2a2 + b2) + �,

−
�

2
ax1 + �x1x2 = 0,

�ab

4
−

�b

4
x2 − �x1x3 = 0,

−�(a2 +
b2

2
) + �x2

2
= −�(2a2 + b2) + �,

�
a2

2
+

�b

4
x1 − �x2x3 = 0,

�x2
3
= �(2a2 + b2) − �.

(18)

⎧⎪⎨⎪⎩

�x2 = 0,

�x1 = 0,

� = 0,

� = �(2a2 + b2).

(19)�ax2 + �x2
1
= �x2

2
.
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The sixth equation of Eq. (20) yields x2 = 0 or x2 =
�a

�
 . If x2 = 0 then the case (ii) is 

true. If x2 ≠ 0 and x2 =
�a

�
 then the case (iii) holds.   ◻

Theorem 6 The left-invariant affine generalized Ricci soliton associated to the con-
nection ∇1 on the Lie group (G3, g, J,X) are the following: 

(i)  � = 0 , � = 0 , � ≠ 0 , x1 = x2 = x3 = 0 , � = 2�(a2 + b2) , for all �, a, b, c such 
that a ≠ 0,

(ii)  � ≠ 0 , �b = 0 , x1 = � = x2 = � = x3 = 0 , � = 2�(a2 + b2),
  (iii)  � ≠ 0 , �b = 0 , x1 = 0 , � = 0 , x2 = 0 , x3 = −

�a

�
 , � = (2� − �)(a2 + b2) ,   

�2a2� = �2�(a2 + b2),
  (iv)  � ≠ 0 , �b = 0 , x1 = 0 , � = 0 , x2 =

�a

�
 , b = 0 , �� = −�2 , x3 = �2a2

�−1

�2
 , 

� = (2� − �)(a2 + b2) +
�2a2

�
,

   (v)  � ≠ 0 , �b ≠ 0 , 

 and 

(20)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

−�(a2 +
b2

2
) + �ax2 = −�(2a2 + b2) + �,

�ab

4
−

�b

4
x2 = 0,

−�(a2 +
b2

2
) + �x2

2
= −�(2a2 + b2) + �,

�
a2

2
− �x2x3 = 0,

�x2
3
= �(2a2 + b2) − �,

�ax2 = �x2
2
.

x1 = �1

�
−�2a2 +

√
�4a4 + 64�2�2b2a2

8�2
, �1 = ±1,

x2 =
−�a + �2

�
1

2
�2a2 +

1

2

√
�4a4 + 64�2�2b2a2

−2�
, �2 = ±1,

� = (2� − �)(a2 + b2) + �

⎛⎜⎜⎜⎝

−�a + �2

�
1

2
�2a2 +

1

2

√
�4a4 + 64�2�2b2a2

−2�

⎞⎟⎟⎟⎠

2

,
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 where �3 = ±1 , �ab = �1�2‖�ab‖ , 

 and 

Proof From [19, 20], we have

and

x3 = �3

��������
�

�
(a2 + b2) −

⎛
⎜⎜⎜⎝

−�a + �2

�
1

2
�2a2 +

1

2

√
�4a4 + 64�2�2b2a2

−2�

⎞
⎟⎟⎟⎠

2

,

�ab + �b

�
−�a+�2

√
1

2
�2a2+

1

2

√
�4a4+64�2�2b2a2

−2�

�

�1

�
−�2a2+

√
�4a4+64�2�2b2a2

8�2

− �a

= 2��3

��������
�

�
(a2 + b2) −

⎛
⎜⎜⎜⎝

−�a + �2

�
1

2
�2a2 +

1

2

√
�4a4 + 64�2�2b2a2

−2�

⎞
⎟⎟⎟⎠

2

,

2��a2 − 2��b�1

�
−�2a2+

√
�4a4+64�2�2b2a2

8�2

−�a + �2

�
1

2
�2a2 +

1

2

√
�4a4 + 64�2�2b2a2

+

2�a��3

���� �

�
(a2 + b2) −

�
−�a+�2

√
1

2
�2a2+

1

2

√
�4a4+64�2�2b2a2

−2�

�2

−�a + �2

�
1

2
�2a2 +

1

2

√
�4a4 + 64�2�2b2a2

− a�

= 2��3

��������
�

�
(a2 + b2) −

⎛
⎜⎜⎜⎝

−�a + �2

�
1

2
�2a2 +

1

2

√
�4a4 + 64�2�2b2a2

−2�

⎞
⎟⎟⎟⎠

2

.

R̃ic
1

=

⎛⎜⎜⎜⎝

−(a2 + b2) ab −
ab

2

ab − (a2 + b2)
a2

2

−
ab

2

a2

2
0

⎞⎟⎟⎟⎠



15

1 3

Journal of Nonlinear Mathematical Physics (2023) 30:1–33 

with respect to the basis {e1, e2, e3} . Therefore S̃ = −2(a2 + b2) and the Eq. (2) 
becomes

Let � = 0 then we have � = 0 and � ≠ 0 . Thus x1 = x2 = x3 = 0 and the case (i) 
holds. Now, we assume that � ≠ 0 . The first and fourth equations of the system Eq. 
(21) imply that

and the fourth and sixth equations imply that

From the second equation we have

Plugging Eq. (22) into last equality we get

If �b = 0 then x1 = 0 and we obtain three cases (ii)-(iv). If �b ≠ 0 , then x1 ≠ 0 and 
the case (v) is true.   ◻

Theorem 7 The left-invariant affine generalized Ricci soliton associated to the con-
nection ∇0 on the Lie group (G4, g, J,X) are the following: 

 (i) � = 0 , � = 0 , � ≠ 0 , x1 = x2 = 0 , � = −�((2d − b)(a + 2d) − 2) for all 
a, b, c, �, x3 such that d = ±1.

 (ii) � = 0 , � ≠ 0 , d = b , a = 0 � = 0 , � = 0 , for all x1, x2, x3, � such that d = ±1,
 (iii) � = 0 , � ≠ 0 , d = b , a = 0 � ≠ 0 , x1 = x2 = 0 , � = 0 , for all x3, � such that 

d = ±1,

(L1

X
g) =

⎛
⎜⎜⎝

2ax2 − ax1 ax1 − bx2
−ax1 0 bx1 − ax2 − ax3

ax1 − bx2 bx1 − ax2 − ax3 0

⎞
⎟⎟⎠

(21)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

−�(a2 + b2) + �ax2 + �x2
1
= −2�(a2 + b2) + �,

ab� −
�

2
ax1 + �x1x2 = 0,

−
�ab

2
+

�

2
(ax1 − bx2) − �x1x3 = 0,

−�(a2 + b2) + �x2
2
= −2�(a2 + b2) + �,

−�
a2

2
+

�

2
(bx1 − ax2 − ax3) − �x2x3 = 0,

�x2
3
= 2�(a2 + b2) − �.

(22)�ax2 + �x2
1
− �x2

2
= 0,

(23)x2
2
+ x2

3
=

�

�
(a2 + b2).

(2�ba)2 = x2
1
(�a − 2�x2)

2 = x2
1
(�2a2 + 4�(�x2

2
− �ax2)).

(24)4�2x4
1
+ �2a2x2

1
− (2�ba)2 = 0.
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 (iv) � ≠ 0 , x2 = 0 , x3 = 0 , x1 = 0 , � = 0 , � = −�((2d − b)(a + 2d) − 2) , for all 
a, b, �, � , d = ±1,

 (v) � ≠ 0 , x2 = 0 , x3 = 0 , x1 = 0 , � ≠ 0 , b = d , a = 0 , � = 0 , for all �, � , d = ±1,
 (vi) � ≠ 0 , x2 = 0 , x3 = 0 , x1 =

�

�
≠ 0 , � = −�((2d − b)(a + 2d) − 2) for all 

a, b, �, �  s u ch  t h a t  d = ±1 ,  𝛽2 = −𝛼𝜇
(
(2d − b)(

a

2
+ d) − 1

)
> 0  , 

�
(
a + b − (2d − b)(

a

2
+ d)2

)
= 0,

 (vii) � ≠ 0  ,  x2 = 0  ,  x3 ≠ 0  ,  x1 = 0  ,  x2
3
= −

𝛼

𝜇

(
(2d − b)(

a

2
+ d) − 1

)
> 0  , 

� = (� − 2�)
(
(2d − b)(

a

2
+ d) − 1

)
 ,  for  al l  �, �  such that  d = ±1 , 

�(a + 2b − 2d) = 0.

Proof From [19, 20], we have

and

with respect to the basis {e1, e2, e3} . Then S̃ = (2d − b)(a + 2d) − 2 and the Eq. (2) 
becomes

We consider � = 0 , then the system Eq. (25) reduces to

If � = 0 then � ≠ 0 and x1 = x2 = 0 . Thus the case (i) holds. If � ≠ 0 then d = b , 
a = 0 and the cases (ii)-(iii) hold. Now we consider � ≠ 0 . The first and third equa-
tions of the system Eq. (25) yield

R̃ic
0

=

⎛
⎜⎜⎜⎝

(2d − b)(
a

2
+ d) − 1 0 0

0 (2d − b)(
a

2
+ d) − 1

a

4
+

d

2
−

b

2

0
a

4
+

d

2
−

b

2
0

⎞
⎟⎟⎟⎠

(L0

X
g) =

⎛⎜⎜⎝

0 − x2 − (
a

2
+ d)x2

−x2 2x1 (
a

2
+ d)x1

−(
a

2
+ d)x2 (

a

2
+ d)x1 0

⎞⎟⎟⎠

(25)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�
�
(2d − b)(

a

2
+ d) − 1

�
+ �x2

1
= �((2d − b)(a + 2d) − 2) + �,

−
�

2
x2 + �x1x2 = 0,

−
�

2
(
a

2
+ d)x2 − �x1x3 = 0,

�
�
(2d − b)(

a

2
+ d) − 1

�
+ �x1 + �x2

2
= �((2d − b)(a + 2d) − 2) + �,

�
�
a

4
+

d

2
−

b

2

�
+

�

2
(
a

2
+ d)x1 − �x2x3 = 0,

�x2
3
= −�((2d − b)(a + 2d) − 2) − �.

(26)

⎧⎪⎪⎨⎪⎪⎩

�
�
(2d − b)(

a

2
+ d) − 1

�
= 0,

�x2 = 0,

�x1 = 0,

�
�
a

4
+

d

2
−

b

2

�
= 0,

� = −�((2d − b)(a + 2d) − 2).
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In this case the second eqution of the system Eq. (25) implies that x2 = 0 or x1 =
�

2�
 . 

If x2 ≠ 0 then x1 =
�

2�
 and substutiting it in Eq. (27) we get x2

2
+

�2

4�2
= 0 which is a 

cotradiction. Hence, x2 = 0 and the system Eq. (25) becomes

In this cases (iv)-(vi) hold.   ◻

Theorem 8 The left-invariant affine generalized Ricci soliton associated to the con-
nection ∇1 on the Lie group (G4, g, J,X) are the following: 

 (i) � = 0 , � = 0 , x1 = x2 = x3 = 0 , � = 2�[1 + (b − 2d)b] , for all a, b, � , d = ±1,
 (ii) � = 0 , � ≠ 0 , � ≠ 0 , x2 = x3 = 0 , b = d , a = 2b , x1 =

�

2�
 , � = 0 , for all � , 

d = ±1,
 (iii) � ≠ 0 , x2 = 0 , x3 = 0 , � = 0 , x1 = 0 , � = 2�[1 + (b − 2d)b] , for all a, b, �, � 

such that d = ±1,
 (iv) � ≠ 0 , x2 = 0 , x3 = 0 , � ≠ 0 , � ≠ 0 , b ≠ 0 , x1 =

�a

�b
 , � = 2�[1 + (b − 2d)b] , for 

all a, b, � such that d = ±1 , b[1 + (b − 2d)a] = a , 

 (v) � ≠ 0  ,  x2 = 0  ,  x2
3
=

𝛼

𝜇
[1 + (b − 2d)b] −

𝛽2

4𝜇2
> 0  ,  x1 = −

�

2�
 , 

� = (2� − �)[1 + (b − 2d)b] +
�2

4�
 , for all a, b, �, � such that 

 (vi) � ≠ 0  ,  x2 ≠ 0  ,  x1 =
�

2�
 ,  � = 0  ,  � = (2� − �)[1 + (b − 2d)b]  , 

x2 = �1

√
−

�

�
[(b − 2d)(b − a)] , x3 = �2

√
�

�
[1 + (b − 2d)b] , for all � such that 

d = ±1 , �
�
[(b − 2d)(b − a)] ≤ 0 , �

�
[1 + (b − 2d)b] ≥ 0 , �1 = ±1 , �2 = ±1 , 

 (vii) � ≠ 0 , x2 ≠ 0 , x1 =
�

2�
 , � ≠ 0 , x3 = −

a

2
x2 , � = (2� − �)[1 + (b − 2d)b] +

�2

4�
 , 

x2
2
=

−2𝜇𝛼[1+(b−2d)a]+𝛽2

−2𝜇2(1+
a2

4
)

> 0 , 

(27)�x2
1
= �x1 + �x2

2
.

(28)

⎧
⎪⎪⎨⎪⎪⎩

�
�
(2d − b)(

a

2
+ d) − 1

�
+ �x2

1
= �((2d − b)(a + 2d) − 2) + �,

x1x3 = 0,

�
�
(2d − b)(

a

2
+ d) − 1

�
+ �x1 = �((2d − b)(a + 2d) − 2) + �,

�
�
a

4
+

d

2
−

b

2

�
+

�

2
(
a

2
+ d)x1 = 0,

�x2
3
= −�((2d − b)(a + 2d) − 2) − �.

−�2[1 + (b − 2d)b] + ��[1 + (b − 2d)a]2 = 0,

d = ±1, �(b − 2d)(a − b) = −
3�2

4�
, 2��a = −b�2,

−
a�

�
= �1�2

√
−
�

�
[(b − 2d)(b − a)]

√
�

�
[1 + (b − 2d)b]
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1 3

Proof From [19, 20], we have

and

with respect to the basis {e1, e2, e3} . Therefore S̃ = −2[1 + (b − 2d)b] and the Eq. 
(2) becomes

Let � = 0 , then the system Eq. (29) becomes

and the cases (i)-(ii) holds. Now we consider � ≠ 0 . In this case the second equation 
of the system Eq. (29) implies that x2 = 0 or x1 =

�

2�
 . If x2 = 0 then the system Eq. 

(29) gives

d = ±1, −a� +
�2

2�
b +

a�

2

−2��[1 + (b − 2d)a] + �2

−2�2(1 +
a2

4
)

= 0,

−�[1 + (b − 2d)b] +
�2

4�
= −�

a2

4

−2��[1 + (b − 2d)a] + �2

−2�2(1 +
a2

4
)

.

R̃ic
1

=

⎛
⎜⎜⎝

−[1 + (b − 2d)b] 0 0

0 − [1 + (b − 2d)a]
a

2

0
a

2
0

⎞
⎟⎟⎠

(L1

X
g) =

⎛⎜⎜⎝

0 − x2 − ax2 − x3
−x2 2x1 bx1

−ax2 − x3 bx1 0

⎞⎟⎟⎠

(29)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−�[1 + (b − 2d)b] + �x2
1
= −2�[1 + (b − 2d)b] + �,

−
�

2
x2 + �x1x2 = 0,

�

2
(−ax2 − x3) − �x1x3 = 0,

−�[1 + (b − 2d)a] + �x1 + �x2
2
= −2�[1 + (b − 2d)b] + �,

−�
a

2
+

�

2
(bx1) − �x2x3 = 0,

�x2
3
= 2�[1 + (b − 2d)b] − �.

(30)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�[1 + (b − 2d)b] = 0,

�x2 = 0,

�x3 = 0,

−�[1 + (b − 2d)a] + �x1 = 0,

−a� + �bx1 = 0,

� = 2�[1 + (b − 2d)b].
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The second equation of the system Eq. (31) implies that x3 = 0 or x1 = −
�

2�
 . We 

assume that x3 = 0 , thus

and the cases (iii)-(iv) are true. If x3 ≠ 0 and x1 = −
�

2�
 then the case (v) is true. 

Now, we consider x2 ≠ 0 and x1 =
�

2�
 . In this case the system Eq. (29) yields

The second equation of Eq. (32) implies that � = 0 or x3 = −
a

2
x2 . If � = 0 then we 

obtain the case (vi). If � ≠ 0 then x3 = −
a

2
x2 and the case (vii) holds.

  ◻

Theorem 9 The left-invariant affine generalized Ricci soliton associated to the con-
nection ∇0 on the Lie group (G5, g, J,X) are the following: 

 (i) � = � = � = 0 and for all �, �, x1, x2, x3, a, b, c, d such that a + d ≠ 0 and 
ac + bd = 0,

 (ii) � = � = 0 , � ≠ 0 , b = c , and for all �, �, x1, x2, x3, a, d such that a + d ≠ 0 and 
ac + bd = 0,

 (iii) � ≠ 0 , x1 = x2 = x3 = � = 0 and for all �, �, a, b, c, d such that a + d ≠ 0 and 
ac + bd = 0.

(31)

⎧
⎪⎪⎨⎪⎪⎩

−�[1 + (b − 2d)b] + �x2
1
= −2�[1 + (b − 2d)b] + �,

�x3 + 2�x1x3 = 0,

−�[1 + (b − 2d)a] + �x1 = −2�[1 + (b − 2d)b] + �,

−�a + �(bx1) = 0,

�x2
3
= 2�[1 + (b − 2d)b] − �.

⎧
⎪⎨⎪⎩

−�[1 + (b − 2d)b] + �x2
1
= 0,

−�[1 + (b − 2d)a] + �x1 = 0,

−�a + �bx1 = 0,

� = 2�[1 + (b − 2d)b],

(32)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−�[1 + (b − 2d)b] +
�2

4�
= −2�[1 + (b − 2d)b] + �,

�ax2 + 2�x3 = 0,

−�[1 + (b − 2d)a] +
�2

2�
+ �x2

2
= −2�[1 + (b − 2d)b] + �,

−a� +
�2

2�
b − �x2x3 = 0,

�x2
3
= 2�[1 + (b − 2d)b] − �.
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1 3

Proof From [19, 20], we have R̃ic
0

= 0 and

with respect to the basis {e1, e2, e3} . Then S̃ = 0 and the Eq. (2) becomes

The first, fourth and sixth equations of system Eq. (33) imply that

We consider � = 0 , then � = 0 . If � = 0 or b = c then the system Eq. (33) holds for 
any x1, x2 , and x3 . Now, if � ≠ 0 then x1 = x2 = x3 = � = 0 .   ◻

Theorem 10 The left-invariant affine generalized Ricci soliton associated to the con-
nection ∇1 on the Lie group (G5, g, J,X) are the following: 

(i) � = � = � = 0 and for all �, �, x1, x2, x3, a, b, c, d  such that a + d ≠ 0 and 
ac + bd = 0,

(ii) � = � = 0 , � ≠ 0 , a = b = x2 = 0 , and for all �, �, x1, x3, c, d such that d ≠ 0,
(iii) � = � = 0 , � ≠ 0 , a ≠ 0 , x1 = x2 = 0 , and for all �, �, x3, c, d such that d ≠ 0,
(iv) � = � = 0 , � ≠ 0 , a ≠ 0 , x1 = c = d = 0 , x2 ≠ 0 , and for all �, �, x3,
(v) � ≠ 0 , x1 = x2 = x3 = � = 0 and for all �, �, a, b, c, d such that a + d ≠ 0 and 

ac + bd = 0.

Proof From [19, 20], we have R̃ic
1

= 0 and

with respect to the basis {e1, e2, e3} . Therefore S̃ = 0 and the Eq. (2) becomes

(L0

X
g) =

⎛
⎜⎜⎜⎝

0 0
b−c

2
x2

0 0 −
b−c

2
x1

b−c

2
x2 −

b−c

2
x1 0

⎞
⎟⎟⎟⎠

(33)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�x2
1
= �,

�x1x2 = 0,
�

2

b−c

2
x2 − �x1x3 = 0,

�x2
2
= �,

−
�

2

b−c

2
x1 − �x2x3 = 0,

�x2
3
= −�.

�(x2
1
+ x2

3
) = �(x2

2
+ x2

3
) = 0.

(L1

X
g) =

⎛⎜⎜⎝

0 0 − ax1 − cx2
−0 0 − bx1 − dx2

−ax1 − cx2 − bx1 − dx2 0

⎞⎟⎟⎠
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The first, fourth and sixth equations of system Eq. (34) imply that

We consider � = 0 , then � = 0 . Let � = 0 , then the system Eq. (34) holds for any 
x1, x2 , and x3 . If � ≠ 0 then the third and fiveth equations of Eq. (34) given

Since ac + bd = 0 we get (a2 + b2)x1 = 0 and (c2 + d2)x2 = 0 . We consider 
a = 0 . In this case we obtain d ≠ 0 and b = x2 = 0 . if a ≠ 0 then x1 = 0 and 
cx2 = dx2 = 0 . For case x2 ≠ 0 we have c = d = 0 . Now, we assume that � ≠ 0 , then 
x1 = x2 = x3 = � = 0 .   ◻

Theorem 11 The left-invariant affine generalized Ricci soliton associated to the con-
nection ∇0 on the Lie group (G6, g, J,X) are the following: 

 (i) � = 0 , a = 0 , d ≠ 0 , b = 0 , c = 0 , � = 0 , for all �, �, �, x1, x2, x3 , such that 
(�, �) ≠ (0, 0),

 (ii) � = 0 , a = 0 , d ≠ 0 , b = 0 , c ≠ 0 , � ≠ 0 , � = 0 , x2 = 0 , x1 = −
�d

�
 for all �, �, x3,

 (iii) � = 0 , a ≠ 0 , � = 0 , � ≠ 0 , � = 0 , c = bd

a
 , for all b, d, �, x1, x2, x3 , such that 

b2(a − d) = 2a3 , d(a − d) = 2�,
 (iv) � = 0 , a ≠ 0 , � ≠ 0 , x1 = x2 = 0 , � = 0 , c = bd

a
 , � = −�(b(b − c) − 2a2) for all 

b, d, x3, � such that a + d ≠ 0,
 (v) � ≠ 0 , x2 = 0 , x1 = 0 , x2

3
= −

�

�

(
1

2
b2 − a2

)
≥ 0 , � = (−2� + �)

(
1

2
b(b − c) − a2

)
 , 

for all a, b, c, d, �, �, � such that �c = 0, ac − bd = 0, a + d ≠ 0,
 (vi) � ≠ 0 , x2 = 0 , x3 = 0 , x1 = −

�a

�
≠ 0 , � = −�(b(b − c) − 2a2) , for all 

a, b, c, d, �, �, � such that 

(34)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�x2
1
= �,

�x1x2 = 0,
�

2
(−ax1 − cx2) − �x1x3 = 0,

�x2
2
= �,

�

2
(−bx1 − dx2) − �x2x3 = 0,

�x2
3
= −�.

�(x2
1
+ x2

3
) = �(x2

2
+ x2

3
) = 0.

{
ax1 + cx2 = 0,

bx1 + dx2 = 0.

�
(1
2
b(b − c) − a2

)
+

�2a2

�
= 0, �

1

2
[−ac +

1

2
d(b − c)] −

�2a

4�
(b − c) = 0,

ac − bd = 0, a + d ≠ 0.
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1 3

Proof From [19, 20], we have

and

with respect to the basis {e1, e2, e3} . Then S̃ = b(b − c) − 2a2 and the Eq. (2) 
becomes

Let � = 0 , then the system Eq. (35) becomes

If a = 0 then d ≠ 0 , b = 0 , and �cx2 = 0 . If c = 0 then the case (i) holds. Now, if 
c ≠ 0 then � ≠ 0 and the case (ii) holds. For a ≠ 0 the cases (iii)-(iv) hold.

Now we assume that � ≠ 0 . The first and fourth equations of the system Eq. (35) 
give

The second equation of the system Eq. (35) yields x2 = 0 or x1 = −
�a

2�
 . The Eq. (36) 

implies that x1 ≠ −
�a

2�
 thus x2 = 0 . The third equation of the system Eq. (35) implies 

that x1 = 0 or x3 = 0 . If x1 = 0 then we have

R̃ic
0

=

⎛
⎜⎜⎜⎝

1

2
b(b − c) − a2 0 0

0
1

2
b(b − c) − a2

1

2
[−ac +

1

2
d(b − c)]

0
1

2
[−ac +

1

2
d(b − c)] 0

⎞
⎟⎟⎟⎠

(L0

X
g) =

⎛
⎜⎜⎜⎝

0 ax2
c−b

2
x2

ax2 − 2ax1
b−c

2
x1

c−b

2
x2

b−c

2
x1 0

⎞
⎟⎟⎟⎠

(35)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�
�
1

2
b(b − c) − a2

�
+ �x2

1
= �(b(b − c) − 2a2) + �,

�

2
ax2 + �x1x2 = 0,

�

4
(c − b)x2 − �x1x3 = 0,

�
�
1

2
b(b − c) − a2

�
− �ax1 + �x2

2
= �(b(b − c) − 2a2) + �,

�
1

2
[−ac +

1

2
d(b − c)] +

�

4
(b − c)x1 − �x2x3 = 0,

�x2
3
= −�(b(b − c) − 2a2) − �.

(36)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�
�
1

2
b(b − c) − a2

�
= 0,

�ax2 = 0,

�(c − b)x2 = 0,

�ax1 = 0,

2�[−ac +
1

2
d(b − c)] + �(b − c)x1 = 0,

� = −�(b(b − c) − 2a2).

(37)�x2
1
= −�ax1 + �x2

2
.
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Hence, the case (v) holds. If x1 ≠ 0 and x3 = 0 then the Eq. (37) gives x1 = −
�a

�
 and 

we get

Therefore the case (vi) holds.   ◻

Theorem 12 The left-invariant affine generalized Ricci soliton associated to the con-
nection ∇1 on the Lie group (G6, g, J,X) are the following: 

 (i) � = 0 , a = 0 , b = 0 , d ≠ 0 , � = 0 , � = 0 , for all c, �, �, x1, x2, x3 such that � ≠ 0

,
 (ii) � = 0 , a = 0 , b = 0 , d ≠ 0 , � ≠ 0 , � = 0 , x3 = 0 , for all c, �, �, x1, x2 such that 

cx1 = 0,
 (iii) � = 0 , a ≠ 0 , � ≠ 0 , x2 = 0 , � = 0 , x1 = 0 , � = �(2a2 + bc) , for all x3, b, c, d, � 

such that a + d ≠ 0 , c = bd

a
,

 (iv) � ≠ 0 , x2 = 0 , x3 = 0 , a = 0 , b = 0 , d ≠ 0 , x1 = 0 , � = 0 , for all c, d, �, �, � 
such that (�, �) ≠ (0, 0) , d ≠ 0,

 (v) � ≠ 0 , x2 = 0 , x3 = 0 , a ≠ 0 , c = bd

a
 , d ≠ 0 , � = 0 , x1 = 0 , � = �(2a2 + bc) , 

for all d, �, �, � such that (�, �) ≠ (0, 0),
 (vi) � ≠ 0 , x2 = 0 , x3 = 0 , a ≠ 0 , d ≠ 0 , � ≠ 0 , c = 0 , x1 = −

�a

�
 , b = 0 , � = 2�a2 , 

for all �, � , such that a + d ≠ 0,
 (vii) � ≠ 0  ,  x2 = 0  ,  x2

3
=

𝛼a2

𝜇
+

𝛽2ad

2𝜇2
> 0  ,  x1 =

�d

2�
 ,  c =

bd

a
 , 

� = −�a2 −
�2ad

2�
+ �(2a2 + bc) , for all a, b, �, �, �  such that a + d ≠ 0 , 

�2cd = 0 , �2d2 = −2�2ad,
 (viii) � ≠ 0 , x2

2
=

𝛼

𝜇
a2 −

𝛽2a2

2𝜇2
> 0 , x1 = −

�a

2�
 , x3 = 0 , � = �(2a2 + bc) , c = bd

a
 , for all 

b, d, a, �, �, � such that a + d ≠ 0 , �ac = 0 , 4��(a2 + bc) + �2a2 = 0.

Proof From [19, 20], we have

(38)

⎧
⎪⎪⎨⎪⎪⎩

�
�
1

2
b(b − c) − a2

�
= �(b(b − c) − 2a2) + �,

ac − bd = 0,

�[−ac +
1

2
d(b − c)] = 0,

�x2
3
= −�(b(b − c) − 2a2) − �.

(39)

⎧
⎪⎨⎪⎩

�
�
1

2
b(b − c) − a2

�
+

�2a2

�
= 0,

�
1

2
[−ac +

1

2
d(b − c)] −

�2a

4�
(b − c) = 0,

� = −�(b(b − c) − 2a2).

R̃ic
1

=

⎛⎜⎜⎝

−(a2 + bc) 0 0

0 − a2 0

0 0 0

⎞⎟⎟⎠
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1 3

and

with respect to the basis {e1, e2, e3} . Therefore S̃ = −(2a2 + bc) and the Eq. (2) 
becomes

Let � = 0 , then

If we assume that a = 0 then the cases (i)-(ii) hold. If we consider a ≠ 0 then � ≠ 0 
and x2 = 0 , � = 0 and the case (iii) holds.

Now we consider � ≠ 0 . The second equation of the system Eq. (40) implies that 
x2 = 0 or x1 = −

�a

2�
 . If x2 = 0 then the system Eq. (40) becomes

The second equation of the system Eq. (42) yields x3 = 0 or x1 =
�d

2�
 . We consider 

x3 = 0 , then � = �(2a2 + bc) and

Thus, the cases (iv)-(vi) hold. If x3 ≠ 0 then x1 =
�d

2� and

(L1

X
g) =

⎛
⎜⎜⎝

0 ax2 dx3
ax2 − 2ax1 − cx1
dx3 − cx1 0

⎞
⎟⎟⎠

(40)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

−�(a2 + bc) + �x2
1
= −�(2a2 + bc) + �,

�

2
ax2 + �x1x2 = 0,

�

2
dx3 − �x1x3 = 0,

−�a2 − �ax1 + �x2
2
= −�(2a2 + bc) + �,

−
�

2
cx1 − �x2x3 = 0,

�x2
3
= �(2a2 + bc) − �.

(41)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�(a2 + bc) = 0,

a�x2 = 0,

d�x3 = 0,

−�a2 − �ax1 = 0,

�cx1 = 0,

� = �(2a2 + bc).

(42)

⎧⎪⎪⎨⎪⎪⎩

−�(a2 + bc) + �x2
1
= −�(2a2 + bc) + �,

�

2
dx3 − �x1x3 = 0,

−�a2 − �ax1 = −�(2a2 + bc) + �,

�cx1 = 0,

�x2
3
= �(2a2 + bc) − �.

(43)

⎧⎪⎨⎪⎩

−�(a2 + bc) + �x2
1
= 0,

−�a2 − �ax1 = 0,

�cx1 = 0.
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Hence, the case (vii) holds. Now we assume that x2 ≠ 0 , then x1 = −
�a

2�
 and we have

Therefore x3 = 0 and the case (viii) holds.
  ◻

Theorem 13 The left-invariant affine generalized Ricci soliton associated to the con-
nection ∇0 on the Lie group (G7, g, J,X) are the following: 

 (i) � = 0 , � = 0 , � ≠ 0 , a = 0 , d ≠ 0 , c = 0 , � = 0 , for all �, x1, x2, x3,
 (ii) � = 0 , � ≠ 0 , a = 0 , d ≠ 0 , b = 0 , c = 0 , � = 0 , for all �, �, x1, x2, x3,
 (iii) � = 0 , � ≠ 0 , a = 0 , d ≠ 0 , b = 0 , c ≠ 0 , � = 0 , x1 = 0 , x2 = −

�dc

�c
 for all 

�, �, x3,
 (iv) � = 0 , � ≠ 0 , a = 0 , d ≠ 0 , b ≠ 0 , x1 = x2 = 0 , � = �bc , for all c, �, �, x3 , such 

that �b = �c = 0,
 (v) � = 0 , � ≠ 0 , a ≠ 0 , c = 0 , � = x1 = x2 = 0 , � = 2�a2 , for all �, x3, b, d such 

that a + d ≠ 0,
 (vi) � ≠ 0 , a = 0 , d ≠ 0 , x2 = 0 , x1 = 0 , � = �bc , x3 = 0 , for all b, c, �, �, � such 

that �c = 0,
 (vii) � ≠ 0 , a = 0 , d ≠ 0 , x2 = 0 , x1 =

�b

�
≠ 0 , x3 = −

�dc

4��
 , � = −�

bc

2
+

�2b2

�
+ �bc , 

for all �, c, � such that ��c + �2(c − 2b) = 0 , �
2d2c2

16�2�
=

�bc

2
−

�2b2

�
,

 (viii) � ≠ 0 , a ≠ 0 , c = 0 , x1 = x2 = x3 = 0 , � = 0 , � = 2�a2 , for all �, �, d such that 
a + d ≠ 0,

 (ix) � ≠ 0 , a ≠ 0 , c = 0 , x3 = x2 = −
�a

2�
≠ 0 , x1 = 0 , � = (2� −

�

2
)a2 , for all 

b, d, �, �, � such that 2��2 = �2� , a + d ≠ 0.

Proof From [19, 20], we have

(44)

⎧
⎪⎪⎨⎪⎪⎩

−�(a2 + bc) +
�2d2

4�
= −�(2a2 + bc) + �,

−�a2 −
�2ad

2�
= −�(2a2 + bc) + �,

�2cd = 0,

�x2
3
= �(2a2 + bc) − �.

(45)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

−�(a2 + bc) +
�2a2

4�
= −�(2a2 + bc) + �,

�x3 = 0,

−�a2 +
�2a2

2�
+ �x2

2
= −�(2a2 + bc) + �,

�2ac

4�
− �x2x3 = 0,

�x2
3
= �(2a2 + bc) − �.
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and

with respect to the basis {e1, e2, e3} . Then S̃ = −(2a2 + bc) and the Eq. (2) becomes

Let � = 0 then the system Eq. (46) becomes

If � = 0 then � ≠ 0 and the case (i) is true. If � ≠ 0 and a = 0 then d ≠ 0 and we 
have

Hence the cases (ii)-(iv) hold.
For the case � ≠ 0 and a ≠ 0 we have c = 0 and � = x1 = x2 = 0 . Therefore the 

case (v) holds.
Now, we assume that � ≠ 0 . The first and the fourth equations of the system Eq. 

(46) imply

R̃ic
0

=

⎛
⎜⎜⎜⎝

−(a2 +
bc

2
) 0 −

1

2
(ac +

dc

2
)

0 − (a2 +
bc

2
)

1

2
(a2 +

bc

2
)

−
1

2
(ac +

dc

2
)

1

2
(a2 +

bc

2
) 0

⎞
⎟⎟⎟⎠

(L0

X
g) =

⎛
⎜⎜⎝

−2ax2 ax1 − bx2 (b −
c

2
)x2

ax1 − bx2 2bx1 (
c

2
− b)x1

(b −
c

2
)x2 (

c

2
− b)x1 0

⎞
⎟⎟⎠

(46)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

−�(a2 +
bc

2
) − �ax2 + �x2

1
= −�(2a2 + bc) + �,

�

2
(ax1 − bx2) + �x1x2 = 0,

−
�

2
(ac +

dc

2
) +

�

2
(b −

c

2
)x2 − �x1x3 = 0,

−�(a2 +
bc

2
) + �bx1 + �x2

2
= −�(2a2 + bc) + �,

�

2
(a2 +

bc

2
) +

�

2
(
c

2
− b)x1 − �x2x3 = 0,

�x2
3
= �(2a2 + bc) − �.

(47)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−�(a2 +
bc

2
) − �ax2 = 0,

�

2
(ax1 − bx2) = 0,

−
�

2
(ac +

dc

2
) +

�

2
(b −

c

2
)x2 = 0,

−�(a2 +
bc

2
) + �bx1 = 0,

�

2
(a2 +

bc

2
) +

�

2
(
c

2
− b)x1 = 0,

� = �(2a2 + bc).

(48)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�bc = 0,

bx2 = 0,

�dc + �cx2 = 0,

bx1 = 0,

cx1 = 0,

� = �bc.
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Since ac = 0 then a = 0 or c = 0 . If a = 0 then the system Eq. (46) becomes

The second equation of Eq. (50) yields x2 = 0 or x1 =
�b

2�
 . If x2 ≠ 0 then x1 =

�b

2�
 and 

substituting it in Eq. (49) we get �
2b2

4�2
+ x2

2
= 0 and this is a contradiction. Thus 

x2 = 0 and from the Eq. (49) we have x1 = 0 , or x1 =
�b

�
 . If x1 = 0 then � = �bc , 

�c = 0 , x3 = 0 , and the case (vi) is true. Also, if x1 =
�b

�
≠ 0 then

Thus, the case (vii) holds. Now for case � ≠ 0 and a ≠ 0 we have c = 0 and

The fourth, fiveth and sixth equations of Eq. (52) imply that x2 = x3 . The second and 
third equations imply that �x1 = 0 . Then

Using the second equation of Eq. (53) we have x2 = 0 or x1 =
�b

2�
 . If x2 = 0 then 

� = 0 and the case (viii) holds. If x2 ≠ 0 then x1 =
�b

2�
= 0 and

(49)−�ax2 + �x2
1
= �bx1 + �x2

2
.

(50)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

−�
bc

2
+ �x2

1
= −�bc + �,

−
�

2
bx2 + �x1x2 = 0,

−
�

2

dc

2
+

�

2
(b −

c

2
)x2 − �x1x3 = 0,

−�
bc

2
+ �bx1 + �x2

2
= −�bc + �,

�

2

bc

2
+

�

2
(
c

2
− b)x1 − �x2x3 = 0,

�x2
3
= �bc − �.

(51)

⎧⎪⎪⎨⎪⎪⎩

−�
bc

2
+

�2b2

�
= −�bc + �,

−
�

2

dc

2
− �bx3 = 0,

�

2

bc

2
+

�2b

2�
(
c

2
− b) = 0,

�x2
3
= �bc − �.

(52)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−�a2 − �ax2 + �x2
1
= −2�a2 + �,

�

2
(ax1 − bx2) + �x1x2 = 0,

�

2
bx2 − �x1x3 = 0,

−�a2 + �bx1 + �x2
2
= −2�a2 + �,

�

2
a2 −

�

2
bx1 − �x2x3 = 0,

�x2
3
= 2�a2 − �.

(53)

⎧⎪⎪⎨⎪⎪⎩

−�a2 − �ax2 + �x2
1
= −2�a2 + �,

−
�

2
bx2 + �x1x2 = 0,

−�a2 + �x2
2
= −2�a2 + �,

�

2
a2 − �x2

2
= 0,

�x2
2
= 2�a2 − �.
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Thus the case (ix) is true.   ◻

Theorem 14 The left-invariant affine generalized Ricci soliton associated to the con-
nection ∇1 on the Lie group (G7, g, J,X) are the following: 

 (i) � = 0 , a = 0 , d ≠ 0 , � ≠ 0 , b = 0 , x2 = 0 , x3 =
2�d

�
 , � = 0 , for all c, �, x1,

 (ii) � = 0 , a = 0 , d ≠ 0 , � ≠ 0 , b = 0 , x2 ≠ 0 , c = 0,x2 + x3 =
2�d

�
 , � = 0 , for all 

�, x1,
 (iii) � = 0 , a = 0 , d ≠ 0 , � ≠ 0 , b ≠ 0 , x1 =

�(b+c)

�
 , x2 =

�bd

�b
 , x3 =

2�d

�
−

c�d

�b
 , 

� = �(b2 + bc) , for all c, �, � such that c�d2 − b3� − �bd2 = 0,
 (iv) � = 0 , a ≠ 0 , c = 0 , � ≠ 0 , b = 0 , � = 0 , x1 = x2 = 0 , � = 2�a2 , for all �, d 

such that a + d ≠ 0 , dx3 = 0,
 (v) � = 0 , a ≠ 0 , c = 0 , � ≠ 0 , b ≠ 0 , � = 0 , x1 = x2 = x3 = 0 , � = �(2a2 + b2) , 

for all �, d such that a + d ≠ 0,
 (vi) � ≠ 0 , a = 0 , d ≠ 0 , x1 = x3 = 0 , � = �(b2 + bc) , � = 0 , � = 0 , x2 = 0 , for all 

�, b, c,
 (vii) � ≠ 0 , a = 0 , d ≠ 0 , x1 = x3 = 0 , � = 0 , � ≠ 0 , x2 = � = 0 , for all �, b, c,
 (viii) � ≠ 0  ,  a ≠ 0  ,  c = 0  ,  � = 0  ,  x1 = �1

√
�a2−�(2a2+b2)+�

�
 , 

x2 = �2

√
�(a2+b2)−�(2a2+b2)+�

�
 , x3 = �3

√
�(2a2+b2)−�

�
 , for all b, d, �, �, � such that 

a + d ≠ 0 , 

 (ix) � ≠ 0 , a ≠ 0 , c = 0 , � ≠ 0 , x1 = F , x2 =
�(2a2+b2)−�−�a2+�F2

�a
 , x3 = �

√
�(2a2+b2)−�

�
 , 

for all b, d, �, � such that a + d ≠ 0 , �(2a
2+b2)−�

�
≥ 0 , 

(54)

⎧
⎪⎨⎪⎩

−�ax2 =
�

2
a2,

�

2
a2 − �x2

2
= 0,

�

2
a2 = 2�a2 − �.

�a2 − �(2a2 + b2) + �

�
≥ 0,

�(2a2 + b2) − �

�
≥ 0,

�

2
(bd − ab) + ��1�2

√
�a2 − �(2a2 + b2) + �

�

√
�(a2 + b2) − �(2a2 + b2) + �

�
= 0,

�b(a + d) − ��1�3

√
�a2 − �(2a2 + b2) + �

�

√
�(2a2 + b2) − �

�
= 0,

�

2
(ad + 2d2) − ��2�3

√
�(a2 + b2) − �(2a2 + b2) + �

�

√
�(2a2 + b2) − �

�
= 0.
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 where � = ±1 , 

Proof From [19, 20], we have

and

with respect to the basis {e1, e2, e3} . Therefore S̃ = −(2a2 + b2 + bc) and the Eq. (2) 
becomes

�b(a + d) +
�

2

⎛
⎜⎜⎝
−aF − b�

�
�(2a2 + b2) − �

�

⎞
⎟⎟⎠
− �F�

�
�(2a2 + b2) − �

�
= 0,

− �(a2 + b2) + �bF + �
��(2a2 + b2) − � − �a2 + �F2

�a

�2

= −�(2a2 + b2) + �,

�

2
(ad + 2d2) +

�

2

⎛⎜⎜⎝
−bF − d

�(2a2 + b2) − � − �a2 + �F2

�a
− d�

�
�(2a2 + b2) − �

�

⎞⎟⎟⎠

− ��
�(2a2 + b2) − � − �a2 + �F2

�a

�
�(2a2 + b2) − �

�
= 0,

�(2a2 + b2) − �

�
≥ 0,

27C2 + (4A3 − 18AB)C + 4B3 − A2B2 ≥ 0,

F = E −

B

3
−

A2

9

E
−

A

3
,

E =

�√
27C2 + (4A3 − 18AB)C + 4B3 − A2B2

2(3
3

2 )

+
AB − 3C

6
−

A3

27

� 1

3

≠ 0,

A = −
b�

2�
,

B =
�2a2

2�2
+

1

�

�
�(2a2 + b2) − � − �a2

�
,

C =
�a

2�2

�
�(bd − ab) −

b

a

�
�(2a2 + b2) − � − �a2

��
.

R̃ic
1

=

⎛⎜⎜⎜⎝

−a2
1

2
(bd − ab) b(a + d)

1

2
(bd − ab) − (a2 + b2 + bc)

1

2
(bc + ad + 2d2)

b(a + d)
1

2
(bc + ad + 2d2) 0

⎞⎟⎟⎟⎠

(L1

X
g) =

⎛⎜⎜⎝

−2ax2 ax1 − bx2 − ax1 − cx2 − bx3
ax1 − bx2 2bx1 − bx1 − dx2 − dx3

−ax1 − cx2 − bx3 − bx1 − dx2 − dx3 0

⎞⎟⎟⎠
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Let � = 0 , then the system Eq. (55) becomes

Since ac = 0 we get a = 0 or c = 0 . If a = 0 then a + d ≠ 0 implies that d ≠ 0 and 
we have

If � = 0 then (�, �,�) ≠ (0, 0, 0) yields � ≠ 0 . Also, the first equation of Eq. (57) 
gives b = 0 and the fourth equation of Eq. (57) implies that �d2 = 0 which is a con-
tradiction. Hence, � ≠ 0 and the cases (i)–(iii) hold.

Now, we consider � = 0 and a ≠ 0 , then c = 0 and we get

If � = 0 then the first equation of the system Eq. (58) yields � = 0 which is a contra-
diction, then � ≠ 0 . If b = 0 then the case (iv) holds. If b ≠ 0 then from the first 
three equations of the system Eq. (58) we obtain x1 = −

�bd

�a
 , x2 = −

�a

�
 , x3 =

2�a+3�d

�
 . 

Hence using the fourth and fiveth equations of the system Eq. (58) we have

(55)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

−�a2 − �ax2 + �x2
1
= −�(2a2 + b2 + bc) + �,

�

2
(bd − ab) +

�

2
(ax1 − bx2) + �x1x2 = 0,

�b(a + d) +
�

2
(−ax1 − cx2 − bx3) − �x1x3 = 0,

−�(a2 + b2 + bc) + �bx1 + �x2
2
= −�(2a2 + b2 + bc) + �,

�

2
(bc + ad + 2d2) +

�

2
(−bx1 − dx2 − dx3) − �x2x3 = 0,

�x2
3
= �(2a2 + b2 + bc) − �.

(56)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

−�a2 − �ax2 = 0,
�

2
(bd − ab) +

�

2
(ax1 − bx2) = 0,

�b(a + d) +
�

2
(−ax1 − cx2 − bx3) = 0,

−�(a2 + b2 + bc) + �bx1 = 0,
�

2
(bc + ad + 2d2) +

�

2
(−bx1 − dx2 − dx3) = 0,

� = �(2a2 + b2 + bc).

(57)

⎧⎪⎪⎨⎪⎪⎩

�bd − �bx2 = 0,

�bd +
�

2
(−cx2 − bx3) = 0,

−�(b2 + bc) + �bx1 = 0,
�

2
(bc + 2d2) +

�

2
(−bx1 − dx2 − dx3) = 0,

� = �(b2 + bc).

(58)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�a + �x2 = 0,

�(bd − ab) + �(ax1 − bx2) = 0,

�b(a + d) +
�

2
(−ax1 − bx3) = 0,

−�(a2 + b2) + �bx1 = 0,
�

2
(ad + 2d2) +

�

2
(−bx1 − dx2 − dx3) = 0,

� = �(2a2 + b2).
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If � ≠ 0 then a2 + b2 + d2 = 0 which is a contradiction, then � = 0 , x1 = x2 = x3 = 0 
and the case (v) is true. Now, we consider � ≠ 0 . If a = 0 then d ≠ 0 and the system 
Eq. (55) gives

The first and sixth equations of the system Eq. (60) imply that x1 = x3 = 0 and 
� = �(b2 + bc) . Thus the system Eq. (60) gives

If � = 0 then � = 0 , x2 = 0 and the case (vi) holds. If � ≠ 0 and b = 0 then 
x2 = � = 0 and the case (vii) is true. Notice if b ≠ 0 and � ≠ 0 then from the first 
two equations of the system Eq. (61) we infer c = 2b and Replacing it with x2 =

�d

�
 

in the fourth equation of the system Eq. (61) we obtain 2b2 + d2 = 0 which is a con-
tradiction. Let � ≠ 0 and a ≠ 0 then c = 0 and the system Eq. (55) gives

If � = 0 then the system Eq. (62) reduces to

(59)

{
�(a2 + b2 +

b2d

a
) = 0,

�(−d2 +
b2d

a
) = 0.

(60)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�x2
1
= −�(b2 + bc) + �,

�bd − �bx2 + 2�x1x2 = 0,

�bd +
�

2
(−cx2 − bx3) − �x1x3 = 0,

−�(b2 + bc) + �bx1 + �x2
2
= −�(b2 + bc) + �,

�

2
(bc + 2d2) +

�

2
(−bx1 − dx2 − dx3) − �x2x3 = 0,

�x2
3
= �(b2 + bc) − �.

(61)

⎧⎪⎨⎪⎩

�bd − �bx2 = 0,

2�bd − �cx2 = 0,

−�(b2 + bc) + �x2
2
= 0,

�(bc + 2d2) − �dx2 = 0.

(62)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−�a2 − �ax2 + �x2
1
= −�(2a2 + b2) + �,

�

2
(bd − ab) +

�

2
(ax1 − bx2) + �x1x2 = 0,

�b(a + d) +
�

2
(−ax1 − bx3) − �x1x3 = 0,

−�(a2 + b2) + �bx1 + �x2
2
= −�(2a2 + b2) + �,

�

2
(ad + 2d2) +

�

2
(−bx1 − dx2 − dx3) − �x2x3 = 0,

�x2
3
= �(2a2 + b2) − �.

(63)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−�a2 + �x2
1
= −�(2a2 + b2) + �,

�

2
(bd − ab) + �x1x2 = 0,

�b(a + d) − �x1x3 = 0,

−�(a2 + b2) + �x2
2
= −�(2a2 + b2) + �,

�

2
(ad + 2d2) − �x2x3 = 0,

�x2
3
= �(2a2 + b2) − �.
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Then the case (viii) is true. If � ≠ 0 , then the first and second equations of the sys-
tem Eq. (62) imply that

Thus the case (ix) holds.
  ◻
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