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Abstract
In this study, the position vector of a timelike curve ℘ is stated by a linear com-
bination of its Serret Frenet frame with differentiable functions. The definition of 
tangential dual curve of the curve ℘ is stated by using these differentiable func-
tions. Moreover, tangential torque curve of timelike curve ℘ is defined and inves-
tigated. New dynamically and physical results are stated depending on the torque 
of the timelike curve ℘ and the direction of the tangent vector component of the 
curve. Then, the position vector of a timelike W curve is again stated by differenti-
able functions. Therefore, solutions of differential equation of the position vector of 
timelike W curve with two different types depending on the values of curvature and 
torsion of timelike curve are obtained. By using the differentiable functions obtained 
as a result of these solutions, tangential dual and torque curve of the timelike W 
curve are obtained. Depending on the tangential dual and torque curve of the time-
like W curve, results are given for two different cases separately.

Keywords Position vector · Tangential torque · Tangential dual curve · Timelike W 
curve

Mathematics Subject Classification 53A35

1 Introduction

Lorentzian geometry gets in contact with modern differential geometry and 
mathematical physics of general relativity by giving the invariants of Lorentzian 
geometry. Actually relativity theory is stated in terms of Lorentzian geometry and 
is really interesting subject for scientists interested in expanding universe and big 
bang etc. [1]. The theory of curves and surfaces is still the most important topic 
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in differential geometry and has been investigated by many geometers until now. 
Furthermore, it is possible to find different applications of curves in almost every 
science field. Helix is the one of the well known curves in the literature which has 
very remarkable and different applications. For example, explanation of DNA, 
carbon nano-tube, nano-springs.

Investigation the differential geometric properties of a given curve, we gener-
ally use Serret Frenet frame fields of the curve. Actually, Serret Frenet formulas 
help us understand the kinematic properties of a particle moving along a con-
tinuous, differentiable curve in Euclidean space. Especially, the formulas describe 
the derivatives of the tangent, normal and binormal unit vectors in terms of each 
other. Curvature and torsion are functions defined along curve and are the coef-
ficients of well-known Serret Frenet formulas. Meanly, the curvature function � 
and torsion function � are used to describe the behavior of the curve. Physically, 
we can think of a space curve as being obtained from a straight line by bending 
(curvature) and twisting (torsion) [2].

Dynamics is a science that studies body motion. Kinematics, as a sub branch 
of dynamics, deals with the geometry and time dependent aspects of motion with-
out considering the forces causing the motion. Among the most important terms 
whose mathematical and geometric applications are examined in these areas are 
force, moment or torque, velocity, acceleration and momentum. These terms can 
be defined in different ways. Force can basically be defined as the effect of one 
object on another. It is the force applied to an object that causes the object to 
move or deform. Moment or torque is expressed as a measure of the rotational, 
bending, or torsional motion of a force applied to an object. Velocity is defined 
as the time rate of change of position. The time rate of increase of velocity is 
termed acceleration. The net force is obtained by the combined effect of all the 
forces acting on an object. The fact that the net force acting on an object is zero 
does not mean that there are no forces acting on the object. An object is said to be 
in equilibrium if it is either at rest or is moving in a straight line with a constant 
speed. Therefore, the first law states that if the net force acting on a body is zero, 
the body is in equilibrium [3].

Position vector field is used in physics, kinematics, geometry, dynamics. In 
geometry, a position vector, also known as location vector. One of the most impor-
tant subjects of differential geometry is to determine the position vector of a moving 
point. This is important for the point of view, because the trajectory of that point 
is a curve or a surface. There are many studies on the characterization of curves 
using the curvature and torsion functions in different spaces. In the studies of [4, 
5], constant ratio curves in Euclidean spaces and some of their characterizations are 
expressed. Furthermore, the definition of constant ratio curve is given in the lower 
manifolds of Euclidean space in [6] and the Riemannian surfaces are discussed in 
[7]. In addition, [8] studied the relationship between rectifying curves and twisted 
curves in Euclidean space. As a continuation of this work, some geometrical proper-
ties of rectifying curves are given [9]. In addition [10], rectifying, normal and oscil-
latory curves are studied in three-dimensional compact Lie groups.

Among the current studies, the most striking ones are the studies on the charac-
terization of the twisted curves. If the curvature and torsion functions of the curve 
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℘are different from zero, the curve ℘ is called a twisted curve. In the study [6], it is 
stated that each twisted curve can be given in the following form

where r0, r1, r2 ∶ I → ℝ are differentiable functions. Using the above representation 
of the twisted curves, the characterizations of curves with constant curvature func-
tions are investigated in [11]. The planes spanned by vector fields {t, n}, {t, b} and 
{n, b} are known as osculating, rectifying and normal plane of the curve, respec-
tively. The position vector of the curve ℘ which lies its rectifying, osculating and 
normal plane is called rectifying, osculatory and normal curve, respectively [8].

The curve ℘ is called a W curve, if its curvature and torsion functions are con-
stant. The simplest examples of curves with constant curvature functions are cir-
cles, hyperbolas as planar curves with constant curvature functions and helices as 
non-planar curves with constant curvature functions. Curves with constant curva-
ture functions in the Minkowski 3-space are classified by Walrave in [12]. Moreover, 
curves with constant curvature functions in the Minkowski 3-space are investigated 
in [13–16].

Firstly, characterization of W curves in Euclidean space is examined in [17, 18]. 
The position vector of given W curve is obtained as follows

with differentiable functions r0(s), r1(s), r2(s) . These differentiable functions are 
given by

where a =
√
�2 + �2 and ci are real constants for 0 ≤ i ≤ 2 . Then, the characteri-

zation of spacelike W curves was discussed in [13]. In study [19], position vector 
of spacelike curve is obtained as linear combinations of their Serret Frenet vectors 
with differentiable functions depending on values of curvature and torsion. Moreo-
ver, Erdogdu and Yavuz examined null Cartan W curves and then the position vec-
tor of a null Cartan curve stated by a linear combination of its pseudo orthogonal 
frame with differentiable functions in [20]. The position vector of W curve mates 
are stated by a linear combination of its Frenet frame with differentiable functions 
are investigated in the studies [19, 21].

The position vector extends from the origin to the particle, while the velocity 
vector indicates the direction of motion of the particle. Other variables suitable for 
describing a moving particle can be stated by means of these fundamental variables. 
The motion of a particle moving about a center of force can be given by the angular 
momentum, which is defined to be the vector product of the position and momentum 

℘(s) = r0(s)t(s) + r1(s)n(s) + r2(s)b(s)

℘(s) =
1

�2 + �2
(�2st(s) − �n(s) + ��sb(s))

r0(s) = c0� − c1�cos(as) + c2�sin(as) +
�2

a2
s,

r1(s) = c1a sin (as) + c2acos(as) −
�

a2
,

r2(s) = c0� + c1�cos(as) − c2� sin (as) +
��

a2
s
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vectors [22]. Vectorial momentums of any space curve as t-dual, n-dual and b-dual 
curves are defined as follows

in [23]. Let a force F act on a single particle at a point P whose position vector with 
respect to the origin O is given by r. Then, the moment of the force acting on the 
particle with respect to the origin O is defined as the vector product

This vector quantity is called the moment of force (or torque). The angular momen-
tum L of the particle with respect to the origin O is defined by

such that a particle of mass m and linear momentum p at a position r relative to the 
origin O. The magnitude of the angular momentum vector is

where � is the angle between linear momentum p and position vector r. The torque 
vector is stated as the variation of the angular moment of the object with respect 
to time during the motion of the object. The rate of change of the angular momen-
tum vector can be obtained by the sum of the torques of all the forces acting on all 
the particles. The position vector of the particle on which the force acts must be 
used for each torque. The torque of a force around a point is basically a measure of 
how effective the force would be at causing a rotation around that point, because of 
above equation depends on the magnitude of the force, the distance from the center 
of rotation to the point where the force is applied, and the angle [3]. By the defini-
tion of vector product, the torque is perpendicular to the plane formed by the posi-
tion vector and force. Therefore, the position vector and torque are closely related. 
In addition, torque helps us dynamically to define the properties of vector. There are 
studies in many fields related to position vector and torque vector. Tunçer defined 
the X-torque curves, X-equilibrium curves, X-moment curves, X-gyroscopic curves 
as new curves derived from a regular space curve by using the Frenet vectors of a 
space curve and its position vector [24]. Moreover, Tunçer introduced the vectorial 
moments as w-dual curve in the study [23]. In addition to all these studies, the posi-
tion vector field also has important applications in dynamics and mechanics [25].

Since kinematics deals with geometry and time-dependent aspects of motion 
without considering the forces that cause motion, the aim of this study is to geo-
metrically consider the basic concepts of kinematics, force, torque, equilibrium, 
moment. For this purpose, the findings and results obtained in the study are stated 
as below.

In this paper, after giving the necessary informations to understand timelike curves 
in Minkowski space, the position vector of a timelike curve ℘ is stated by a linear 
combination of its Serret Frenet frame with differentiable functions. Then, the vecto-
rial momentum of timelike curve ℘ is investigated by force with tangential direction. 
Also, the definition of tangential dual curve of the curve ℘ is stated by using these 

℘̃w(s) = ℘(s) × w(s)

Υ = r × F.

L = r × p

l = ‖r‖‖p‖ sin �
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differentiable functions. Moreover, the relation between Serret Frenet frame, curvature 
and torsion of tangential dual curve ℘̃t and the timelike curve ℘ are stated, respec-
tively. Thus, tangential torque curve of timelike curve ℘ is defined and examined. New 
dynamically and physical results are introduced depending on the torque of the timelike 
curve ℘ and the direction of tangent vector component of curve. Since W curves are 
the most general of planar and non-planar constant curvature timelike curves, they are 
specifically included in this study. Then, the position vector of a timelike W curve is 
again stated by a linear combination of its Serret Frenet frame with differentiable func-
tions. Therefore, solution of differential equation of the position vector of the timelike 
W curve with two different case: �2 − �2 = 0 and �2 − �2 ≠ 0 . A brief summary of 
the consequences is given and the necessary and sufficient conditions of a timelike W 
curve to be a rectifying, osculatory and normal curve are stated, respectively. By using 
the differentiable functions obtained as a result of these solutions, tangential dual and 
torque curve of the timelike W curve are obtained. Based on this, depending on the tan-
gential dual and torque curve of the timelike W curve, results are given for two different 
cases separately. Afterwards, an example is given to explain the results.

2  Basic of Timelike Curves in Minkowski

In this section, some informations which are necessary to understand the overall study 
are stated.

Minkowski 3-space is the real space with Lorentzian product

where �⃗u =
(
u1, u2, u3

)
 , �⃗v =

(
v1, v2, v3

)
∈ ℝ

3 . Since Lorentzian product is not posi-
tively defined, we may classify the vectors in �3

1
 as follows:

If 
⟨
�⃗u, �⃗u

⟩
L
> 0 , 

⟨
�⃗u, �⃗u

⟩
L
< 0 or 

⟨
�⃗u, �⃗u

⟩
L
= 0, then �⃗u is called a spacelike, timelike or 

null vector, respectively. For each �⃗u ∈ �
3

1
 , the norm of �⃗u vector is defined

If 
⟨
�⃗u, �⃗v

⟩
L
= 0 then �⃗u and �⃗v vectors are said to be orthogonal.

Let ℘ ∶ I → �
3

1
 be a regular curve. If the vector ℘�(s) is a timelike vector for ∀s ∈ I , 

then ℘ is called timelike curve. And if 
⟨
℘

′

(s),℘
′

(s)
⟩
L
= −1, then ℘ is called unit 

speed timelike curve. If ℘ ∶ I → �
3

1
 is a unit speed timelike curve, then

vector is the unit tangent vector of ℘ . So that

is the principal normal vector of ℘ . Finally,

⟨
�⃗u, �⃗v

⟩
L
= −u1v1 + u2v2 + u3v3

‖‖ �⃗u‖‖ =

√
|||
⟨
�⃗u, �⃗u

⟩
L

|||.

t(s) = ℘
�(s)

n(s) =
℘��(s)

‖℘��(s)‖
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is the binormal vector of ℘ . The curvature and torsion functions of ℘ are defined as

respectively. The Serret Frenet formulas for the unit speed timelike curve ℘ ∶ I → �
3

1
 

are as follows:

where t, n, b are Serret Frenet vector fields of ℘ [2].

3  Vectorial Moments of Timelike Curves with Tangential Direction

In this section, the circular or hyperbolic angle between linear momentum p and 
position vector R which changes depending on casual character of these vectors are 
defined. Moreover tangential dual curve of the unit speed timelike curve is defined. 
The relation between Serret Frenet frame, curvature and torsion of tangential dual 
curve ℘̃t and the timelike curve ℘ are obtained. Then, tangential torque curve of 
timelike curve ℘ is defined and investigated. Finally, dynamically and physical 
results are introduced depending on the torque of timelike curve ℘ and the direction 
of tangent vector component of curve.

Definition 1 Let a force F act on a single particle in Minkowski space at a point P 
whose position vector with respect to the origin O is given by R. Then, the moment 
of the force acting on the particle with respect to the origin O is defined as the vector 
product

This vector quantity is called the moment of force (or torque).

Definition 2 Let a particle of mass m and linear momentum p at a position R relative 
to the origin O be given in Minkowski space. The angular momentum L of the parti-
cle with respect to the origin O is defined by

The magnitude of the angular momentum vector is

or

b(s) = t(s) ×L n(s)

�(s) =
√⟨℘��(s),℘��(s)⟩L,

�(s) =
�
n�(s), b(s)

�
L
,

⎡
⎢⎢⎣

t
�

(s)

n
�

(s)

b
�

(s)

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

0 �(s) 0

�(s) 0 �(s)

0 − �(s) 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

t(s)

n(s)

b(s)

⎤
⎥⎥⎦

Υ = R×LF.

L = R ×L p.

l = ‖r‖‖p‖ sin �
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where � is circular or hyperbolic angle between linear momentum p and position 
vector R which changes depending on casual character of these vectors.

The physical quantities, moment of a force and angular momentum, have an 
important relation between them. It is the rotational analogue of the relation 
between force and linear momentum. For deriving the relation in the context of a 
single particle, we differentiate

with respect to time,

Now, the velocity of the particle is

and

This implies that

Then, we see

since dp
dt

= F. Therefore, we obtain

which means that the moment of force is the rate of change of angular momentum.

Definition 3 Let ℘ ∶ I → �
3

1
 be a unit speed timelike curve with nonzero curvature 

functions � , � and Serret Frenet frame field {t, n, b}. The curve

is called tangential dual curve of the curve ℘. s̃ is the arclength parameter of tangen-
tial dual curve. By using the position vector representation of the curve ℘ , we may 
write

l = ‖r‖‖p‖ sinh �

L = R ×L p

dL

dt
=

dR

dt
×L p + R ×L

d

dt
p.

v =
dR

dt

p = mv.

dR

dt
×L p = v×Lmv = 0.

R ×L

dp

dt
= R ×L F = Υ

dL

dt
= Υ

℘̃t(s̃) = ℘(s)×Lt(s)
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The following theorem gives the relations between Serret Frenet frame fields of ℘ 
and ℘̃t.

Theorem 4 Let ℘ ∶ I → �
3

1
 be a given unit speed timelike curve with position vector

Serret Frenet frame, curvature and torsion of tangential dual curve ℘̃t ∶ I → �
3

1
 are 

expressed as follows:

and

Here � and � are nonzero curvature functions and {t, n, b} is Serret Frenet frame of 
the curve ℘.

Proof Assume that ℘̃t ∶ I → �
3

1
 is tangential dual curve of ℘, so we can define ℘̃t as 

follows

Taking derivative of the above equation according to s, we find

Then we obtain

The norm of the above equation is given by

℘̃t(s̃) = −r2(s)n(s) + r1(s)b(s).

℘(s) = r0(s)t(s) + r1(s)n(s) + r2(s)b(s)

t̃ = −
(r2t + r0b)√||r02 − r2

2||
,

ñ = ±
r0(r2 − �r0r1 − �r1r2)t − (r0

2 − r2
2)(�r0 + �r2)n + r2(r2 − �r0r1 − �r1r2)b√||r02 − r2

2||
√|||−(�r0r2 + �r2

0
)2 + (r1r2� + r0r1� − r2)

2 + (�r0r2 + �r2
2
)2
|||
,

b̃ =
(�r0r2 + �r2

0
)t + (r1r2� + r0r1� − r2)n + (�r0r2 + �r2

2
)b

√|||−(�r0r2 + �r2
0
)2 + (r1r2� + r0r1� − r2)

2 + (�r0r2 + �r2
2
)2
|||

�̃ =

√|||−(�r0r2 + �r2
0
)2 + (r1r2� + r0r1� − r2)

2 + (�r0r2 + �r2
2
)2
|||

�||r02 − r2
2||

3

2

,

�̃ =
r2(�

�r2 − ��r0) − 2�
(
−r2 + �2r3

2
+ �2r2

0
r2 + �r0r1 + �r1r2 + 2��r0r

2

2

)

�
|||−(�r0r2 + �r2

0
)2 + (r1r2� + r0r1� − r2)

2 + (�r0r2 + �r2
2
)2
|||

.

℘̃t(s) = −r2(s)n(s) + r1(s)b(s).

℘̃
�
t
= −r�

2
n − r2(𝜅t − 𝜏b) + r�

1
b + r1(𝜏n).

℘̃
�
t
= −𝜅(r2t − r0b).
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Therefore, we obtain the tangent vector field of tangential dual curve as follows:

Then we also find

and

Again, the norm of the above equation is given by

Then we obtain binormal vector field of tangential dual curve as follows:

We know that

Thus, we find

By some calculations, we obtain the curvature as follows

‖‖℘̃�
t
‖‖ = 𝜅

√
|||r20 − r2

2

|||.

t̃ = −
(r2t + r0b)√||r02 − r2

2||
.

℘̃
��
t
= (−𝜅�r2 − 𝜅𝜏r1)t + (−𝜅2r2 − 𝜅𝜏r0)n + (−𝜅�r0 − 𝜅 + 𝜅2r1)b

℘̃
�
t
×L℘̃

��
t
= 𝜅2((𝜅r0r2 + 𝜏r2

0
)t + (r1r2𝜅 + r0r1𝜏 − r2)n + (𝜏r0r2 + 𝜅r2

2
)b).

‖‖℘̃�
t
×L℘̃

��
t
‖‖ = 𝜅2

√
|||−(𝜅r0r2 + 𝜏r2

0
)2 + (r1r2𝜅 + r0r1𝜏 − r2)

2 + (𝜏r0r2 + 𝜅r2
2
)2
|||.

b̃ =
(�r0r2 + �r2

0
)t + (r1r2� + r0r1� − r2)n + (�r0r2 + �r2

2
)b

√|||−(�r0r2 + �r2
0
)2 + (r1r2� + r0r1� − r2)

2 + (�r0r2 + �r2
2
)2
|||
.

�t×L
�b = ∓ñ.

ñ = ±
r0(r2 − 𝜏r0r1 − 𝜅r1r2)t − (r0

2 − r2
2)(𝜏r0 + 𝜅r2)n + r2(r2 − 𝜏r0r1 − 𝜅r1r2)b√||r02 − r2

2||
√|||−(𝜅r0r2 + 𝜏r2

0
)2 + (r1r2𝜅 + r0r1𝜏 − r2)

2 + (𝜏r0r2 + 𝜅r2
2
)2
|||
.
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Finally, the torsion function of the tangential dual curve is given by

  ◻

Definition 5 Let ℘̃t ∶ I → �
3

1
 be the tangential dual curve of timelike curve ℘ . The 

curve Γt(s̃) =
d℘̃t(s)

ds
 is defined as tangential torque curve of ℘ where s̃ is the arclength 

parameter. The tangential torque curve Γt is obtained as follows

Corollary 6 If the following equality is satisfied

then timelike curve of ℘ is a tangential moment conservative curve.

Corollary 7 The vector Γt always lies in rectifying plane of the timelike curve ℘. 
Moreover, tangential torque curve is perpendicular to the principal normal vector 
of the timelike curve ℘.

Remark 8 Let the parameter s̃ be the arclength parameter of tangential torque curve 
Γt. Then there is a relation between the arclength parameters of both the tangential 
torque curve Γt and timelike curve of ℘ which is given as follows

�𝜅 =
‖‖℘̃�

t
×L℘̃

��
t
‖‖

‖‖℘̃�
t
‖‖3

=
𝜅2

√|||−(𝜅r0r2 + 𝜏r2
0
)2 + (r1r2𝜅 + r0r1𝜏 − r2)

2 + (𝜏r0r2 + 𝜅r2
2
)2
|||

(𝜅

√||r02 − r2
2||)3∕2

=

√|||−(𝜅r0r2 + 𝜏r2
0
)2 + (r1r2𝜅 + r0r1𝜏 − r2)

2 + (𝜏r0r2 + 𝜅r2
2
)2
|||

𝜅||r02 − r2
2||

3

2

.

�𝜏 =

⟨
℘̃�

t
×L℘̃

��
t
, ℘̃���

t

⟩
L

‖‖℘̃�
t×L℘̃

��
t
‖‖2

=
r2(𝜅

�r2 − 𝜏�r0) − 2𝜏
(
−r2 + 𝜅2r3

2
+ 𝜏2r2

0
r2 + 𝜏r0r1 + 𝜅r1r2 + 2𝜅𝜏r0r

2

2

)

𝜅
|||−(𝜅r0r2 + 𝜏r2

0
)2 + (r1r2𝜅 + r0r1𝜏 − r2)

2 + (𝜏r0r2 + 𝜅r2
2
)2
|||

.

d℘̃t(s)

ds
= −𝜅(s)

(
r2(s)t(s) + r0(s)b(s)

)
.

d℘̃t(s)

ds
= 0,

ds

ds̃
= ∓

1√
−
(
−𝜅�r2 + 𝜅𝜏r1

)2
+
(
−𝜅2r2 + 𝜅𝜏r0

)2
+
(
−𝜅�r0 − 𝜅 + 𝜅2r1

)2 .
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Definition 9 If the tangential torque curve Γt and t are of the same direction at each 
points of the curve ℘, then the curve is defined as an unstable tangential equilibrium 
curve. At the same time, if the tangential torque curve Γt and t are of the opposite 
direction at each points of the curve ℘, then the curve defined as a stable tangential 
equilibrium curve.

Definition 10 If the tangential torque curve Γt doesn’t have any component on 
t(s), then the curve is defined as a neutral tangential equilibrium curve.

Definition 11 If the tangential torque curve Γt and t are perpendicular at each points 
of the curve ℘, then the curve is defined as a tangential gyroscopic curve.

Corollary 12 When the position vector of the timelike curve ℘ is the osculatory 
curve, it is also the tangential gyroscopic curve.

4  Differential Equations and It’s Solutions of the Position Vector 
of the Timelike W Curve

In this section, the characterization of a timelike curve ℘ ∶ I → �
3

1
 given by arc 

length parameter is investigated in terms of its curvature and torsion functions. Sup-
pose that the position vector of the curve ℘ is stated as follows:

If we take the derivative of both sides of Eq.  (1) with respect to the arc length 
parameter with the use of Serret Frenet formulas stated in Sect. 2, then we obtain

Since ℘�(s) = t(s), then we obtain the following nonhomogeneous linear differential 
system of equations:

Characterization of a given unit speed timelike W curve differ according to the val-
ues of curvature and torsion. These different situations are discussed separately in 
following theorems. Readers are encouraged to refer to [26] for details of methods 

(1)℘(s) = r0(s)t(s) + r1(s)n(s) + r2(s)b(s).

℘
�(s) =

(
r�
0
(s) + �(s)r1(s)

)
t(s)

+
(
�(s)r0(s) + r�

1
(s) − �(s)r2(s)

)
n(s)

+
(
�(s)r1(s) + r�

2
(s)

)
b(s).

r�
0
(s) + �(s)r1(s) = 1,

(2)r�
1
(s) + �(s)r0(s) − �(s)r2(s) = 0,

r�
2
(s) + �(s)r1(s) = 0.
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for solving systems of first order nonhomogeneous linear differential systems of 
equations.

Theorem 13 Assume that ℘ ∶ I → �
3

1
 is a given unit speed timelike twisted curve. If 

℘ is a W curve with 𝜅2 − 𝜏2 > 0 , then the position vector ℘(s) is stated with the fol-
lowing differentiable functions:

where �2 = �2 − �2, � ∈ ℝ
+ and ci are arbitrary constants for 0 ≤ i ≤ 2.

Proof Suppose that ℘ is a W timelike curve with 𝜅2 − 𝜏2 > 0 . This means that the 
coefficients of differential equations given in Eq. (2) are also constants. Thus,

The eigenvalues and eigenvectors of the matrix of nonhomogeneous linear system of 
the above equation are found as follows:

where �2 − �2 = �2. Then we find the homogeneous solution of the system as 
follows:

r0(s) = c0� + c1� cosh(�s) + c2� sinh(�s) −
�2

�2
s,

r1(s) = −c2� cosh(�s) − c1� sinh(�s) +
�

�2
,

r2(s) = c0� + c1� cosh(�s) + c2� sinh(�s) −
��

�2
s,

⎡⎢⎢⎣

r�
0
(s)

r�
1
(s)

r�
2
(s)

⎤⎥⎥⎦
=

⎡⎢⎢⎣

⎡⎢⎢⎣

0 − � 0

−� 0 �

0 − � 0

⎤⎥⎥⎦

⎤⎥⎥⎦

⎡⎢⎢⎣

r0(s)

r1(s)

r2(s)

⎤⎥⎥⎦
+

⎡⎢⎢⎣

1

0

0

⎤⎥⎥⎦
.

�1 = 0 ⇒ V1 =

⎡
⎢⎢⎣

�

0

�

⎤
⎥⎥⎦
,

�2 = � ⇒ V2 =

⎡⎢⎢⎣

�

−�

�

⎤⎥⎥⎦
,

�3 = −� ⇒ V3 =

⎡⎢⎢⎣

�

�

�

⎤⎥⎥⎦
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where c0 , d1 , d2 are arbitrary constants. Rewriting the constants as follows

we obtain

The fundamental matrix of the nonhomogeneous linear differential system of the 
equation is obtained as

By the equality Xp(s) = �(s)u(s), we may find the vector valued function u(s) by fol-
lowing equation

Actually, solving 3 × 3 linear equation by Crammer’s method, we find the particular 
solution of Eq. (2) as follows:

Since Xg(s) = Xh(s) + Xp(s), then it is seen that

Xh(s) = c0

⎡
⎢⎢⎣

�

0

�

⎤
⎥⎥⎦
+ d1e

�s
⎡
⎢⎢⎣

�

−�

�

⎤
⎥⎥⎦
+ d2e

−�s
⎡
⎢⎢⎣

�

�

�

⎤
⎥⎥⎦

= c0

⎡
⎢⎢⎣

�

0

�

⎤
⎥⎥⎦
+ d1(cosh(�s) + sinh(�s))

⎡
⎢⎢⎣

�

−�

�

⎤
⎥⎥⎦

+ d2(cosh(�s) − sinh(�s)

⎡⎢⎢⎣

�

�

�

⎤⎥⎥⎦

d1 + d2 = c1,

d1 − d2 = c2,

Xh(s) = c0

⎡⎢⎢⎣

�

0

�

⎤⎥⎥⎦
+ c1

⎡⎢⎢⎣

� cosh(�s)

−� sinh(�s)

� cosh(�s)

⎤⎥⎥⎦
+ c2

⎡⎢⎢⎣

� sinh(�s)

−� cosh(�s)

� sinh(�s)

⎤⎥⎥⎦
.

�(s) =

⎡⎢⎢⎣

� � cosh(�s) � sinh(�s)

0 − � sinh(�s) − � cosh(�s)

� � cosh(�s) � sinh(�s)

⎤⎥⎥⎦
.

�(s)u�(s) =

⎡⎢⎢⎣

1

0

0

⎤⎥⎥⎦
.

Xp(s) =

⎡
⎢⎢⎢⎣

−
�2

�2
s

�

�2

−
��

�2
s

⎤
⎥⎥⎥⎦
.
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So, we get the proof.   ◻

Theorem 14 Suppose that ℘ ∶ I → �
3

1
 is a given unit speed timelike twisted curve. If 

℘ is a W curve with 𝜅2 − 𝜏2 < 0 , then the position vector ℘(s) is stated with the fol-
lowing differentiable functions:

where −�2 = �2 − �2, � ∈ ℝ
+ and ci are arbitrary constants for 0 ≤ i ≤ 2.

Proof Suppose that ℘ is a W timelike curve with 𝜅2 − 𝜏2 > 0 . This means that the 
coefficients of differential equations given in Eq. (2) are also constant. We may write 
as follows:

The eigenvalues and eigenvectors of the matrix of nonhomogeneous linear system of 
the above equation are found as follows:

where −�2 = �2 − �2. Thus, we have found the homogeneous solution as follows

r0(s) = c0� + c1� cosh(�s) + c2� sinh(�s) −
�2

�2
s,

r1(s) = −c2� cosh(�s) − c1� sinh(�s) +
�

�2
,

r2(s) = c0� + c1� cosh(�s) + c2� sinh(�s) −
��

�2
s.

r0(s) = c0� + �c1 cos(�s) + �c2 sin(�s) +
�2

�2
s,

r1(s) = c1� sin(�s) − c2� cos(�s) −
�

�2
,

r2(s) = c0� + c1� cos(�s) + c2� sin(�s) +
��

�2
s

⎡⎢⎢⎣

r�
0
(s)

r�
1
(s)

r�
2
(s)

⎤⎥⎥⎦
=

⎡⎢⎢⎣

0 − � 0

−� 0 �

0 − � 0

⎤⎥⎥⎦

⎡⎢⎢⎣

r0(s)

r1(s)

r2(s)

⎤⎥⎥⎦
+

⎡⎢⎢⎣

1

0

0

⎤⎥⎥⎦
.

�1 = 0 ⇒ V1 =

⎡⎢⎢⎣

�

0

�

⎤⎥⎥⎦
,

(3)�2 = �i ⇒ V2 =

⎡⎢⎢⎣

�

−�i

�

⎤⎥⎥⎦
,

�3 = −�i ⇒ V3 =

⎡⎢⎢⎣

�

�i

�

⎤⎥⎥⎦
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where c0 , d1 , d2 are arbitrary constants. By assuming the followings

we obtain the homogeneous solution as

The fundamental matrix of the nonhomogeneous linear differential system of the 
equation can be written as

By the use of the equality Xp(s) = �(s)u(s), we find the vector values function u(s) 
by following equation

We find the particular solution of Eq. (2) as follows:

Since Xg(s) = Xh(s) + Xp(s), then it is seen that

Xh(s) = c0

⎡
⎢⎢⎣

�

0

�

⎤
⎥⎥⎦
+ d1e

�si
⎡
⎢⎢⎣

�

−�i

�

⎤
⎥⎥⎦
+ d2e

−�si
⎡
⎢⎢⎣

�

�i

�

⎤
⎥⎥⎦

= c0

⎡
⎢⎢⎣

�

0

�

⎤
⎥⎥⎦
+ d1(cos(�s) + i sin(�s))

⎡
⎢⎢⎣

�

−�i

�

⎤
⎥⎥⎦
+ d2(cos(�s)

− i sin(�s))

⎡⎢⎢⎣

�

�i

�

⎤⎥⎥⎦

d1 + d2 = c1,

i(d1 − d2) = c2,

Xh(s) = c0

⎡⎢⎢⎣

�

0

�

⎤⎥⎥⎦
+ c1

⎡⎢⎢⎣

� cos (�s)

� sin (�s)

� cos (�s)

⎤⎥⎥⎦
+ c2

⎡⎢⎢⎣

� sin (�s)

−� cos (�s)

� sin (�s)

⎤⎥⎥⎦
.

�(s) =

⎡⎢⎢⎣

� � cos (�s) � sin (�s)

0 � sin (�s) − a cos (�s)

� � cos (�s) � sin (�s)

⎤⎥⎥⎦
.

�(s)u�(s) =

⎡⎢⎢⎣

1

0

0

⎤⎥⎥⎦
.

Xp(s) =

⎡
⎢⎢⎢⎣

�2

�2
s

−
�

�2
��

�2
s

⎤
⎥⎥⎥⎦
.
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  ◻

Corollary 15 Let ℘ ∶ I → �
3

1
 be a given unit speed timelike W curve with 

�2 − �2 ≠ 0. The followings are obtained: 

 (i) ℘ is a rectifying curve if and only if � = 0,

 (ii) ℘ is a osculatory curve if and only if �� = 0,

 (iii) ℘ is a normal curve if and only if � = 0, where � is the curvature and � is the 
torsion of the curve ℘.

Theorem  16 Let ℘ ∶ I → �
3

1
 be a unit speed timelike twisted curve. If ℘ is a W 

curve with � = �, then the position vector ℘(s) is stated with the following differenti-
able functions:

where ci are arbitrary constants for 0 ≤ i ≤ 2.

Proof Suppose that ℘ is a W timelike curve with � = � . This means that the coef-
ficients of differential equations given are also constant. We may write the equations 
as follows:

Considering the coefficient matrix

we can find

r0(s) = c0� + �c1 cos(�s) + �c2 sin(�s) +
�2

�2
s,

r1(s) = c1� sin(�s) − c2� cos(�s) −
�

�2
,

r2(s) = c0� + c1� cos(�s) + c2� sin(�s) +
��

�2
s.

r0(s) = c0

(
�2

2
s2 + 1

)
− c1s� − c2

�2

2
s2 + s +

�2

6
s3,

r1(s) = −c0�s + c1 + c2�s −
�

2
s2,

r2(s) = c0
�2

2
s2 − c1�s − c2

(
�2

2
s2 − 1

)
+

�2

6
s3

⎡⎢⎢⎣

r�
0
(s)

r�
1
(s)

r�
2
(s)

⎤⎥⎥⎦
=

⎡⎢⎢⎣

0 − � 0

−� 0 �

0 − � 0

⎤⎥⎥⎦

⎡⎢⎢⎣

r0(s)

r1(s)

r2(s)

⎤⎥⎥⎦
+

⎡⎢⎢⎣

1

0

0

⎤⎥⎥⎦
.

A =

⎡⎢⎢⎣

0 − � 0

−� 0 �

0 − � 0

⎤⎥⎥⎦
,
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Therefore, the homogeneous solution of the system has been found as follows:

where c0 , c1 , c2 are arbitrary constants. With the use of the equality Xp(s) = �(s)u(s), 
we may find the vector values function u(s) by following equation

We find the particular solution of Eq. (2) as follows:

Since Xg(s) = Xh(s) + Xp(s), then it is seen that

So, we get the proof.   ◻

Theorem 17 Let ℘ ∶ I ⊂ ℝ → 𝔼
3

1
 be a unit speed timelike twisted curve. If ℘ is a W 

curve with � = −�, then the position vector ℘(s) is stated with the following differ-
entiable functions:

where ci are arbitrary constants for 0 ≤ i ≤ 2.

�(s) = eAs =

⎡⎢⎢⎣

1

2
s2�2 + 1 − s� −

1

2
s2�2

−s� 1 s�
1

2
s2�2 − s� 1 −

1

2
s2�2

⎤
⎥⎥⎦
.

Xh(s) = c0

⎡
⎢⎢⎣

1

2
s2�2 + 1

−s�
1

2
s2�2

⎤
⎥⎥⎦
+ c1

⎡
⎢⎢⎣

−s�

1

−s�

⎤⎥⎥⎦
+ c2

⎡
⎢⎢⎣

−
1

2
s2�2

s�

1 −
1

2
s2�2

⎤
⎥⎥⎦

�(s)u�(s) =

⎡
⎢⎢⎣

1

0

0

⎤
⎥⎥⎦
.

Xp(s) =

⎡
⎢⎢⎢⎣

1

6
s3�2 + s

−
1

2
s2�

1

6
s3�2

⎤
⎥⎥⎥⎦
.

r0(s) = c0

(
�2

2
s2 + 1

)
− c1s� − c2

�2

2
s2 + s +

�2

6
s3,

r1(s) = −c0�s + c1 + c2�s −
�

2
s2,

r2(s) = c0
�2

2
s2 − c1�s − c2

(
�2

2
s2 − 1

)
+

�2

6
s3.

r0(s) = c0

(
�2

2
s2 + 1

)
− c1�s + c2

�2

2
s2 + s +

�2

6
s3

r1(s) = −c0�s + c1 − c2�s −
�

2
s2,

r2(s) = −c0
�2

2
s2 + c1�s − c2

(
�2

2
s2 − 1

)
−

�2

6
s3
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Proof Suppose that ℘ is a W timelike curve with � = � . Then,

Considering the coefficient matrix

we can find

Therefore, the homogeneous solution of the system has been found as follows:

where c0 , c1 , c2 are arbitrary constants. With the use of the equality Xp(s) = �(s)u(s), 
we may find the vector values function u(s) by following equation

We find the particular solution of Eq. (2) as

Since Xg(s) = Xh(s) + Xp(s), then it is seen that

So, we get the proof.   ◻

⎡
⎢⎢⎣

r�
0
(s)

r�
1
(s)

r�
2
(s)

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

0 − � 0

−� 0 − �

0 � 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

r0(s)

r1(s)

r2(s)

⎤
⎥⎥⎦
+

⎡
⎢⎢⎣

1

0

0

⎤
⎥⎥⎦
.

A =

⎡
⎢⎢⎣

0 − � 0

−� 0 − �

0 � 0

⎤
⎥⎥⎦
,

�(s) = eAs =

⎡⎢⎢⎣

1

2
s2�2 + 1 − s�

1

2
s2�2

−s� 1 − s�

−
1

2
s2�2 s� 1 −

1

2
s2�2

⎤
⎥⎥⎦
.

Xh(s) = c0

⎡
⎢⎢⎣

1

2
s2�2 + 1

−s�

−
1

2
s2�2

⎤
⎥⎥⎦
+ c1

⎡
⎢⎢⎣

−s�

1

s�

⎤⎥⎥⎦
+ c2

⎡
⎢⎢⎣

1

2
s2�2

−s�

1 −
1

2
s2�2

⎤⎥⎥⎦

�(s)u�(s) =

⎡⎢⎢⎣

1

0

0

⎤⎥⎥⎦
.

Xp(s) =

⎡
⎢⎢⎢⎣

�2

6
s3 + s

−
�

2
s2

−
�2

6
s3

⎤
⎥⎥⎥⎦
.

r0(s) = c0

(
�2

2
s2 + 1

)
− c1�s + c2

�2

2
s2 + s +

�2

6
s3,

r1(s) = −c0�s + c1 − c2�s −
�

2
s2,

r2(s) = −c0
�2

2
s2 + c1�s − c2

(
�2

2
s2 − 1

)
−

�2

6
s3.
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Corollary 18 Let ℘ ∶ I → �
3

1
 be a unit speed timelike W curve with �2 − �2 = 0. The 

followings are obtained: 

 (i) ℘ is a rectifying curve if and only if � = 0,

 (ii) ℘ is an osculatory curve if and only if � = 0,

 (iii) ℘ can not be a normal curve, where � is the curvature and � is the torsion of 
the curve ℘.

5  Differential Equation Solution of the Position Vector 
of the Vectorial Moments of Tangential Timelike W Curves

In this section, we investigate tangential direction curve of timelike W curves in 
two different case. In first case, we consider that �2 − �2 ≠ 0 (or �

�
≠ ±1). As sec-

ond case, we consider the �2 − �2 = 0 (or �
�
= ±1) which corresponds to � = �� 

where � = ±1.

5.1  Case 1

Let ℘ ∶ I → �
3

1
 be a unit speed timelike W curve where �2 − �2 ≠ 0 . By solution 

of system of differential equation, we obtain

Therefore, we may write

On the other hand, we obtain tangential direction dual curve of ℘ as follows:

Theorem 19 Let ℘ ∶ I → �
3

1
 be a unit speed timelike W curve where �2 − �2 ≠ 0 . 

Serret Frenet frame and curvature, torsion of tangential dual curve ℘̃t ∶ I → �
3

1
 are 

given as follows:

(4)

r0(s) =
�2s

�2 − �2
,

r1(s) = −
�

�2 − �2
,

r2(s) =
��s

�2 − �2
.

℘(s) =

(
�2s

�2 − �2

)
t(s) +

(
−

�

�2 − �2

)
n(s) +

(
��s

�2 − �2

)
b(s).

℘̃t(s) = −
(

𝜅𝜏s

𝜏2 − 𝜅2

)
n(s) +

(
−

𝜅

𝜏2 − 𝜅2

)
b(s).
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and

Proof The proof can be done by using Eq. (4) and Theorem 13.   ◻

Remark 20 Let ℘ ∶ I → �
3

1
 be a unit speed timelike W curve where �2 − �2 ≠ 0 . 

The tangential torque curve Γt is obtained as follows

Corollary 21 Since tangential torque curve is always a rectifying curve, there can 
never be a stable tangential equilibrium curve, unstable tangential equilibrium 
curve, neutral tangential equilibrium curve and tangential gyroscopic curves.

5.2  Case 2

Let ℘ ∶ I → �
3

1
 be a unit speed timelike W curve where � = �� and � = ±1 . By 

solution of system of Eq. (3), we obtain

Therefore, we may write position vector as follows:

t̃(s) = −
(�t(s) + �b(s))√||�2 − �2||

,

ñ(s) = ±
−2��2t(s) − s(�4 − �4)n(s) − 2��2b(s)

(�2 − �2)

√||s2(�4 − �4)(�2 + �2) + 4�2�2||
,

b̃(s) =
s�(�2 + �2)t(s) + 2��n(s) + s�(�2 + �2)b(s)√||s2(�4 − �4)(�2 + �2) + 4�2�2||

�̃ =

√||s2(�4 − �4)(�2 + �2) + 4�2�2||√||�2 − �2||��s2
,

�̃ = 2

(
1

s
+

−4�2�2 + 2(�2 − �2)2

s(s2(�4 − �4)(�2 + �2) + 4�2�2)

)
.

Γt(s̃) =
−𝜅2𝜏s

𝜏2 − 𝜅2
t(s) +

−𝜅𝜏2s

𝜏2 − 𝜅2
b(s).

(5)

r0(s) =
�2

6
s3 + s,

r1(s) = −
�

2
s2,

r2(s) = �
�2

6
s.
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On the other hand we obtain tangential direction curve of ℘ as follows:

Theorem  22 Let ℘ ∶ I → �
3

1
 be a unit speed timelike W curve where � = �� and 

� = ±1 . Serret Frenet frame and curvature, torsion of tangential dual curve 
℘̃t ∶ I → �

3

1
 are given as follows:

and

Proof The proof can be done by using Equation 5 and Theorem 16 and Theorem 17.  
 ◻

Remark 23 Let ℘ ∶ I → �
3

1
 be a unit speed timelike W curve where � = �� and 

� = ±1 . The tangential torque curve Γt(s̃) is obtained as follows

Corollary 24 Similar to Case 1, since tangential torque curve is always a rectifying 
curve, there can never be a stable tangential equilibrium curve, unstable tangential 
equilibrium curve, neutral tangential equilibrium curve and tangential gyroscopic 
curves.

℘(s) =

(
�2

6
s3 + s

)
t(s) +

(
−
�

2
s2
)
n(s) +

(
�
�2

6
s

)
b(s).

℘̃t(s) = −

(
𝜀
𝜅2

6
s

)
n(s) +

(
−
𝜅

2
s2
)
b(s).

t̃(s) = −
�
√
3

6

(��2s2t(s) + (�2s2 + 6)b(s))√
�2s2 + 3

,

ñ(s) = ±
2��s(s2�2 + 6)(s2�2 + 3)t(s) − 4�(s2�2 + 3)2n(s) + s3�3(s2�2 + 4)b(s)

2(s2�2 + 3)
√
s2�2(s4�4 + 60) + 12(s4�4 + 9)

,

b̃(s) =
�(s2�2 + 6)(s2�2 + 3)t(s) − 3�s3�3(s2�2 + 4)n(s) + s2�2(s2�2 + 3)b(s)√

3
√
s2�2(s4�4 + 60) + 12(s4�4 + 9)

�̃(s) =

√
s2�2(s4�4 + 60) + 12(s4�4 + 9)

2s�(s2�2 + 3)3∕2
,

�̃(s) =
12(12s4�4 + 2s6�6 − 63)

s3(s2�2 + 3)(s2�2(s4�4 + 60) + 12(s4�4 + 9))
.

Γt(s̃) =
−𝜀𝜅3s3

6
t(s) −

𝜅3s3 + 6𝜅s

6
b(s).
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6  Example

Let ℘ ∶ I → �
3

1
 be a unit speed timelike W curve with following parametric expression

Then the Frenet frame is obtained

where the curvature and torsion of the curve are

respectively. Thus we get

with the use of Theorem 13 where c0 = c1 = c2 = 0 . An illustration of the position 
vector of timelike W curve is given in  Fig. 1.

Tangential dual curve of ℘ obtained as follows:

Moreover, tangential dual curve of ℘ is illustrated in  Fig. 2. 
Then, tangential direction torque timelike W curve Γt(s̃) is obtained as follows

℘(s) = (
√
2 sinh s,

√
2 cosh s, s).

t(s) = (
√
2 cosh s,

√
2 sinh s, 1),

n(s) = (sinh s, cosh s, 0),

b(s) = (cosh s, sinh s,
√
2)

�(s) =
√
2 and �(s) = −1,

r0(s) = −s, r1(s) =
√
2, r2(s) =

√
2s

℘̃t(s) = −(
√
2s)(sinh s, cosh s, 0) + (

√
2)(cosh s, sinh s,

√
2),

=
�√

2 cosh s −
√
2s sinh s,

√
2 sinh s −

√
2s cosh s, 2

�
.

Γt(s̃) = −2s(
√
2 cosh s,

√
2 sinh s, 1) +

√
2s(cosh s, sinh s,

√
2),

=
�
−
√
2s cosh s,−

√
2s sinh s, 0

�
.

Fig. 1  Position vector of time-
like W curve
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7  Conclusions

According to all findings of this paper, we can summarize the following results.
In this paper, we focus on investigating the position vector of a timelike curve ℘ 

by a linear combination of its Serret Frenet frame with differentiable functions. As 
a different perspective, we investigated the contribution of the position vector in the 
dynamically in Minkowski space. With this point of view, we first investigated the 
vectorial momentum of timelike curve ℘ by force with tangential direction. Also, 
the definition of tangential dual curve of the curve ℘ is stated by using these differ-
entiable functions. Thus, tangential torque curve of timelike curve ℘ is defined and 
examined. Some results are stated depending on the torque of the timelike curve ℘ 
and the direction of the tangent vector component of the curve. Therefore, the posi-
tion vector of a timelike W curve ℘(s) can be stated as follows:

where �2 − �2 ≠ 0. Moreover, ℘ is a rectifying curve if and only if ℘ is a straight 
line. Then, ℘ is a osculatory curve if and only if ℘ is a straight line or a part of cir-
cle. The necessary and sufficient condition of ℘ to be a normal curve is being a part 
of circle. On the other hand, the position vector ℘(s) can be stated as follows:

where � = �. Furthermore, if ℘ is a W curve with � = −� , then the position vector 
℘(s) can be stated as follows:

Combining above two cases, if �2 − �2 = 0, then we have also obtained the follow-
ing states. ℘ is a rectifying or osculatory curve if and only if ℘ is a straight line. 
Finally, it is not possible of ℘ to be a normal curve. By using the differentiable 

℘(s) =
�2

�2 − �2
st(s) −

�

�2 − �2
n(s) +

��

�2 − �2
b(s)

℘(s) =

(
s +

�2

6
s3
)
t(s) −

�

2
s2n(s) +

�2

6
sb(s)

℘(s) =

(
s +

�2

6
s3
)
t(s) −

�

2
s2n(s) −

�2

6
sb(s).

Fig. 2  Tangential dual curve
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functions obtained as a result of these solutions, tangential dual and torque curve of 
the timelike W curve is obtained. Based on this, depending on the tangential dual 
and torque curve of the timelike W curve, results are given for two different cases 
separately. Afterwards, an example to explain the results is given.

The difference of this study from others is that new dynamically and physical 
results are stated depending on the torque of the timelike curve ℘ and the direction 
of the tangent vector component of the curve. Thus, this study will accompany the 
scientists who will conduct new studies on similar subjects as a important resource 
since it is one of the first studies on this subject. In this context, the present paper 
gives an extraordinary view of the timelike curve. The results obtained in this study 
can also be examined for different frames and spaces. Similarities and differences 
can be interpreted by comparing them. In addition, new results can be generated by 
changing the character of the curve. All these are open problems for future studies.
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