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Abstract
Turbochargers have been widely used in various base conditions, such as horizon-
tal, vertical, or inclined. The prediction of the dynamics is of utmost importance 
to inclined turbocharger designers. In this paper, the effect of weight on the critical 
speed of an inclined turbocharger rotor coupled with floating ring bearings is inves-
tigated. The inclined turbocharger rotor is modeled by lumped mass model. The 
nonlinear floating ring bearing model is derived using Capone’s model. Then the 
nonlinear dynamic model of the turbocharger rotor system is obtained. The balance 
position of the turbocharger rotor system is obtained by solving the nonlinear static 
equation. Linear system of the turbocharger rotor system is derived based on the 
balance position, and the critical speed is obtained by solving an eigenvalue prob-
lem. Three vibration modes, i.e. conical whirl, cylindrical whirl, and bending are 
obtained. Increasing the inclined angle would decrease the critical speed. Increas-
ing the inclined angle would decrease the critical speed. Among the three vibration 
modes, the critical speed of cylindrical whirl furnishes the highest decrease while 
the critical speed of bending attains the lowest decrease. The vertical turbocharger 
rotor has a more wide operating speed range than the horizontal turbocharger rotor.
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1 Introduction

Turbochargers are a special class of turbomachinery used to increase engine 
power by providing compressed air for combustion. In order to meet the demand 
for high power production, the operating speed of turbochargers has been 
increased to an extremely high range. Under such circumstances, the dynamics of 
the turbocharger rotor system accordingly becomes inevitably challenging in the 
stages of product design and fault diagnosis.

Rotor dynamics of turbochargers have been studied widely. Pettinato and 
DeChoudhury [1] analytically and experimentally studied the critical speed and 
failure mechanisms for redesign a high-speed turbocharger. Chen [2] discussed 
the critical speed of larger turbochargers with various bearing designs. Ying et al. 
[3] investigated the effect of foundation excitation on the dynamical behavior of a 
turbocharger.

Traditionally, the turbocharger rotor-bearing unit includes two fluid lubricated 
floating ring bearings as well as a single overhung rotor with the compressor and 
turbine disks at the two ends. Measurements and simulations show that rotors sup-
ported in full-floating ring bearings exhibit diverse nonlinear oscillation effects 
[4–6], which originate in the high nonlinearities introduced by the floating ring 
bearings. Nonlinear rotor dynamics have been studied widely by different meth-
ods [7–9]. Krik et  al. [10] studied the linear stability threshold speeds and the 
nonlinear transient response of the automotive turbocharger with varying bearing 
designs and properties. Schilder et al. [11] investigated the quasi-periodic oscilla-
tions of a finite beam-element turbocharger model with nonlinear oil-film forces. 
Schweizer [12, 13] examined the oil whirl, oil whip, whirl/whip synchronization, 
and the total instability of turbocharger rotors supported in full-floating ring bear-
ings. Bonello [14] analyzed the nonlinear dynamic behavior of a turbocharger on 
floating ring bearings by transient modal analysis. Tian et al. [15, 16] investigated 
the dynamic response and synchronous and sub-synchronous vibrations of tur-
bocharger rotor systems supported on floating ring bearings. Koutsovasilis et al. 
[17] applied a methodology to quantify the sub-synchronous vibrations of a tur-
bocharger with full-floating ring bearings. Liang et al. [18] developed a method 
to control the magnitude and frequency of nonlinear whirl motion of turbocharger 
rotor using the outer clearance of semi-floating ring bearing. Smolik et  al. [19] 
studied the effects of radial bearing clearances on the amplitudes of the sub-syn-
chronous response of the turbocharger rotor. Zhang et al. [20] studied the impact 
of the reduced load capacities and bearing torques caused by circumferential or/
and axial grooves in full-floating-ring bearings on the nonlinear oscillations of 
turbocharger rotors. Singh and Gupta [21] studied the effect of rotating unbalance 
and engine excitations on the nonlinear dynamic response of turbocharger flexible 
rotor system supported on floating ring bearings.

Turbochargers have been widely used in various base conditions, such as 
horizontal, vertical, or inclined. The vertical and inclined rotors have been stud-
ied by several scholars. Shi et  al. [22] comprehensively studied the nonlinear 
dynamics of a vertical rotor-bearing system based on the bifurcation diagrams, 
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waterfall diagrams, rotor center orbits, Poincare maps, and frequency spec-
trums. Luneno et  al. [23] gave a good agreement between the simulation and 
experimental results of a vertical rotor bearings system. Cha and Glavatskih 
[24] investigated the nonlinear dynamic behavior of vertical and horizontal 
rotors in compliant liner tilting pad journal bearings. Nishimura et al. [25] dem-
onstrated the nonlinear steady-state vibration of the self-excited vibration of a 
vertical rotating shaft with journal bearing. Shi et al. [26] studied the influence 
of pivot design on nonlinear dynamic characteristics of a vertical and horizontal 
rotor. Liu et al. [27, 28] applied numerical and experimental methods to study 
the periodic solution and stability of the inclined rotor journal bearing system. 
Capone’s short bearing model was employed to describe the journal bearing 
support properties. Xu et al. [29] investigated the vibration characteristics of an 
eccentric rotor with both the axially inclined angle and the orientation angle. 
So far, no previous work has been done on the critical speed of inclined turbo-
charger rotor coupled with nonlinear floating ring bearings.

Hence, the purpose of this work is to investigate the effect of weight on the criti-
cal speed of an inclined turbocharger rotor coupled with two nonlinear floating ring 
bearings. Based on the lumped mass model and Capone’s model, the inclined tur-
bocharger rotor is modeled as a nonlinear dynamic system. The linear system of the 
turbocharger rotor system is derived using Taylor’s series expansion. Then the criti-
cal speed is obtained by solving an eigenvalue problem. The influence of inclined 
angle on the critical speed of an inclined turbocharger rotor system is investigated 
in detail.

2  Dynamic Model of an Inclined Turbocharger Rotor System

2.1  Turbocharger Rotor Modeling

The structure of an inclined turbocharger rotor system is depicted in Fig. 1, where 
the left end is a compressor wheel, and the right end is a turbine wheel. The inclined 
angle θ is defined as the intersection angle of the rotor axis line and horizontal plane. 
When θ = 0, the turbocharger rotor is horizontal. When θ = 90°, the turbocharger 
rotor is vertical. The shaft is supported by two floating ring bearings. The inclined 
turbocharger rotor is simplified to four mass nodes connected by three massless 
beam sections. Meanwhile, the moment of inertia of the beam elements was also 
concentrated on the corresponding mass nodes. mi is the mass of the ith disk, di and 

Fig. 1  The turbocharger rotor-
bearing model
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li are the diameter and the length of the ith shaft section, respectively. The X and Y 
directions are set in the disc plane, and Z direction is along with the shaft axis.

Following the way described in Ref. [3], the governing equations of motion for 
turbocharger rotor system are formulated as
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where Xi is the displacement of the ith disk along the X axis, Yi is the displacement 
of the ith disk along the Y axis, φxi is the angular displacement of the ith disk around 
the X axis, φyi is the angular displacement of the ith disk around the Y axis, Jai is the 
transverse moment of inertia of the ith disk, Jpi is the polar moment of inertia of the 
ith disk, ei is the eccentricity of the ith disk, Ii is the moment of inertia of the ith 
shaft, Fin

x,2
 and Fin

x,3
 are the inner oil film force along the X axis under the second and 
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third mass nodes, Fin
y,2

 and Fin
y,3

 are the inner oil film force along the Y axis under the 
second and third mass nodes, E is the modulus of elasticity of the shaft, ω is the 
rotational speed of the turbocharger rotor, g is the acceleration of gravity and t is 
time.

2.2  Floating Ring Bearing Modeling

There are two fluid films (i.e. inner and outer) in a floating ring bearing, as shown in 
Fig. 2. The inner fluid film is formed between the journal and the floating ring, whereas 
the outer film is between the floating ring and bearing housing. The fixed right-hand 
frame of reference coordinates ObXY is given where Ob denotes the bearing origin. The 
nonlinear floating ring bearings model developed in this paper is derived in dimen-
sional form using Capone’s model [15, 16]. The Reynolds equations for the inner and 
outer oil films can be written as follows:

where the subscripts in and out identify the parameters of the inner oil film and 
outer oil film, respectively. Ri and Rr correspond to the journal radius and floating 
ring outer radius, respectively. α and β are the circumferential position of the inner 
and outer oil films, respectively. p is the oil film pressure, h is the oil film thick-
nesses, Z is the oil film thicknesses and μ denotes the lubricating oil viscosity, and 
ωr is the rotational speed of the floating ring.

According to Fig. 2, we have
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Fig. 2  Floating ring bearing 
middle plane and reference 
frame
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where Cin and Cout are the radial average clearance of inner and outer oil films, (Xi, 
Yi) is the displacement of journal center Oi of the ith disk, (Xr, Yr) is the displace-
ment of floating ring center Or, (xi, yi) is the displacement of journal center Oi rela-
tive to floating ring center Or.

Applying infinite short bearing approximation theory, Eq. (17) can be 
rewritten.

Substituting Eqs. (18)–(20) into Eq. (21), and integrating the Reynolds equa-
tions twice, the expression for pressure distribution is obtained as follows

The boundary conditions of inner and outer oil films are given as
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Thus, the oil force of the inner oil film is

where

From Eq. (27), yields
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)2
+
(
(𝜔 + 𝜔r)yi + 2ẋi
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where

From Eq. (33), yields
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where mr is the mass of floating ring.
The floating ring rotational speed ωr largely determines the steady-state and 

dynamic force response of a floating ring bearing. An overly simplified analysis 
based on the short-length bearing model and nearly centered operation predicts a 
ring speed ratio equal to [30]

2.3  Nonlinear Dynamics of Turbocharger Rotor System

The governing differential equation of turbocharger rotor Eqs. (1)–(16) and floating 
ring bearings Eqs. (37)-(38) are combined to form the equation of system for the tur-
bocharger system. The combined equation in matrix form is shown as:

where M is the mass matrix, G is the gyroscopic matrix and of the rotor-FRB system, 
K is the stiffness matrix, Foil is the oil force vector of floating ring bearing, Fub is the 
unbalance force vector, Fg is the gravitational force vector. The expression of these 

matries and vectors are:q =

{
X Y X

r
Y
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3  The Critical Speed of Nonlinear Turbocharger Rotor System

From Eq. (40), the static displacement of the turbocharger rotor system due to grav-
ity can be obtained by solving the following equation.

where Foil is a nonlinear function for q0, and q0 is the static balance position.
Substituting q = q(t) + q0 into Eq. (40), yields

The Taylor expansion of nonlinear oil force Foil in q0 is

where

(41)Kq0 = −Foil(q0) + Fg

(42)Mq̈ + 𝜔Gq̇ + Kq + Kq0 = −Foil + Fub + Fg

(43)Foil = Foil(q0) + Koilq + N2(q
2
) + N3(q

3
) +⋯

(44)Koil =
�Foil(q0)

�q



414 Journal of Nonlinear Mathematical Physics (2022) 29:403–422

1 3

Substituting Eq. (41) and Eq. (43) into Eq. (42) and neglecting the nonlinear 
terms, one has

The solution of Eq. (45) is

The frequency of the turbocharger rotor system can be obtained by solving the 
following eigenvalue problem.

One can also solve the following generalized eigenvalue problem.

where

The eigenvalues of Eq. (48) are image, i.e., λ = iωn. The positive ωn means a for-
ward mode (precession motions in the same sense of rotation as the own rotation 
of the shaft) and the negative ωn means a backward mode. The evolution of ωn as a 
function of the rotational speed of the rotor gives a Campbell diagram in the rotating 
frame. The critical speeds of the turbocharger rotor system are the intersection of the 
line ωn = ω and the different order frequency curves in the Campbell diagram.

4  Results and Discussions

The turbocharger rotor-floating ring bearing system is a highly nonlinear system. 
However, the linear behavior of the system is still important to understand the non-
linear responses of this system. In this section, the critical speed of an inclined tur-
bocharger rotor system is investigated. The main parameters are given in Table 1.

From Eq. (41), the static balance position q0 is determined by the gravitational 
force vector. It means q0 is affected by the inclined angle θ. Moreover, Koil is deter-
mined by q0. From Eq. (47), we can conclude that the natural frequency of the linear 
system of turbocharger rotor system is affected by θ. The natural frequencies of the 
linear system of turbocharger rotor system under five inclined angle θ, i.e. 0°, 30°, 
45°, 60°, and 90°, are studied in the following.
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When θ = 0°, the Campbell diagram of the turbocharger rotor system is shown 
in Fig. 3. The forward mode is indicated by solid line, while the backward mode is 
marked by dash line. The dash-dot line means ωn = ω. The intersection of dash-dot 
line and solid line is the critical speed of forward mode. The intersection of dash-dot 
line and dash line is the critical speed of backward mode.

Table 1  Parameters of the rotor and floating ring

Parameter Value

Mass of disk m1 = 0.7787 kg, m2 = 0.0935 kg
m3 = 0.0891 kg, m4 = 1.5591 kg

Mass of floating ring mr = 0.055 kg
Polar moment of inertia Jp1 = 6.72 ×  10–4 kg·m2, Jp2 = 4.98 ×  10–6 kg·m2

Jp3 = 4.50 ×  10–6 kg·m2, Jp4 = 1.426 ×  10–3 kg·m2

Transverse moment of inertia Ja1 = 4.61 ×  10–4 kg·m2, Ja2 = 62.46 ×  10–6 kg·m2

Ja3 = 62.22 ×  10–6 kg·m2, Ja4 = 5.5 ×  10–3 kg·m2

Young’s modulus E = 212 Gpa
Length of rotor section l1 = 27.0 mm, l2 = 58.0 mm, l3 = 22.0 mm
Diameter of rotor section d1 = 12.7 mm, d2 = 17.4 mm, d3 = 17.4 mm
Moment of inertia of rotor section I1 = 2.3527 ×  10–9  m4, I2 = I3 = 4.4995 ×  10–9  m4

Radius of journal Ri = 8.696 mm
Outer radius of the floating ring Rr = 13.9475 mm
Viscosity of oil film μin = μout = 12.77 ×  10–3 pa·s
Length of oil film Lin = 14.0 mm, Lout = 17.0 mm
Radial clearance of oil film Cin = 0.034 mm, Cout = 0.057 mm

Fig. 3  The Campbell diagram of turbocharger rotor system with θ = 0°
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In order to reveal the mode shape of the turbocharger rotor system, the first six 
rotor mode shapes when the rotating speed is 100000 r/min are given in Fig. 4. What 
can be appreciated is that the first four modes are rigid modes, the fifth and sixth 
modes are bending modes. The first mode is a conical whirl backward mode. The 
second mode is a conical whirl forward mode. The third mode is a cylindrical whirl 
backward mode. The fourth mode is a cylindrical whirl forward mode. The fifth 
mode is a bending backward mode. The sixth mode is a bending forward mode.

From Fig. 3, we can see that the critical speed of the conical whirl backward 
mode is 12768 r/min. The critical speed of the conical whirl forward mode is 
15497 r/min. The critical speed of the cylindrical whirl backward mode is 40504 
r/min. The critical speed of the cylindrical whirl forward mode is 40594 r/min. 
The critical speed of the bending backward mode is 138142 r/min. The critical 
speed of the bending forward mode is 202203 r/min.

The Campbell diagram of the turbocharger rotor system when the inclined 
angle θ is 30° is presented in Fig. 5. It shows that the critical speeds of all the 
modes are decreased. The critical speed of the conical whirl backward mode is 
11959 r/min. The critical speed of the conical whirl forward mode is 14535 r/min. 

(a)ω1 = 235Hz (b)ω2 = 509Hz

(c) ω3 = 860Hz (d)ω4 = 870Hz

(e) ω5 = 2423Hz (f) ω6 = 3061Hz

Fig. 4  Mode shapes of turbocharger rotor system with ω = 100,000 r/min and θ = 0°
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The critical speed of the cylindrical whirl backward mode is 38310 r/min. The 
critical speed of the cylindrical whirl forward mode is 38419 r/min. The critical 
speed of the bending backward mode is 138076 r/min. The critical speed of the 
bending forward mode is 202089 r/min.

When the inclined angle θ is increased to 45° the Campbell diagram of the 
turbocharger rotor system is plotted in Fig. 6. The critical speeds of all the modes 

Fig. 5  The Campbell diagram of turbocharger rotor system with θ = 30°

Fig. 6  The Campbell diagram of turbocharger rotor system with θ = 45°
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are further decreased. The critical speed of the conical whirl backward mode is 
10915 r/min. The critical speed of the conical whirl forward mode is 13306 r/min. 
The critical speed of the cylindrical whirl backward mode is 35527 r/min. The 
critical speed of the cylindrical whirl forward mode is 35664 r/min. The critical 
speed of the bending backward mode is 137997 r/min. The critical speed of the 
bending forward mode is 201953 r/min.

Fig. 7  The Campbell diagram of turbocharger rotor system with θ = 60°

Fig. 8  The Campbell diagram of turbocharger rotor system with θ = 90°
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When the inclined angle θ is increased to 60° the Campbell diagram of the turbo-
charger rotor system is given in Fig. 7. The critical speeds of all the modes are also 
decreased. The critical speed of the conical whirl backward mode is 9374 r/min. The 
critical speed of the conical whirl forward mode is 11481 r/min. The critical speed 
of the cylindrical whirl backward mode is 31553 r/min. The critical speed of the 
cylindrical whirl forward mode is 31740 r/min. The critical speed of the bending 
backward mode is 137893 r/min. The critical speed of the bending forward mode is 
201777 r/min.

When the turbocharger rotor is vertical, i.e. θ = 90°, the Campbell diagram of the 
turbocharger rotor system is revealed in Fig. 8. The critical speeds of all the modes 
are decreased greatly. The critical speed of the conical whirl backward mode is 
2724 r/min. The critical speed of the conical whirl forward mode is 3863 r/min. The 
critical speed of the cylindrical whirl backward mode is 20047 r/min. The critical 

Table 2  The critical speed of turbocharger rotor system with different inclined angle

θ Critical speed (r/min)

Conical whirl Cylindrical whirl Bending

Backward Forward Backward Forward Backward Forward

0° 12,768 15,497 40,504 40,594 138,142 202,203
30° 11,959 14,535 38,310 38,419 138,076 202,089
45° 10,915 13,306 35,527 35,664 137,997 201,953
60° 9374 11,481 31,553 31,740 137,893 201,777
90° 2724 3863 20,047 20,408 137,640 201,355

Fig. 9  The critical speed of turbocharger rotor system with different inclined angle
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speed of the cylindrical whirl forward mode is 20408 r/min. The critical speed of the 
bending backward mode is 137640 r/min. The critical speed of the bending forward 
mode is 201355 r/min.

Table 2 and Fig. 9 show the critical speed of the turbocharger rotor system under 
different inclined angle θ. It clearly shows that the critical speed of the turbocharger 
rotor system is decreased as the inclined angle θ increases.

Figure 10 depicts the decrease of the critical speed versus inclined angle. One can 
see that the critical speed decreases of backward and forward with the same vibra-
tion mode are almost the same. Moreover, among the three vibration modes, i.e. 
conical whirl, cylindrical whirl, and bending, the critical speed of cylindrical whirl 
furnishes the highest decrease while the critical speed of bending attains the lowest 
decrease. In order to avoid resonance, the rotating speed of the turbocharger rotor 
should be far from the critical speed. Actually, the turbocharger rotor is operating 
in a quite wide speed range which is between the critical speed of cylindrical whirl 
mode and the critical speed of bending mode. More important the operating speed 
range is enlarged when the inclined angle of the turbocharger rotor is increased from 
0 to 90°. It means the vertical turbocharger rotor has a more wide operating speed 
range than the horizontal turbocharger rotor.

5  Conclusions

In order to reveal the influence of weight on the critical speed of an inclined tur-
bocharger rotor coupled with floating ring bearings, the nonlinear dynamic model 
of the turbocharger rotor system is derived using the lumped mass model and the 

Fig. 10  The decrease of critical speed of turbocharger rotor system with different inclined angle
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Capone’s model. The critical speed of the linear system of the turbocharger rotor 
system is calculated. Three vibration modes, i.e. conical whirl, cylindrical whirl, 
and bending are obtained. Increasing the inclined angle would decrease the criti-
cal speed. Among the three vibration modes, the critical speed of cylindrical whirl 
furnishes the highest decrease while the critical speed of bending attains the low-
est decrease. The vertical turbocharger rotor has a more wide operating speed range 
than the horizontal turbocharger rotor.
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