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Abstract
In this paper, the nonlinear vibration responses of a dual-rotor system supported on 
the ball bearings considering coupling misalignment are investigated with inevitable 
uncertainties included. Moreover, uncertain parameters are modelled by non-proba-
bilistic interval variables, alleviating the hash demands in fitting into a sophisticated 
probability law. It is then more suited for engineering problems that have sparse 
prior data on uncertainties. The deterministic vibration responses, orbits and fre-
quency spectrum are provided first to exhibit the evolution of the vibrations. Then, 
several physical parameters are studied to reveal the effects of their uncertainty on 
the nonlinear vibrations at different rotating speeds. It is worth noting that uncer-
tainty in the speed ratio between the higher-pressure and lower-pressure rotors has 
great impacts. Moreover, the sensitivity also depends on the rotating speed.
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1  Introduction

Dual-rotor system structure is typically employed in aero-engines for its advan-
tages over single rotor systems in several aspects. This type of dual-rotor system 
can be divided into a higher-pressure rotor and a lower-pressure rotor, connected 
by an inter-shaft bearing. Importantly, the rotors are supported and connected by 
bearings to stator structures, such as rolling bearings [1, 2] and journal bearings 
[3, 4]. Due to the nature of contact reaction forces in such bearings, the dynamic 
characteristics exhibit nonlinearities [5–8]. Therefore, it is uneasy to fully under-
stand the mechanism and theory of the vibration behaviours of such dual-rotor 
rolling bearings systems. Many researchers have done fruitful contributions 
on this topic aiming to provide better interpretation and guide the design and 
dynamic investigations [9–12]. Guskov et  al. [13] carried out experimental and 
numerical studies of a dual-shaft test rig with inter-shaft bearing. The influences 
of each rotor’s rotation on critical speeds and the corresponding vibration ampli-
tudes were examined. Chen et al. [14] employed a surrogate model for the unbal-
ance prediction of a dual-rotor system to save computational cost. In addition to 
the nonlinearity in rolling bearings, the dual-rotor systems often suffer from mis-
alignment faults [15], which could be parallel misalignment or angular misalign-
ment between shafts. This fault is common due to assembling errors or operation 
reasons, and it can cause unexpected vibrations and severe consequences [16]. 
Zhang et al. [17] investigated experimentally the dynamic responses of a coaxial 
dual-rotor system with supporting misalignment, where agreements were found 
between test results and those of a finite element (FE) model. Yang et  al. [18] 
proposed a unified FE model for the full-flexible shaft-disk-drum system where 
the bolted joints is taking into consideration.

The formerly mentioned works all adopted deterministic physical models when 
investigating the dynamics of dual-rotor systems. However, it is gradually real-
ized that for such complicated vibration systems there are plenty of uncertainty 
factors that induced vibration level increasing, unexplainable behaviours and 
inaccurate dynamic response estimations [19–22]. For instance, the manufac-
ture errors, material degradations, external load disturbance and surface rough-
ness [23–26]. Zhou et al. [27] pointed out that these variabilities in engineering 
can be treated as narrowly bounded interval variables. These uncertainties will 
cause unexpected deviations in the crucial performances of the rotor systems, 
such as reliability problems [28]. Guo et al. [29] carried out dynamics analyses 
of a L-shaped liquid-filled pipe considering interval uncertainty and experimental 
validations are also presented. Attempts to track the effects of the uncertainties 
in vibrational responses of rotating structures have been already made through 
different modelling techniques, including the stochastic analysis [30] and fuzzy 
approach [31]. Notably, Sinou and Jacquelin [32] studied the influences of the 
polynomial chaos expansion order when stochastically modelling an asymmetric 
rotor system, where coupling misalignment was considered. For certain dual-
rotor systems, it can be very difficult to gather enough prior statistics to build a 
well-fitted probabilistic model or find an appropriate set membership. Thus, the 
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interval analysis methods, which requires much less information of the uncertain 
parameters, can be of interest in such occasions [33]. Wang et al. [34] used a Tay-
lor interval expansion approach to quantify the propagation of non-random uncer-
tainties in an aero-engine rotor system considering misalignment. Fu et  al. [35] 
established a meta-model for the prediction of a dual-rotor system. The meta-
model works in a non-intrusive form that allows alterations in models and fac-
tors to be considered but little modification to the already established uncertainty 
tracking and rotordynamics analysis codes. Further, Fu et  al. [36] conducted a 
nonlinear analysis of the frequency responses of a dual-rotor rubbing system with 
an inter-shaft bearing. However, the nonlinearity in ball bearings and coupling 
misalignment are not included.

In the present study, we aim to use a non-intrusive method for the investiga-
tion of nonlinear vibrations of a dual-rotor ball bearings system. Importantly, the 
uncertainty in the ball bearings is considered, the effects of which are of nonlinear 
nature and still remain unclear at present. Firstly, the complex rotor model will be 
described, and the finite element method (FEM) is used to derive its motion equa-
tions. Secondly, the uncertainty analysis tool will be explained based on the interval 
representations. Thirdly, several key physical parameters are taken as uncertain vari-
ables and their influences on the nonlinear responses are revealed. Lastly, the sum-
marization is given.

2 � Physical System

In this paper, a dual-rotor rolling bearings system with coupling misalignment is 
used. The configuration of the system is given in Fig. 1. It typically consists of a 
lower-pressure and a higher-pressure rotor, both of which are hollow shafts and the 
lower-pressure rotor higher pressure rotor. The two rotors are connected by the inter-
shaft bearing 4 and rotate with different speeds that are often incommensurable. 
Each rotor has two rigid discs, representing the compressor and turbine [37]. Ball 
bearings 1–3 support the rotors and connect the stators. The stiffness and damping 

Fig. 1   Dual-rotor ball bearings system [37]
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coefficients of the rolling bearings are illustrated in the model using ksi and csi, i = 1, 
2, 3, 4. The lower-pressure rotor shaft is normally longer and has a smaller diam-
eter than the shaft of the higher-pressure rotor, making it slender and more easily 
to vibrate heavily. The overall length of the lower-pressure rotor is 0.778  m with 
l1 = 0.094 m, l2 = 0.09 m, l3 = 0.5 m and l4 = 0.094 m. Its inner diameter is 0.0075 m 
and its outer diameter is 0.0125  m. The length of the higher-pressure rotor is 
0.408 m with l5 = 0.08 m, l6 = 0.208 m and l7 = 0.14 m. Properties of the discs and 
ball bearings are listed in Tables 1 and 2. Moreover, the mass of the bearings 1–3 
supports are 2.1 kg, 2.3 kg and 1.8 kg, respectively. The mass of couplings for the 
two rotors is 0.75 kg.

Parallel misalignment in the coupling is included in the model, which induces the 
reaction forces [38]:

where mc is the mass of the coupling, t is time, � represents the rotating speed and 
Δl is the magnitude of parallel misalignment.

The whole system is modelled using the FEM with beam elements, bearing ele-
ments, rigid disc elements and coupling elements. Four degrees of freedom are consid-
ered for each node, i.e., two lateral displacements and two rotational angular displace-
ments. The discs are treated as rigid bodies while their flexibility is neglected. Shear 
effects are included in the beam theory, which allows the consideration of torsional and 
lateral couplings. Detailed theory for establishing the motion equations of these ele-
ments can be found in classic textbooks and relevant publications [39–41]. The overall 

(1)
[
Fcx

Fcy

]

=

[
2mcΔl�

2 cos (2�t)

2mcΔl�
2 sin (2�t)

]

Table 1   Disc parameters

No Inner diam-
eter (mm)

Outer diam-
eter (mm)

Thickness (mm) Mass (kg) Eccentric-
ity (mm)

Moment of 
inertia (kg 
m2)

Disc 1 12.5 62.5 20.0 10.52 0.030 0.072
Disc 2 20.0 42.5 20.0 10.35 0.045 0.077
Disc 3 20.0 42.5 20.0 10.35 0.030 0.066
Disc 4 12.5 62.5 20.0 10.52 0.045 0.085

Table 2   Bearing parameters

No Inner ring 
diameter 
(mm)

Outer ring 
diameter 
(mm)

Ball 
diameter 
(mm)

Number 
of balls 
(–)

Basic stiffness (N/m3/2) Radial 
clearance 
(μm)

Bearing 1 23.38 15.43 7.935 8 3.85 × 109 30
Bearing 2 30.87 22.85 8.01 11 4.36 × 109 5
Bearing 3 36.66 29.63 7.018 18 5.47 × 109 6
Bearing 4 23.31 17.29 6.012 16 11.42 × 109 8
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equation of motion of the system after assembling of elemental matrices is described 
by

where notations �, �, �, � represent the global mass, stiffness, damping and gyro-
scopic matrices of the complete dual-rotor bearings system. � is the displacement 
vector and dot over it means the derivation operation over time. Proportional damp-
ing is used besides damping provided by the ball bearings. Excitations on the system 
are the gravitational forces �g , unbalance forces �u and misalignment forces �m . The 
nonlinear reaction forces of ball bearings are denoted by �b(t, �) and are expressed 
as [42]

where �ij, �ij are the instantaneous angle and contact deformation of the ith and jth 
rolling bodies, n = 3/2 is the Hertz contact nonlinearity, H

(
�ij
)
 is the Heaviside func-

tion, Cbi
, Nbi

, Ωi, 2�i0 describe the contact stiffness, number of roller bodies, cage 
speed, initial radial clearance of the ith bearing.

The dynamical system given in Eq. (3) is nonlinear by nature caused by the contact 
forces in ball bearings. Obtaining accurate solutions to it is quite challenging as the 
dual-rotor system is rather complicated. When the uncertainty is included, the problem 
becomes even more difficult. However, the smooth and precise estimations of nonlinear 
responses of the system will certificate the merits of the uncertainty tracking method in 
dealing with complex nonlinear vibration systems.

3 � Uncertainty Propagation

The interval uncertainties in such a complex dual-rotor system shown in the previous 
section can be introduced in different sources and may be difficult to track. Subse-
quently, the quantification of these uncertainties in the nonlinear dynamic response to a 
satisfactory level cannot be achieved by most of the existing methods. The Chebyshev 
inclusion function proposed by Wu et al. [43] can be applied to study the nonlinear 
responses of a mechanical system from a black-box point of view. It soon witnessed 
many applications in different uncertain nonlinear vibration systems. Based on this the-
ory, the nonlinear interval response (any nodal displacement) is approximated by the 
Chebyshev orthogonal series. For example, let us predefine a set of interval uncertain 
quantities in the dual-rotor bearings system � as

where n is the number of interval variables. The element in � can be expressed as

(2)𝐌𝐪̈ + (𝐂 − 𝜔𝐆)𝐪̇ +𝐊𝐪 + 𝐅b(t, 𝐪) = 𝐅g + 𝐅u(t) + 𝐅m(t)

(3)

[
Fxi

Fyi

]

= Cbi

Nbi∑

j=1

H
(
�ij
)
�n
ij

[
cos �ij

sin �ij

]

, �ij =
2�(j − 1)

Nbi

+ Ωit, �ij = xi cos �ij + yi sin �ij − �i0

(4)� = [�1, �2, … , �n]
T

(5)�I
i
= [�c

i
− ��c

i
, �c

i
+ ��c

i
], i = 1, 2,… , n
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where �c
i
 is the middle value of the interval quantity and � is its variation coefficient. 

Thus, the motion equation of the dual-rotor bearings system should be given in the 
following form to include the effects of uncertain variables

The above formulation of the uncertain system ℑ indicates that the system matri-
ces including excitations will depend on the variations of uncertainties based on 
what interval parameters are considered and they are not fully specified yet, which 
prevents it from being solved by traditional numerical methods directly. Based on 
the multi-element Chebyshev approximation theory, the unknown relationship ℑ 
between the uncertain variables and the nonlinear responses can be expressed by 
[43]

where r denotes the expansion order, �k1,⋯,kn
 is the expansion coefficient to be deter-

mined, p represents the appearance times of 0 in the index set k1,⋯ , kn , Ck1,⋯,kn
 is 

the n-dimensional Chebyshev series as

The connection between the physical uncertain parameter set � and standard 
interval variable set � with all elements defined in [− 1, 1] is

where �, � are the lower and upper bound vector of �.
Now, the unknown coefficients need to be solved to completely establish the 

approximation model. The Gauss–Chebyshev formulas can be applied for this 
purpose

where 𝜃j is the interpolation point set and � is the number of interpolations for each 
dimension. From the function approximation principle, the number of interpolations 
should be larger than the order, i.e., the following should be met

The sampled nonlinear response �̃(t, cos 𝜃j1 , ⋯ , cos 𝜃jn ) is extracted from the pre-
viously constructed deterministic dual-rotor bearings model using the fourth-order 

(6)ℑ ∶

{
𝐌𝐪̈ + (𝐂 − 𝜔𝐆)𝐪̇ +𝐊𝐪 + 𝐅b(t, 𝐪) = 𝐅g + 𝐅u(t) + 𝐅m(t)

𝐌,𝐂,𝐆,𝐊, 𝐪,𝐅g,𝐅u,𝐅m depends on t, 𝐪, �

}

(7)ℑ(�, t) =

r∑

k1=0

⋯

r∑

kn=0

1

2p
�k1,⋯,kn

Ck1,⋯,kn
(�)

(8)Ck1,⋯,kn
(�) = cos(k1�1) cos(k2�2)⋯ cos(kn�n)

(9)� = arccos
2� − (� + �)

� − �
, � ∈ [0, �]n,� ∈ [�, �]n

(10)𝜉k1,⋯,kn
=

𝜆∑

j1=0

⋯

𝜆∑

jn=0

(
2

𝜆

)n

�̃(t, cos 𝜃j1 , ⋯ , cos 𝜃jn ) cos(k1𝜃j1 )⋯ cos(kr𝜃jn)

(11)� ≥ r + 1
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Runge–Kutta method. The notation cos(k1𝜃j1 )⋯ cos(kr𝜃jn ) is the value of the Cheby-
shev series at interpolations. Specifically, we used the Chebyshev zeros as the inter-
polation points, which can be given by

Since now the approximation relationship is justified completely, the interval 
response can be given by finding the bounds of the surrogate function:

where p has the same meaning as before, a superscript I denotes the interval output 
and �, � represent the two bounds of the nonlinear responses.

4 � Numerical Results

In this section, numerical investigations are carried out based on the previously 
explained theory. To provide the deterministic results, i.e., the behaviours of the 
dual-rotor system without uncertainty, all the parameters are kept constant, and the 
motion equations are solved using the Runge–Kutta integration. Here, we present 
the vibration responses of the nodes at bearing #1 and bearing #3 when the rotat-
ing speed of the lower-pressure rotor is 90π rad/s, as shown in Figs. 2 and 3. It is 
seen from Fig.  2a that the time history of bearing #1 in the X-direction shows a 
little distortion of the waveform. However, it is close to the harmonic vibrations, 
as also evidenced by the orbit in Fig. 2b. The frequency spectrum given in Fig. 2c 
reveals the root mechanism, i.e., the frequency component with the most signifi-
cant amplitude is the synchronous vibrations. Other components induced by the 
nonlinear ball bearings and the misalignment are very weak. On the contrary, the 
results for the same rotation speed of bearing #3 exhibit more complexity, as plot-
ted in Fig. 3. The responses in Fig. 3a is nonlinear by nature and the orbit shown in 
Fig. 3b is complicated but still clear. Looking at the frequency spectrum in Fig. 3c, 
we know that the main components are the rotating frequency as well as its fractal 
and 2X frequency. This is typically caused by ball bearings and the misalignment 
fault. When the rotation speed is 100π rad/s, the respective vibration characteristics 
of bearing #1 and bearing #3 are illustrated in Figs. 4 and 5. From the two diagrams, 
we can notice that for a higher rotating speed compared with previous results, the 

(12)�j =
2j − 1

2�
�, j = 1, 2, … , �

(13)
� =

1

2n
�0,⋯,0 −

∑

0≤k1,⋯,kn≤n

k1+⋯+kn≥1

1

2p
|||
�k1,⋯,kn

|||

(14)
� =

1

2n
�0,⋯,0 +

∑

0≤k1,⋯,kn≤n

k1+⋯+kn≥1

1

2p
|||
�k1,⋯,kn

|||

(15)�I = [�, �]
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vibrational behaviours of the two bearings are much more complex. The time his-
tory shows strong nonlinearities, and the orbit has no clear path. The Fourier trans-
form of the displacements gives multiple significant components corresponding to 

Fig. 2   Vibration responses of the dual-rotor system at bearing 1 ( � = 90π rad/s): a time history in the X 
direction, b orbit and c frequency spectrum

Fig. 3   Vibration responses of the dual-rotor system at bearing 3 ( � = 90π rad/s): a time history in the X 
direction, b orbit and c frequency spectrum
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Fig. 4   Vibration responses of the dual-rotor system at bearing 1 ( � = 100π rad/s): a time history in the X 
direction, b orbit and c frequency spectrum

Fig. 5   Vibration responses of the dual-rotor system at bearing 3 ( � = 100π rad/s): a time history in the X 
direction, b orbit and c frequency spectrum
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the unbalance excitation, ball bearings nonlinearity and the parallel misalignment 
fault. It is therefore very meaningful to quantify the propagating of various uncer-
tainties in such nonlinear vibrations and this study is of course a great challenge 
for the uncertainty method used. The results with different interval parameters con-
sidered will be presented. It should be noted that the interval variability levels used 
in this paper are typical values frequently adopted in literature. However, one can 
choose to analysis any reasonable variability levels based on their own needs as the 
procedure proposed in the current study is non-intrusive, i.e., it can be realized by 
only varying the uncertainty coefficients.

The speed ratio between the lower-pressure and higher-pressure rotors is very 
important for engineers in designing an actual aero-engine dual-rotor system operat-
ing at 90π rad/s. Thus, the variability in this parameter could be of great importance. 
For this reason, 10% uncertainty is considered in the speed ratio and the vibration 
response is demonstrated in Fig. 6. It appears that the speed ratio uncertainty has 
great impacts on the nonlinear vibrations. Although the deterministic responses 
show trivial nonlinear nature, the bounds of the responses exhibit much complex-
ity and multiple peaks. The response interval enclosed is wide, indicating the high 
impacts of the uncertainty. It is caused by the high sensitivity of the system to 
the fluctuations of the speed ratio and is also sensitive to the change of the rotat-
ing speed. Quantitatively, the deterministic vibration peak has evolved to an inter-
val of [67.01, 87.79] µm, an uplifting of 31% from the lower bound to the upper 
bound. Further, the uncertainties with the same interval coefficient of 10% in the 
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Fig. 6   Vibration responses of the dual-rotor system with 10% uncertainty in speed ratio ( � = 90π rad/s): 
dashed green line-deterministic curve, blue solid line-lower bound and red solid line-upper bound
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misalignment magnitude, unbalance of the higher-pressure rotor and the radial clear-
ance of bearing #1 are investigated and the interval responses are given in Fig.  7 
with zoomed local views. We can find from the response intervals that the uncertain-
ties in these parameters caused relatively small impacts compared with the uncer-
tain parameter ratio. In addition, the nonlinearity in the dynamic responses is not 
presented by large. The severity of response fluctuations due to these uncertainties 

(a) (b)

(c) (d)

(e) (f)

Fig. 7   Vibration responses of the dual-rotor system with different uncertainties ( � = 90π rad/s): blue 
solid line-lower bound and red solid line-upper bound; a 10% uncertainty in misalignment amplitude, b 
zoomed view of a, c 10% uncertainty in unbalance of higher-pressure rotor, d zoomed view of c, e 10% 
uncertainty in the clearance of bearing #1 and f zoomed view of e 
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increase from the misalignment, unbalance to bearing clearance. Importantly, the 
only obvious deviations are observed near peaks. While the other deviations seem 
linear, the response positions of peaks are slightly shifted.

Further, the dynamic response intervals of bearing #1 when the rotating speed 
is 100π rad/s considering 2% uncertainties in the four investigated cases. The cor-
responding interval responses are plotted in Fig.  8. As expected, the vibration 
responses show complicated characteristics due to uncertainty. The upper and lower 
bounds have many peaks and local fluctuations, which are not necessarily present 
in the deterministic response curves but induced by variabilities of parameters. The 
total increments from the lower peaks to the upper ones are nearly tripled, indicat-
ing the severe propagation of uncertainty and very high sensitivity of the system 
responses to the corresponding uncertainty. To be noted, in this case, the uncertainty 
coefficient is small. It is, therefore, demonstrated that small deviations in parameters 
can lead to heavy fluctuations in the dynamic response in nonlinear and faulted dual-
rotor systems. What’s more, the peaks and local fluctuations of the different cases 
happen at different time steps, revealing their different propagating mechanism in 
the nonlinear vibrations. It is reasonable to estimate that the combined deviations 

(a) (b)

(c) (d)

Fig. 8   Vibration responses of the dual-rotor system with different uncertainties ( � = 100π rad/s): Blue 
solid line-lower bound and red solid line-upper bound; a 2% uncertainty in misalignment amplitude, b 
2% uncertainty in speed ratio, c 2% uncertainty in unbalance of higher pressure rotor and d 2% uncer-
tainty in the clearance of bearing #1
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can be even more striking. Thus, it is important to include irreducible uncertainty 
in robust design and trustworthy dynamic analysis of such dual-rotor ball bearing 
systems.

5 � Conclusion

A dual-rotor ball bearings system with coupling misalignment and interval uncer-
tainty is studied to reveal its nonlinear vibration characteristics. The presented result 
show important impacts of the interval physical parameters, especially the influence 
of the uncertain speed ratio. It is found that the nonlinear vibrations of the dual-rotor 
system are more complex at 100π rad/s than 90π rad/s with the vibrations at bearing 
#3 more affected by the ball bearings and misalignment than at bearing #1. Conse-
quently, the uncertain response bounds are very complicated at 100π rad/s even for a 
small uncertainty in the model. Local fluctuations and peaks are observed, which is 
induced by the nonlinear nature and effects of the uncertainties. This is related to the 
inherent vibration behaviors of the system at different rotating speeds. The findings 
in this study could provide references in analysing these types of systems and the 
reliable design of engineering dual-rotor systems. In future, coupling effects of the 
parametric uncertainty and nonlinearity in the dual-rotor system induced by the ball 
bearings or relevant faults such as cracks and rubbing need to be investigated, which 
will bring more thorough understandings.
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