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Abstract
We consider the relative motion of the system of two masses connected by a spring. 
We analyze it in a range of the Hooke’s law and show that the equations of the rela‑
tive motion of the system are nonlinear once the equilibrium length of the spring is 
nonzero. Although the way of deriving the equations of motion is standard in classi‑
cal mechanics solving them is a complicated and interesting problem of mathemati‑
cal physics. The analysis leads naturally to elliptic integrals. We obtain complete 
formulas in an interesting, from both mathematical and physical point of view, way. 
Our analysis might be useful in some problems of molecular dynamics of diatomic 
molecules.

Keywords  Hooke’s law · Relative potential · Relative motion of two masses · 
Elliptic integrals

Abbreviation
p.r.m	� Plane of relative motion

1  Introduction

Although the Hook’s potential was discovered before the Newton’s, the movement in 
the Hook’s potential has not been thoroughly analyzed. The reason is that although 
it is easy to formulate the (nonlinear) system of equations describing such a motion, 
the solution of it is by no means easy. Essentially similar situation one encounters 
once analyzing a movement of a particle in the gravitational field of a black hole 
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described by the Kerr’a metric. In his seminal 1973 paper [21] Teukolsky provided 
appropriate equations for such a movement, but at that time the solutions were 
obtained only by means of numerical methods and only for a movement of a particle 
whose velocity vector is almost tangent to the equator plane. Much later in [8] an 
analytical solutions for bounded orbits were given. In this paper we give a com‑
plete analytical solution of the system describing the movement of two masses in the 
Hooke’s potential therefore filling the aforementioned gap in the literature. The dif‑
ficulty of this problem, like in the above astrophysical problem is not formulation of 
the system of equations describing the physical phenomenon but its solution.

Both Hooke’s and Newton’s potentials are radial. Movement in the Newton’s 
potential serves as a standard example of radial potential problem. In this paper we 
distinguish Hooke’s potential U(r) =

1

2
�(r − l)2 from the potential of isotropic har‑

monic oscillator U(r) =
1

2
�r2. So, the equilibrium length l of the spring is one of 

the parameters of the Hooke’s model. The value l = 0 yields of course the poten‑
tial of isotropic harmonic oscillator. We think that the problem of movement in the 
Hooke’s potential for any l ≥ 0 was not adequately treated in the literature. In this 
paper we give precise mathematical formulas which describe such a motion.

In theoretical mechanics vibrating systems are of particular importance (cf. [2, 9, 
15, 17]). There is a big variety of such systems, which constitute models for various 
sometimes very complicated processes. Even simple one-dimensional vibrations of 
two masses on a spring have numerous generalizations. For example one can con‑
sider one-dimensional vibrations assuming that a spring has a finite non-zero mass 
(cf. [20]).

In this paper we consider two masses m1 , m2 connected by a spring of the equi‑
librium length l. The system is rotating with some angular momentum and the mass 
center is moving with the velocity �. We assume that the spring is stiff, so that it can‑
not bend, and its only possible deformation is a change of length. We also assume 
that its mass can be neglected. We analyze this system in the range of validity of the 
Hooke’s law. We think that this is a very interesting system also from the theoretical 
point of view. By a standard procedure applicable for a radial potential one can sepa‑
rate the total motion of the system into the motion of the mass center and the relative 
motion. This is recalled in Sect. 2.

The relative motion takes place in the plane perpendicular to the vector 
of relative angular momentum, whereas the velocity vector of the mass center 
motion is arbitrary (cf. Fig. 1). Naturally, in our analysis we use the basic con‑
servations laws of energy and angular momentum. It is well known that systems 
with any radial potential are integrable, but the quadratures are not expressible 

Fig. 1   Motion of two masses 
connected by a spring
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by elementary integrals except for few forms of potentials. We show here that 
even in the Hooke’s law range the quadratures are not elementary. Our approach 
allows one to consider the relative motion of this system as a collective effect 
of rotation and vibration. Qualitatively, the movement has completely different 
form than that analyzed under a "small oscillations" assumption in a neigbour‑
hood of the minimal potential. This can be justified by the fact that the Hessian 
has singularities in the points which render its minima. This corresponds to the 
radial symmetry in the plane of relative motion (p.r.m.). Minimal value of relative 
potential is zero and it is attained on the circle r = l in p.r.m. On the other hand 
the “small oscillations” assumption imply that the Hessian has isolated critical 
points at which it is nonsingular.

Since the spring in the equilibrium state has a nonzero length the equations 
describing rotation and vibrations are nonlinear, even in the range of validity of 
the Hooke’s law. Therefore the dynamics of both motions is inseparable in the 
sense of linear superposition although the geometric separation of these motions 
is clear. It is worth noting, that the above mentioned collective effect leads to 
much more elaborated formulas than those for each of the motions (rotation and 
vibration) alone. We provide exact formulas for this in terms of elliptic integrals. 
The formulas were programmed and the results graphically depicted by use of 
[23]. We suggest a solution of differential equations of the movement in a par‑
ametric form. Such an approach was both used in the solution of the classical 
problems as the Kepler’s problem, and contemporarily, for describing motion of 
a particle in the Kerr’s metric (cf.  [8]). However, this approach is fruitful, as we 
show in our paper, for analysis of rotating vibrational systems. In this paper we 
take into account mutual influences of rotational and vibrational components in 
a relative motion for a relative Hooke’s potential. This type of analysis is neces‑
sary for the description of the dynamics of the system. From theoretical point 
of view, we think, this is good approach to analysis of dynamics of a diatomic 
molecule. Our solution of the model is exact. From mathematical point of view 
the system is interesting as the relative motion is described by means of elliptic 
integrals of the first and third kinds. The trajectory of motion can be viewed as 
a generalized Lissajous curve (cf. [12]). In the analysis one can use the tables of 
elliptic integrals [5] (cf. also [1, 11]). We derive appropriate formulas by means 
of algebraic and trigonometric transformations. The advantage of our approach 
is that the formulas we obtained guarantee no computational problems once one 
changes branches of square roots. This is often the case when one uses formulas 
from tables directly. The content of the paper is the following. In Sects. 2 and 3 
we recall basic well known facts concerning the movement of two masses in the 
radial potential. In Sect. 4 we derive the system of differential equations describ‑
ing the movement of our system. We define there certain parameter Δ whose sign 
governs the movement both qualitatively and quantitatively. The heart of the 
paper are Sects.  5–7. Each of these sections are technical. They start with the 
choice of a parameter � used to obtain the parametric solution for the considered 
case and then we show how the solution is derived.  In Sect. 8 we include addi‑
tional comments on our results and briefly discuss some nonlinear perturbations 
of the Hooke’s law.
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2 � Separation of Motion into Mass Center and Relative Motions

Let us recall the standard procedure of separation of motion into the motions indicated 
in the title of this section. The Lagrange function is given by the following formula:

where

is a radial potential.
The mass center motion satisfies the condition of inertia law. The relative motion is 

equivalent to the motion in a central radial field. Indeed, it is very well known that the 
separation of the motion into the mass center and relative parts leads to the following 
decomposition:

where

Lmc ( Lr resp.) is the mass center part of the Lagrange function (relative part of 
Lagrange function resp.). Similarly, �mc ( � resp.) is the mass center position (relative 
position resp.). Quantity m is the reduced mass of m1 and m2.

3 � General Case of Motion in Radial Potential

In the radial potential field the equations of motion of a material point are given by the 
following nonlinear system of ordinary differential equations [15]:

(1)L =
1

2
(m1�̇

2

1
+ m2�̇

2

2
) − V(�1, �2)

(2)V(�1, �2) = U(∣ �2 − �1 ∣)

(3)

L = Lmc + Lr,

Lmc =
1

2
(m1 + m2)�̇

2

mc
,

Lr =
1

2
m�̇2 − U(r),

(4)�mc =
m1�1 + m2�2

m1 + m2

, � = �2 − �1,

(5)r =∣ � ∣, m =
m1m2

m1 + m2

, U(r) =
1

2
�(r − l)2.

(6)𝜙̇ =
J

mr2
,

(7)ṙ2 =
2

m

[
E − U(r) −

1

2

J2

mr2

]
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obtained from the conservation laws of energy and angular momentum

Notice that in this case the effective radial potential Ueff equals J
2

mr2
+ U(r). Hence

where

Let the condition be such that the radial motion is limited to r ∈ ⟨r1, r2⟩ , where r1, r2 
are zeroes of Q(r):

This yields

Notice that once the range of the motion is known r ∈< r1, r2 > the energy and the 
angular momentum are determined by the formula (13).

In the sequel we use elliptic integrals of the first and third kinds. We adopt the nota‑
tion from [23]. Notice that it differs from the convention used in [5]. Thus

is the (incomplete) Legendre elliptic integral of the first kind and

is the (incomplete) Legendre elliptic integral of the third kind.

(8)E =
1

2
mṙ2 +

1

2

J2

mr2
+ U(r),

(9)J = mr2𝜙̇.

(10)dt =
rdr√
Q(r)

, d� =
Jdr

mr
√
Q(r)

,

(11)Q(r) =
2r2

m
[E − U(r)] −

J2

m2
.

(12)Q(r1) = Q(r2) = 0.

(13)
E =

r2
2
U(r2) − r2

1
U(r1)

r2
2
− r2

1

,

J2 = 2mr2
1
r2
2

U(r2) − U(r1)

r2
2
− r2

1

.

(14)F(� ∣ k2) = ∫
�

0

d�
√
1 − k2sin2�

(15)Π(h;� ∣ k2) = ∫
�

0

d�

(1 − hsin2�)
√
1 − k2sin2�



509

1 3

Journal of Nonlinear Mathematical Physics (2022) 29:504–522	

4 �  Spring in a Harmonic Range

In this section we obtain the system of nonlinear differential equations for the motion in 
the Hooke’s potential. In the following sections we solve them parametrically.

For the harmonic case

one gets

Equivalent form of the formula for energy is the following

Now, let us determine the remaining roots r3, r4 of the quartic (17). The Vieta 
formulas

and (18) lead to following formulas:

The roots r3, r4 are given by the following formula:

where

(16)U(r) =
1

2
�(r − l)2

(17)Q(r) = −
�

m
r4 +

2�l

m
r3 +

2

m

(
E −

1

2
�l2

)
r2 −

J2

m2
,

(18)

J2 = m�r2
1
r2
2

(
1 −

2l

r1 + r2

)
,

E =
1

2
�

[
(
r2
1
+ r2

2

)
− 2

r2
1
+ r1r2 + r2

2

r1 + r2
l + l2

]
.

(19)E =
1

2
�[(r1 + r2) − l]

[
r2
1
+ r2

2

r1 + r2
− l

]
.

(20)r1 + r2 + r3 + r4 = 2l, r1r2r3r4 =
J2

�m

(21)r3 + r4 = 2l − (r1 + r2),

(22)r3r4 = r1r2

(
1 −

2l

r1 + r2

)
.

(23)r3,4 = l −
r1 + r2

2
±

√
Δ

2
,

(24)Δ =
[
(r1 + r2) − 2l

][ (r2 − r1)
2

r1 + r2
− 2l

]
.
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The differential equations of motion can be written as the following equalities of dif‑
ferential forms:

where

and a = r2, b = r1, c = r3, d = r4 , a ≥ b.

Remark 1  Notice that our solutions for various signs of Δ are obtained by care‑
ful choices of the parameters. Although in each case the parameter is different we 
denote them by the common letter �.

5 � The Case 1 > 0

First let us consider a special case of (26)

where we put a ≥ r ≥ b > c > d . The substitution

or equivalent

leads to

Substituting (29) and (30) into (27) one obtains

where

(25)dt =

�
m

�
�1, d� =

J√
m�

�−1,

(26)�n =
rndr√
Q̃(r)

, Q̃(r) = (a − r)(r − b)(r − c)(r − d)

(27)�0 =
dr√
Q̃(r)

,

(28)
r − b

r − c
=

a − b

a − c
sin

2 �,

(29)r =
b(a − c) − c(a − b) sin2 �

(a − c) − (a − b) sin2 �

(30)dr =
(a − b)(a − c)(b − c)

[
(a − c) − (a − b) sin2 �

]2 sin 2�d�.

(31)�0 = g
d�√

1 − k2 sin2 �

,
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5.1 � Parametrized Solution of Motion Equations for 1 > 0

Using the following identity

one gets

Notice that �1 = r�0 and �−1 = r−1�0. Hence the solution of the system of equa‑
tions parametrized by � is given by the following formulas for time and angle � (cf. 
(25)):

Moreover, the formula for r is given by (29). In formulas (36) and (37) the elliptic 
integral of the first kind is given by (14) and the elliptic integral of the third kind is 
given by (15).

In Figs. 2, 3 and 4 we depicted functions t(�), r(�) and �(�) computed, for a 
particular data, from formulas (36), (29) and (37). Since for other cases eg. Δ = 0 
and Δ < 0 the character of these functions (not the exact values) is similar we do 
not show them there. In Fig.  5 (Fig.  6 resp.) we displayed trajectories in the 
x − y plane for the same data and the range of −10 < 𝛼 < 10 ( −12𝜋 < 𝛼 < 12𝜋 
resp.). This allows us to see how the trajectory comes into existence.

(32)g =
2√

(a − c)(b − d)
, k2 =

(c − d)(a − b)

(b − d)(a − c)
.

(33)
K sin

2 � + L

P sin
2 � + R

=
K

P
+

L

R
−

K

P

1 +
P

R
sin

2 �

(34)r = c +
b − c

1 − h1 sin
2 �

, h1 =
a − b

a − c
,

(35)
1

r
=

1

c
+

c − b

bc

1

1 − h−1 sin
2 �

, h−1 =
c(a − b)

b(a − c)
.

(36)
t =

√
m

� ∫ �1 = g

√
m

�

{cF(� ∣ k2) + (b − c)Π(h1;� ∣ k2)} + t0,

(37)

� =
J√
m� ∫ �−1 =

g
J√
m�

�
1

c
F(� ∣ k2) +

c − b

bc
Π(h−1;� ∣ k2)

�
+ �0.
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Fig. 2   Time versus � , parameter � satisfies (34)

Fig. 3   Radius versus � , parameter � satisfies (34)

Fig. 4   Angle � versus parameter � −10 < 𝛼 < 10 , r1 = 0.5, r2 = 4, l = 1,m1 = 1,m2 = 2, 𝜅 = 1,Δ > 0 , 
parameter � satisfies (34)
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Fig. 5   Trajectory in the x − y plane, −10 < 𝛼 < 10 , r1 = 0.5, r2 = 4, l = 1,m1 = 1,m2 = 2, 𝜅 = 1,Δ > 0 , 
� satisfies (34)

Fig. 6   Trajectory in the x − y plane, −12𝜋 < 𝛼 < 12𝜋 , r1 = 0.5, r2 = 4, l = 1,m1 = 1,m2 = 2, 𝜅 = 1,Δ > 0 , � 
satisfies (34)
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6 � The Case 1 = 0

Notice that from formula (24) we see that Δ = 0 if and only if r1 + r2 − 2l = 0 or 
(r2−r1)

2

r1+r2
− 2l = 0. The first equality leads to radial harmonic oscillations without rota‑

tion. We omit this case as a trivial one. For (r2−r1)
2

r1+r2
− 2l = 0 one gets

Let c = −s < 0 be a double root of the quartic.

Using the substitution

one gets

Further let

Hence

where

Finally, using the universal trigonometric substitution one gets

(38)
J2 = 4m�r3

1
r3
2
∕(r1 + r2)

2,

E =
1

8
�
[
(r1 + r2)

2 + 4r1r2
]
.

(39)

�1 =
rdr

(r + s)
√
(a − r)(r − b)

,

�−1 =
dr

r(r + s)
√
(a − r)(r − b)

.

(40)r =
1

2
(a + b) +

1

2
(a − b) sin �

(41)
dr√

(a − r)(r − b)
= d�.

(42)Ip ∶= ∫
dr

(r + p)
√
(a − r)(r − b)

.

(43)Ip = ∫
d�

Ap + B sin �
,

(44)Ap =
1

2
(a + b) + p, B =

1

2
(a − b).

(45)Ip =
2√

A2
p
− B2

[
arc tan

Ap tan
�

2
+ B

√
A2
p
− B2

+ Kl.c.(�∕2)
]
,



515

1 3

Journal of Nonlinear Mathematical Physics (2022) 29:504–522	

where Kl.c.(x) = x − arc tan(tan x) is a locally constant function with such a jump that 
it is possible to make Ip a continuous function (by assigning appropriate values in 
the points which are not in the domain). So

and the parametrized equations of the motion one gets from (25) :

and r(�) is given by (40).
An example of a trajectory for Δ = 0 is depicted in Fig. 7. Notice that in Fig. 7 

we see white spots which correspond to points with removable discontinuities cf. 
formulas (45) and (47).

7 � The Case 1 < 0

For the case Δ < 0 the roots c, d are complex and conjugate. Hence, we consider 
the following form

(46)∫ �1 = � − sIs, ∫ �−1 =
1

s
(I0 − Is),

(47)t =

�
m

�
(� − sIs) + t0, � =

J

s
√
m�

(I0 − Is) + �0.

Fig. 7   Trajectory in x − y plane, r1 = 0.75, r2 = 3.75, l = 1,m1 = 1,m2 = 2, 𝜅 = 1,−15𝜋 < 𝛼 < 15𝜋,Δ = 0 , 
parameter � satisfies (40)
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for a ≥ r ≥ b . The substitution

or equivalent

where A =∣ a − c ∣,B =∣ b − c ∣ , leads to

and

for

Moreover, from the following identity

where

one gets

for n = ±1 and

(48)�0 =
dr√
Q̃(r)

=
dr√

(a − r)(r − b)(r − c)(r − c)

(49)
(a − r)B − (r − b)A

(a − r)B + (r − b)A
= cos �,

(50)r =
(Ab + Ba) + (Ab − Ba) cos �

(A + B) + (A − B) cos �
,

(51)∣ r − c ∣2=
4AB +

[
(A − B)2 − (a − b)2

]
sin

2 �

[(A + B) + (A − B) cos �]2
AB,

(52)�0 = g
d�√

1 − k2 sin2 �

,

g =
1√
AB

, k2 =
(a − b)2 − (A − B)2

4AB
.

(53)

K cos � + L

P cos � + R

=
K

P
+

D

1 − H sin
2 �

−
DP

R

cos �

1 − H sin
2 �

,

(54)D =

L

R
−

K

P

1 −
P2

R2

, H =
P2

P2 − R2
,

(55)rn =
Kn

Pn

+
Dn

1 − Hn sin
2 �

−
DnPn

Rn

cos �

1 − Hn sin
2 �

,



517

1 3

Journal of Nonlinear Mathematical Physics (2022) 29:504–522	

7.1 � Parametrized Solution of Motion Equations for 1 < 0

From the formulas of the previous subsection in particular from (52) and (55) (cf. 
also (26)) finally one gets the parametric formulas for the relative motion. The 
parametrization of time is the following:

The parametrization of � is given by the following formula:

The function r(�) is given by (50).
Naturally, D±1,H±1 are calculated by means of (54) putting K±1, L±1,P±1,R±1 

instead of K, L, P, R.
The function in the last summands of (57, 58) f1(H, �, k2) is an elementary 

integral of the following type:

By means of the Abel substitution

we obtain

Hence

(56)
K1 = P−1 = Ab − Ba, L1 = R−1 = Ab + Ba,

P1 = K−1 = A − B, R1 = L−1 = A + B.

(57)
t =

√
m

� ∫ �1 = t0 + g

√
m

�

×

{
K1

P1

F(� ∣ k2) + D1Π(H1;� ∣ k2) −
D1P1

R1

f1(H1, �, k
2)

}
.

(58)

� =
J√
m� ∫ �−1 = �0 + g

J√
m�

×

�
K−1

P−1

F(� ∣ k2)

+ D−1Π(H−1;� ∣ k2) −
D−1P−1

R−1

f1(H−1, �, k
2)

�

(59)f1(H, �, k2) = ∫
cos �d�

(1 − H sin
2 �)

√
1 − k2 sin2 �

(60)u =
s√

1 − k2s2
, s = sin �

(61)f1(H, �, k2) = ∫
du

1 + (k2 − H)u2



518	 Journal of Nonlinear Mathematical Physics (2022) 29:504–522

1 3

for k2 − H > 0 , and

for k2 − H < 0.
In Fig. 8 we showed a trajectory for Δ < 0 and an exemplary data.

8 � Comments on the Results

8.1 � Spirograph‑Like Orbits

Notice that in the x − y coordinates in the p.r.m we have obtained spirograph- like 
orbits. From an old theorem of Bertrand [3] it follows that for the radial poten‑
tial U = kr� and the bounded motion rmin ≤ r ≤ rmax the closed orbits in the phase 
space are obtained only for � = −1 and � = 2 . In the first case we obtain the force 
corresponding to gravitational or Coulomb law in the second case the force obeys 

(62)f1(H, �, k2) =
1√

k2 − H
arctan

√
k2 − H sin �

√
1 − k2 sin2 �

(63)

f1(H, �, k2) =

1

2
√
H − k2

ln ∣

√
1 − k2 sin2 � +

√
H − k2 sin �

√
1 − k2 sin2 � −

√
H − k2 sin �

∣

Fig. 8   Trajectory in x − y plane, r1 = 1.15, r2 = 3.35, l = 1,m1 = 1,m2 = 2, 𝜅 = 1,−15𝜋 < 𝛼 < 15𝜋,Δ < 0 , 
parameter � satisfies (49)
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the Hooke’s law, see [10, 15] and especially [19]. In [19] the authors also con‑
sider a circular motion of radius r0 in the radial potential U = kr� along with the 
radial motion in the Hooke’s potential of a harmonic oscillator i.e.

where keff = (� + 3)
J2

mr4
0

 and J is a constant angular momentum.
This in fact corresponds to the situation of linear perturbation of force. Then 

the authors separate both motions (vibration and rotation) and compute the ratio 
of the periods of these motions. If this ratio is a rational number then the orbit is 
closed.

Geometrically this situation corresponds to the well known situation of wind‑
ing a half-line with constant speed on a two-dimensional torus which rotates with 
the constant angular speed about it axes of symmetry (cf. [2])

Remark 2  Notice that if for the aforementioned separation of motions the orbit is 
closed in the phase space then it is obviously closed in the x − y plane.

System we consider is much more general, we do not make any limitations 
(except that the spring is massless) on its parameters. Especially, we do not 
assume that the motions are separable. In fact they are not. In Fig. 6. we depicted 
the situation where the angular momentum is relatively small but the orbits are 
non-closed. One can see the “shift” of the orbit near the x axis.The non-closure 
of the orbits is a typical situation for our potential. As it is mentioned in [19] 
closed orbits are possible only for a discrete set of parameters. In Figs. 7 and 8 
we depicted non-closed orbits for Δ = 0 and Δ < 0. The character of the bounded 
orbits for the potential U = kr� is the same for 𝜆 > −3 . (For � = −3 one may 
obtain a Cotes’ spiral as an orbit) [19]. However, since the parameterizations for 
Δ > 0 , Δ = 0 and Δ < 0 differ essentially, the exact coordinates and dynamics for 
such orbits are different. Our solution gives the exact values of the coordinates.

8.2 � Some Related Physical Systems

It is well known that a simple pendulum only for small angles � of a swing can 
be modeled by the equation of a harmonic oscillator. This is justified by the well 
known limit: lim�→0

sin �

�
= 1. However, once � is not close to zero (one cannot 

assume any longer that sin � ≈ � for � ≤ � ) and the solution of the equation of 
motion is given by the following formula (cf. [16]):

where

(64)Ueff ≈ U(r0) +
1

2
keff (r − r0)

2,

(65)�t = ∫
�

0

d�
√

1 − sin
2 1

2
� sin2�

= sn−1
(
sin�, sin

1

2
�

)
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In the above formula � is an angle between the vertical and the pendulum, � is the 
amplitude of the angle of swing, l denotes the length of a pendulum and g is the 
gravitational acceleration.

Another one dimensional system, where the Hooke’s potential is disturbed by the 
quartic term, is the potential of the Duffing oscillator. Then the tension in the spring 
is given by the following equation:

where x is the extension of the spring. If c > 0 then the spring is called stiff whereas 
for c < 0 it is called soft. The equation of motion, after appropriate rescaling of time, 
can be put into the following form [16]:

The solution for the motion of the stiff spring with the initial conditions: 
x(0) = a ≠ 0 and ẋ(0) = 0 is given by the following formula involving the elliptic 
cosine function [16]:

For the soft spring the solution can be expressed by the elliptic sine function as 
follows:

The above described two (pendulum and Duffing oscillator) 1-dimensional systems 
with the perturbations of the Hooke’s potential require elliptic functions, directly 
related to elliptic integrals, for expressing the motion of a mass. For a generalization 
of the simple pendulum see e.g. [13] and for generalizations of the Duffing oscillator 
see [6, 7, 14].

Notice that in our system we use the Hooke’s potential in the form 
U(r) =

1

2
𝜅(r − l)2, l > 0 rather than the potential of the harmonic oscillator (the case 

l = 0 ). When the system only vibrates this distinction corresponds to changing the coor‑
dinate on the line and therefore is irrelevant. However, once the angular momentum J is 
nonzero we obtain the 2-dimensional nonlinear system given by the coupled equations 
(6) and (7). We have not seen analysis of such a system in the literature. We obtained 
parametric solutions for each of the following cases: Δ > 0 , Δ = 0 and Δ < 0, where Δ 
is given by the formula (24). One can try to solve the system of differential equations 
using one of the finite difference schemes. In fact checking our formulas we used the 
Runge–Kutta method of order 4 for the coupled initial value problem (see [4]). The 
differences of the results were negligible. It should be noted that as usual the difference 

sin� =
sin

1

2
�

sin
1

2
�

and � =

√
g

l
,

(66)T = bx + cx3

(67)ẍ + x + 𝜖x3 = 0.

(68)x = a cn(
√
1 + �a2)t, k), k2 =

�a2

2 + 2�a2
.

(69)x = a sn

��
1 −

1

2
𝜂a2t, k

�
, k2 =

𝜂a2

2 − 𝜂a2
, 𝜂 = −𝜖, a <

1√
𝜂
.
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method will be working well for not too big intervals [tmin, tmax] of time. Our method 
has no such limitations. We obtained exact formulas for any value of the parameter �.

9 � Conclusion

In the paper we have analyzed a system of two masses connected by a massless spring. 
We took into account both rotation and vibration of the system. In our opinion the 
research presented here might be useful in some problems of molecular dynamics of 
diatomic molecules (cf. [18, 22]). In such models the assumption that the spring is 
massless is natural from the point of view of classical theory.

For polyatomic molecules a typical way of taking into account mutual influences of 
rotation and vibration is a semi-rigid molecule model. These influences (in a suitable 
reference frame ) are given by a Coriolis coupling and varying with time moment of 
inertia (cf. [22]).This model can be solved numerically producing satisfactory results 
for small amplitudes of oscillations. Analyzing the Coriolis coupling for diatomic mol‑
ecules we readily see that it vanishes. In this case the rotational–vibrational coupling is 
given by change of the moment of inertia.

Our solution is exact for the model under consideration. Notice that although we 
used, in our calculation, the same letter � for an independent parameter of motion, there 
is a discontinuous change of � when the sign of the discriminant Δ is being changed. 
However, this does not effect the character of trajectories. This is a significant differ‑
ence in comparison to Kepler’s problem, where the change of sign of the discriminant 
results in a transition form a bounded trajectory to an unbounded one (or vice versa).
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