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Abstract
We analyze the Broer-Kaup system posed on the half-line by using the unified trans-
form method, also known as the Fokas method. We derive the formal representation 
of the solution for the Broer-Kaup system in terms of the solution of the matrix Rie-
mann-Hilbert problem formulated in the complex plane of the spectral parameter. 
The jump matrix is uniquely defined by the spectral functions that satisfy a certain 
relation, called the global relation involving the initial and boundary values. Fur-
thermore, the spectral functions constructed from the initial values and the bound-
ary values are investigated, plus their associated Riemann-Hilbert problems as the 
inverse problems.

Keywords  Initial-boundary value problem · Broer-Kaup system · Fokas method · 
Inverse scattering transform

Mathematics Subject Classification  35Q15 · 37K10 · 37K15

1  Introduction

The Broer-Kaup system (BK)

arises as a model that describes the bi-directional propagation of long waves in shal-
low water [1, 2]. Eq.  (1) is a coupled integrable system induced from the Bouss-
inesq equation [1, 3]. Being integrable, the BK system has been widely examined 
such as the Lax pair and the inverse scattering transform [2, 4, 5], extended Painlevé 
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expansion [6], perturbation theroy based on the inverse scattering transform [7], 
the Darboux transformation [8], a tri-Hamiltonian structure with an infinite num-
ber of conservation laws [9], the soliton solutions given by its trilinear form [10] 
and peaked solitary wave solutions [11, 12]. In the context of the inverse scatter-
ing transform, the 2 × 2 matrix Lax pair has been analyzed in [4, 5]. It has been 
shown in [5] that there are two cases of eigenvalues; purely imaginary eigenvalues 
and complex conjugate pair of eigenvalues. The former case reduces to the elastic 
interaction of the solitons and the latter leads to the blow up and breather solutions.

The main purpose of the paper is to develop the inverse scattering transform for 
initial boundary value problems (IBVPs) of nonlinear integrable equations. More 
specifically, we are concerned with the IBVP for the BK system (1) formulated on 
the half-line

for which the initial and boundary values satisfy

where the functions v0(x) and w0(x) are assumed to be sufficiently smooth for 
x > 0 and to decay fast as x → ∞ . We also assume that the functions fj(t) and gj(t) 
( j = 0, 1 ) are sufficiently smooth for t > 0 (and to decay rapidly as t → ∞ if T = ∞ ). 
This BK system posed on the half-line can be analyzed by using the Fokas method, 
which is considered as a generalization of the inverse scattering transform for IBVPs 
of integrable systems. We remark that the Fokas method has been extensively 
applied for analyzing a large class of boundary value problems such as nonlinear 
integrable equations [13–16], linear evolution equations [17, 18], linear and non-
linear elliptic partial differential equations [19–21] and difference-differential equa-
tions [22, 23] (see also [24–26] for recent applications of the method to coupled 
integrable IBVPs).

The Fokas method has several efficient advantages for analyzing IBVPs of inte-
grable systems. In particular, we note that (1) the spectral functions satisfy a certain 
algebraic relation called the global relation involving all initial and boundary val-
ues. This global relation allows one not only to establish the existence of the unique 
solution for IBVPs, but to characterize unknown boundary values that enter in the 
spectral functions [15]. For example, for the Dirichlet boundary value problem, the 
Neumann boundary value is unknown. In this case, it is necessary to characterize 
the unknown boundary value. This characterization can be done by analyzing the 
global relation, known as the generalized Dirichlet-to-Neumann map [27–29] (see 
also [30, 31] for further applications of the global relation). (2) The jump matrix 
of the Riemann-Hilbert problem has an explicit exponetial form of dependence on 
x and t. Thus, it is possible to study long time asymptotics of the solution by using 
the Deift-Zhou method [32] or to study the small dispersion limit by using the Deift-
Venakides-Zhou method [33]. Moreover, it also provides an efficient way to charac-
terize the long-time asymptotics for unknown boundary data by using the perturba-
tive approach [34–38]. It should be also remarked that the Fokas method is relatively 

{(x, t) ∈ ℝ
2 ∣ 0 ≤ x, 0 ≤ t ≤ T},

v(x, 0) = v0(x), w(x, 0) = w0(x),

v(0, t) = f0(t), vx(0, t) = f1(t), w(0, t) = g0(t), wx(0, t) = g1(t),



459

1 3

Journal of Nonlinear Mathematical Physics (2022) 29:457–476	

simple, but effective in solving IBVPs for linear partial differential equations. The 
Fokas method presents an explicit integral representation of the solution for linear 
IBVPs, which also leads to efficient new numerical scheme, called a hybrid analyti-
cal-numerical method [39–41].

In this paper, assuming that the solution for the BK system exists, we show that 
it can be represented by the solution of the matrix Riemann-Hilbert problem for-
mulated in the complex plane with the jump matrix given by the spectral functions 
constructed from the initial and boundary values. We also derive the global relation 
for the BK system that relates the spectral functions.

The outline of the paper is as follows. In Sect. 2, the Lax pair for the BK system 
is analyzed so as to define the appropriate eigenfunctions and the spectral functions, 
which are used to formulate the basic Riemann-Hilbert for the BK system posed on 
the half-line. In Sect. 3, we define the spectral functions from the initial values and 
the boundary values and we investigate their associated Riemann-Hilbert problems 
as the inverse problems. Finally, we end with some concluding remarks in Sect. 4.

2 � Spectral Analysis

2.1 � Lax Pair and Eigenfunctions

The BK system admits the following overdetermined linear systems, called the Lax 
pair [4, 5] 

 where k ∈ ℂ is a spectral parameter, Ψ(x, t, k) is a 2 × 2 matrix-valued eigenfunc-
tion, �3 denotes the third Pauli matrix, namely, �3 = diag(1,−1) and

with r = v2 − vx and q = wx + wv for simplicity. Here, we assume that the real-val-
ued functions v and w decay rapidly for all t as x → ∞ . It is convenient to denote the 
matrix commutator simply by 𝜎̂3 ; then e𝜎̂3 can be easily computed as

where A is a 2 × 2 matrix. Note that the Lax pair given in Eqs. (2) is not a stand-
ard form for defining special eigenfunctions that are well-controlled for large k. It 
should require to transform the original Lax pair into the form that Uint and Vint van-
ish as x → ∞ and the leading order term for k is off-diagonal. In this respect, we first 
define Ψ(x, t, k) = D(k)Ψ∞(x, t, k) , where

(2a)Ψx + ik[�3,Ψ] = UintΨ,

(2b)Ψt − k2[�3,Ψ] = VintΨ,
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Then Eqs. (2) can be transformed into the form 

 where

We expand Ψ∞ as

Substituting Eqs. (5) into (3a), we find 

 On the other hand, substituting Eq. (5) into the t-part of the Lax pair (3b), we obtain 

 Equations  (6a) and  (7a) are consistent and we find Ψ(0)

∞,12
= Ψ

(0)

∞,21
= 0 . From 

Eqs. (6b) and (7c), it follows that
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D(k) =

(
1

1

2ik

0 1

)
.

(3a)Ψ∞x + ik[�3,Ψ∞] = U∞Ψ∞,

(3b)Ψ∞t − k2[�3,Ψ∞] = V∞Ψ∞,

(4)

U∞ =

( v

2
+

w

2ik

v

2ik
−

w

4k2

−w −
v

2
−

w

2ik

)
, V∞ =

(
1

4
(r + 2w) +

q

4ik

v

2
+

1

4ik
(r + w) −

q

8k2

−ikw −
q

2
−

1

4
(r + 2w) −

q

4ik

)
.

(5)Ψ∞(x, t, k) = Ψ(0)
∞
(x, t) +

Ψ(1)
∞
(x, t)

k
+ O(1∕k2), (k → ∞).

(6a)O(k) ∶ i[�3,Ψ
(0)
∞
] = 0,

(6b)O(1) ∶ Ψ(0)
∞x

+ i[�3,Ψ
(1)
∞
] =

( v

2
0

−w −
v

2

)
Ψ(0)

∞
.

(7a)O(k2) ∶ − [�3,Ψ
(0)
∞
] = 0,

(7b)O(k) ∶ − [�3,Ψ
(1)
∞
] =

(
0 0

−iw 0

)
Ψ(0)

∞
,

(7c)

O(1) ∶ Ψ
(0)
∞t − [�3,Ψ

(2)
∞
] =

(
1

4
(r + 2w)

v

2

−
q

2
−

1

4
(r + 2w)

)
Ψ(0)

∞
+

(
0 0

−iw 0

)
Ψ(1)

∞
.

(8)Ψ(0)
∞x

=
v

2
�3Ψ

(0)
∞
, Ψ

(0)
∞t =

1

4
(r + 2w)�3Ψ

(0)
∞



461

1 3

Journal of Nonlinear Mathematical Physics (2022) 29:457–476	

with the closed differential one-form defined by

For a simple calculation, we take (x0, t0) = (0, 0) . The asymptotics for the eigenfunc-
tion Ψ∞ given in Eq. (5) suggests to introduce a new function �(x, t, k) [16]

Then we have

and Eqs. (3) can be written as

where the closed differential one-form is defined by

with 

 We also note that Eq. (12) is equivalent to the following modified Lax pair 

It should be now remarked that U,V → 0 as x → ∞ and the leading order term for 
k is off-diagonal. As a result, we define the Jost eigenfunction as the simultaneous 
solution for the both parts of the Lax pair (15)

(9)Ψ(0)
∞
(x, t) = e

∫ (x,t)

(x0,t0)
Δ�3

(10)Δ(x, t) = Δ1dx + Δ2dt =
v

2
dx +

1

4
(r + 2w)dt.

(11)Ψ∞(x, t, k) = e
∫ (x,t)

(0,0)
Δ𝜎̂3𝜇(x, t, k)Ψ(0)

∞
(x, t).

�(x, t, k) = I + O(1∕k), (k → ∞)
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(
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(15a)�x + ik[�3,�] = U�,

(15b)�t − k2[�3,�] = V�.

(16)𝜇j(x, t, k) = I + ∫
(x,t)

(xj,tj)

e−(ikx−k
2t)𝜎̂3Wj(𝜉, 𝜏, k),



462	 Journal of Nonlinear Mathematical Physics (2022) 29:457–476

1 3

where (x,  t), (xj, tj) ∈ {0 < x < ∞, 0 < t < T} and Wj is the differential one-form 
defined by Eq.  (13) with �j . Note that since the one-form W is exact, the integra-
tion in Eq. (16) is path-independent. Hence, we choose three distinct normalization 
points (cf. Fig. 1)

More precisely, we define the Jost eigenfunctions that solve the following integral 
equations 

 where V0(t, k) = V(0, t, k) . Since v and w are real-valued, the potential functions U 
and V have the symmetry: U(x, t,−k) = U(x, t, k) and V(x, t,−k) = V(x, t, k) , where 
the overline denotes the complex conjugation. Thus the eigenfunction � has the sym-
metry �(x, t,−k) = �(x, t, k) . Note that the off-diagonal components of the matrix-
valued eigenfunction � involve the explicit exponential terms. Thus, we partition the 
complex plane into the domains Dj ( j = 1,… , 4 ) defined as (see Fig. 2) 

 We denote �(1) and �(2) the columns of 2 × 2 matrix �(x, t, k) =
(
�(1),�(2)

)
 . We can 

determine regions, where the eigenfunctions are analytic and bounded as follows

•	 �
(1)

1
(x, t, k) is analytic for k ∈ D1 , and bounded for k ∈ D̄

[∕0]

1
 . �(2)

1
(x, t, k) is ana-

lytic for k ∈ D4 , and bounded for k ∈ D̄
[∕0]

4
 , where D̄ is the closure of D and 

D[∕0] = D�{0}.

(x1, t1) = (0, 0), (x2, t2) = (∞, t), (x3, t3) = (0, T).

(17a)

𝜇1(x, t, k) = I + ∫
x

0

e−ik(x−𝜉)𝜎̂3U𝜇1(𝜉, t, k)d𝜉 + e−ikx𝜎̂3 ∫
t

0

ek
2(t−𝜏)𝜎̂3V0(𝜏, k)𝜇1(0, 𝜏, k)d𝜏,

(17b)𝜇2(x, t, k) = I − ∫
∞

x

e−ik(x−𝜉)𝜎̂3U𝜇2(𝜉, t, k)d𝜉,

(17c)

𝜇3(x, t, k) = I + ∫
x

0

e−ik(x−𝜉)𝜎̂3U𝜇3(𝜉, t, k)d𝜉 − e−ikx𝜎̂3 ∫
T

t

ek
2(t−𝜏)𝜎̂3V0(𝜏, k)𝜇3(0, 𝜏, k)d𝜏,

D1 = {k ∈ ℂ ∣ Im k > 0 and Re k2 > 0} = {k ∈ ℂ ∣ 0 < arg k < �∕4 or 3�∕4 < arg k < �},

D2 = {k ∈ ℂ ∣ Im k < 0 and Re k2 > 0} = {k ∈ ℂ ∣ −�∕4 < arg k < 0 or � < arg k < 5�∕4},

D3 = {k ∈ ℂ ∣ Im k > 0 and Re k2 < 0} = {k ∈ ℂ ∣ �∕4 < arg k < 3�∕4},

D4 = {k ∈ ℂ ∣ Im k < 0, Re k2 < 0} = {k ∈ ℂ ∣ 5�∕4 < arg k < 7�∕4}.

Fig. 1   The eigenfunctions �1 , �2 
and �3 for the Lax pair (15)
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•	 �
(1)

2
(x, t, k) is analytic for k ∈ D2 ∪ D4 , and bounded for k ∈ (D̄2 ∪ D̄4)

[∕0] . 
�
(2)

2
(x, t, k) is analytic for k ∈ D1 ∪ D3 , and bounded for k ∈ (D̄1 ∪ D̄3)

[∕0].
•	 �

(1)

3
(x, t, k) is analytic for k ∈ D3 , and bounded for k ∈ D̄

[∕0]

3
 . �(2)

3
(x, t, k) is ana-

lytic for k ∈ D2 , and bounded for k ∈ D̄
[∕0]

2
.

Moreover, the asymptotic behavior for the eigenfunction as k → ∞ leads to the 
reconstruction formula for the solution of the BK system. As shown in Appendix, 
expanding

we find the asymptotic behavior of the eigenfunction �:

with

where the closed differential one-form Δ is given in eq. (10) and Ω is defined by

We then have the reconstruction formula for the solution

We note that

(19)�(x, t, k) = I +
� (1)(x, t)

k
+

� (2)(x, t)

k2
+⋯ , (k → ∞),

(20)�(x, t, k) = I +
1

2ik

( ∫ (x,t)

(0,0)
Ω 0

we
2 ∫ (x,t)

(0,0)
Δ − ∫ (x,t)

(0,0)
Ω

)
+ O(1∕k2), (k → ∞)

(21)�
(2)

12
(x, t) = −

v

4
e
−2 ∫ (x,t)

(0,0)
Δ,

(22)Ω(x, t) = wdx +
1

2
(q + wv)dt = Ω1dx + Ω2dt.

(23)ve
−2 ∫ (x,t)

(0,0)
Δ = −4 lim

k→∞
k2�12(x, t, k), we

2 ∫ (x,t)

(0,0)
Δ = 2i lim

k→∞
k�21(x, t, k).

Fig. 2   (Left) The regions D1,… ,D4 . The shaded is the region, where Re k2 > 0 . (Right) The oriented 
contours L1 , L2 and L3 that define the Riemann-Hilbert problem (see text for details)
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which implies that

Thus the inverse problem can be solved in the following steps: (1) Use any of the 
eigenfunctions �j ( j = 1, 2, 3 ) to find m1 and m2

(2) Determine e−2 ∫
(x,t)

(0,0)
Δ given in Eq. (25). (3) The solution for the BK system on the 

half-line can be determined from m1 and m2 by

Note that the matrix eigenfunctions are fundamental solutions of the Lax pair. Thus, 
they are related by the so-called scattering matrices s(k) and S(k), also known as the 
spectral matrices, 

 The spectral functions can be represented in terms of the eigenfunctions. Indeed, 
since �1(0, 0, k) = I , eq. (26a) yields

Thus, the spectral matrix s(k) can be expressed by

On the other hand, noting that �3(0, T , k) = I , Eq. (26b) implies that

Thus, the spectral matrix S(k) can be expressed in terms of the eigenfunction �1

Hereafter, we write the spectral matrices as

(24)
(
e
−2 ∫ (x,t)

(0,0)
Δ
)
x
= −ve−2 ∫

(x,t)

(0,0)
Δ,

(25)e
−2 ∫ (x,t)

(0,0)
Δ = e− ∫ ∞

0
v0(�)d� − 4�

∞

x

�
(2)

12
(�, t)d�.

m1(x, t) = lim
k→∞

(
k�j(x, t, k)

)
21
, m2(x, t) = lim

k→∞

(
k2�j(x, t, k)

)
12
.

v(x, t) = −4m2(x, t)e
2 ∫ (x,t)

(0,0)
Δ, w(x, t) = 2im1(x, t)e

−2 ∫ (x,t)

(0,0)
Δ.

(26a)𝜇2(x, t, k) = 𝜇1(x, t, k)e
−(ikx−k2t)𝜎̂3s(k),

(26b)𝜇3(x, t, k) = 𝜇1(x, t, k)e
−(ikx−k2t)𝜎̂3S(k).

(27)s(k) = �2(0, 0, k).

s(k) = I − ∫
∞

0

eikx𝜎̂3U𝜇2(x, 0, k)dx.

(28)S(k) = 𝜇3(0, 0, k) =
(
e−k

2T𝜎̂3𝜇1(0, T , k)
)−1

.

S−1(k) = I + ∫
T

0

e−k
2t𝜎̂3V0(t, k)𝜇1(0, t, k)dt.
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Note that s(k) and S(k) enjoy the same symmetry as the eigenfunction, namely, 

s(−k) = s(k) and S(−k) = S(k) . Similarly, we can determine the regions, where the 
spectral functions s(k) and S(k) are analytic and bounded:

•	 s(1)(k) is analytic for k ∈ D2 ∪ D4 , and bounded for k ∈ (D̄2 ∪ D̄4)
[∕0] . s(2)(k) is 

analytic for k ∈ D1 ∪ D3 , and bounded for k ∈ (D̄1 ∪ D̄3)
[∕0].

•	 det s(k) = 1 and s(k) = I + O(1∕k) as k → ∞ in the respective domains of bound-
edness of the columns.

•	 S(k) is analytic for k ∈ ℂ[∕0] if T < ∞ ; S(1)(k) is bounded for k ∈ (D̄3 ∪ D̄4)
[∕0] , and 

S(2)(k) is bounded for k ∈ (D̄1 ∪ D̄2)
[∕0] . If T = ∞ , the spectral functions S(1)(k) 

and S(2)(k) are defined for k ∈ (D̄3 ∪ D̄4)
[∕0] and k ∈ (D̄1 ∪ D̄2)

[∕0] , respectively.
•	 det S(k) = 1 and S(k) = I + O(1∕k) as k → ∞ in the respective domains of bound-

edness of the columns.

Furthermore, eqs. (27) and (28) imply the relation

where the first column is defined for k ∈ D2 ∪ D4 and the second column holds for 
k ∈ D1 ∪ D3 , depending on the eigenfunction �2 . Evaluating the above equation at 
(x, t) = (0, T) , the spectral functions satisfy the following relation, known as the 
global relation

2.2 � Riemann‑Hilbert Problem

We will formulate the matrix Riemann-Hilbert problem for the BK system. For later 
reference, we introduce the quantities 

 After some tedious but straightforward algebra, from Eqs. (26a) and (26b), we can 
define the following Riemann-Hilbert problem

where the sectionally meromorphic functions M± are defined by

s(k) =

(
a11(k) a12(k)

a21(k) a22(k)

)
, S(k) =

(
A11(k) A12(k)

A21(k) A22(k)

)
.

𝜇3(x, t, k) = 𝜇2(x, t, k)e
−(ikx−k2t)𝜎̂3s−1(k)S(k),

(29)S−1(k)s(k) = e−k
2T𝜎̂3𝜇2(0, T , k), k ∈ (D2 ∪ D4,D1 ∪ D3).

(30a)�(x, t, k) = −ikx + k2t, d1(k) = a12(k)A21(k) − A11(k)a22(k),

(30b)
d2(k) = a11(k)A22(k) − A12(k)a21(k), d3(k) = a12(k)A22(k) − A12(k)a22(k),

(30c)Γ1(k) =
A21(k)

a22(k)d1(k)
, Γ2(k) =

A12(k)

a11(k)d2(k)
, Γ3(k) =

A22(k)

a22(k)d2(k)
.

(31)M−(x, t, k) = M+(x, t, k)J(x, t, k), k ∈ L,
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and the jump matrices are given by 

 with the oriented contour L (see Fig. 2)

where the orientation of L is taken so that the regions denoted by + are on the left 
of the positive direction of L. Note that detM± = 1 and M±(x, t, k) = I + O(1∕k) as 
k → ∞ in the respective domains of boundedness of their columns.

The solution for the BK system can be found from the solution of the Riemann-
Hilbert problem. In this respect, we expand the solution M(x, t, k) of the Riemann-
Hilbert problem as

Letting M+ −M− = M+J̃ , where J̃ = I − J , the Riemann-Hilbert problem can be 
solved by the Cauchy type of integral equation

Then

and we can find the reconstruction formula for the solution of the BK system in 
terms of the solution of the Riemann-Hilbert problem

We note that the function M(x, t, k) is sectionally meromorphic. The possible poles 
occur at the zeros of a11(k) , a22(k) , d1(k) and d2(k) . Also, note that s(−k̄) = s(k) and 

(32)

M+(x, t, k) =

⎧
⎪⎨⎪⎩

�
�
(1)

1
(x,t,k)

a22(k)
,�

(2)

2
(x, t, k)

�
, k ∈ D1�

�
(1)

2
(x, t, k),

�
(2)

1
(x,t,k)

a11(k)

�
, k ∈ D4

,

M−(x, t, k) =

⎧
⎪⎨⎪⎩

�
�
(1)

2
(x, t, k),

�
(2)

3
(x,t,k)

d2(k)

�
, k ∈ D2�

�
(1)

3
(x,t,k)

d1(k)
,�

(2)

2
(x, t, k)

�
, k ∈ D3

J1 =

(
−1 0

e−2�(x,t,k)Γ1(k) 1

)
, k ∈ L1, J2 =

(
1 − e2�(x,t,k)

d3(k)

d2(k)

e−2�(x,t,k)
a21(k)

a22(k)
Γ3(k)

)
, k ∈ L2,

J3 =

(
1 e2�(x,t,k)Γ2(k)

0 1

)
, k ∈ L3

L1 = D̄1 ∩ D̄3, L2 = D̄1 ∩ D̄2, L3 = D̄2 ∩ D̄4,

M(x, t, k) = I +
M1(x, t)

k
+

M2(x, t)

k2
+ O(1∕k3), (k → ∞).

M(x, t, k) = I +
1

2i𝜋 ∫L

M+J̃(x, t, l)

l − k
dl.

M1(x, t) = −
1

2i𝜋 ∫L

M+J̃(x, t, l)dl, M2(x, t) = −
1

2i𝜋 ∫L

M+J̃(x, t, l)l dl

(34)

ve
−2 ∫ (x,t)

(0,0)
Δ =

2

i𝜋 �L

(
M+J̃(x, t, k)

)
12
k dk, we

2 ∫ (x,t)

(0,0)
Δ = −

1

𝜋 �L

(
M+J̃(x, t, k)

)
21
dk.
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S(−k̄) = S(k) . We assume that there are a finite number of simple zeros. More pre-
cisely, we assume that 

	 (i)	 a11(k) has a finite number of simple zeros in D4 . There are two types of zeros: 
kj ≠ −kj and kj = −kj (purely imaginary). We assume that a11(k) has 2n1 simple 
zeros at kj and −kj with kj ≠ −kj for j = 1, 2,… , n1 and assume that a11(k) has 
n′
1
 simple zeros at k = ibj ( bj < 0 ) for j = 1, 2,… , n�

1
.

	 (ii)	 a22(k) has 2n2 simple zeros in D1 . We label such zeros k̃j and −k̃j  for 
j = 1, 2,… , n2.

	 (iii)	 d1(k) has a finite number of simple zeros in D3 . We assume that d1(k) has 2N1 
simple zeros at zj and −zj with zj ≠ −zj for j = 1, 2,… ,N1 and assume that 
d1(k) has N′

1
 simple zeros at k = icj ( cj > 0 ) for j = 1, 2,… ,N�

1
.

	 (iv)	 d2(k) has 2N2 simple zeros in D2 . We label such zeros z̃j and −z̃j  for 
j = 1, 2,… ,N2.

We then find the residue conditions 

where the overdot denotes differentiation with respect to k. Indeed, recalling 
�
(1)

2
= a11�

(1)

1
+ e−2�a21�

(2)

1
 , where we have suppressed the x, t and k dependence for 

simplicity, we can compute the residue

which is the first equation of eq.  (35a). For eq.  (35b), using M− = M+J1 yields 
a22�

(1)

3
= −d1�

(1)

2
+ e−2�A21�

(2)

2
 . Thus, we find

which is the first equation of Eq. (35b). Similarly, we can derive the second equa-
tions of Eqs. (35a) and  (35b). We remark that for the purely imaginary zeros, the 
residue conditions given in Eqs. (35) are valid.

(35a)

Res
k=kj

M
(2)
+ (x, t, k) = e2𝜃(x,t,kj)

M
(1)
+ (x, t, kj)

a21(kj)ȧ11(kj)
,

Res
k=k̃j

M
(1)
+ (x, t, k) = e−2𝜃(x,t,k̃j)

M
(2)
+ (x, t, k̃j)

a12(k̃j)ȧ22(k̃j)
,

(35b)

Res
k=zj

M(1)
−
(x, t, k) = e−2𝜃(x,t,zj)

A21(zj)M
(2)
−
(x, t, zj)

a22(zj)ḋ1(zj)
,

Res
k=z̃j

M(2)
−
(x, t, k) = e2𝜃(x,t,z̃j)

A22(z̃j)M
(1)
−
(x, t, z̃j)

a21(z̃j)ḋ2(z̃j)
,

Res
k=kj

M
(2)
+ (x, t, k) =

𝜇
(2)

1
(x, t, kj)

ȧ11(kj)
= e2𝜃(x,t,kj)

𝜇
(1)

2
(x, t, kj)

a21(kj)ȧ11(kj)
,

Res
k=zj

M(1)
−
(x, t, k) =

𝜇
(1)

3
(x, t, zj)

ḋ1(zj)
= e−2𝜃(x,t,zj)

A21(zj)𝜇
(2)

2
(x, t, zj)

a22(zj)ḋ1(zj)
,
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3 � Spectral Functions

Motivated by the analysis of Sect. 2, we define the spectral functions.

Definition 3.1  Given v0(x),w0(x) ∈ S(ℝ+) , we define the map

by s(k) = (aij) = �2(0, k) , where

Proposition 3.1  The spectral function s(k) has the following properties: 

(i)	 s(1) is analytic for Im k < 0 and bounded on Im k ≤ 0 except for k = 0 ; s(2) is ana-
lytic Im k > 0 and bounded on Im k ≥ 0 except for k = 0.

(ii)	 s(1) =
(
1

0

)
+ O(1∕k) as k → ∞ for Im k ≤ 0 ; s(2) =

(
0

1

)
+ O(1∕k) as k → ∞ for 

Im k ≥ 0.
(iii)	 det s(k) = 1 , that is, a11(k)a22(k) − a12(k)a21(k) = 1 for k ∈ ℝ[∕0].
(iv)	 s(−k̄) = s(k).
(v)	 The inverse map �−1 ∶ {aij(k)} → {v0(x),w0(x)} to the map � is defined by 

where 

 and M(x)(x, k) is the unique solution of the following Riemann-Hilbert problem:

•	

 is a meromorphic function for k ∈ ℂ�ℝ , where ℂ± denote the upper/half plane of the 

complex plane, respectively.
•	

 where ℝ is oriented so that k ∈ ℝ is increasing and the jump matrix J(x) is given by 

 with 

(36)� ∶ {v0(x),w0(x)} → {aij(k)}, (i, j = 1, 2)

(37)𝜇2(x, k) = I − ∫
∞

x

e−ik(x−𝜉)𝜎̂3U(𝜉, 0, k)𝜇2(𝜉, k)d𝜉.

(38)v0(x)e
− ∫ x

0
v0(�)d� = −4M

(x)

2
(x), w0(x)e

∫ x

0
v0(�)d� = 2iM

(x)

1
(x),

M
(x)

1
(x) = lim

k→∞
kM

(x)

21
(x, k), M

(x)

2
(x) = lim

k→∞
k2M

(x)

12
(x, k)

(39)M(x)(x, k) =

{
M

(x)
+ (x, k), k ∈ ℂ+,

M(x)
−
(x, k), k ∈ ℂ−

(40)M
(x)
+ (x, k) −M(x)

−
(x, k) = M

(x)
+ (x, k)J(x)(x, k), k ∈ ℝ,

(41)J(x)(x, k) =

(
�1(k)�2(k) e−2ikx�2(k)

−e2ikx�1(k) 0

)

�1(k) =
a21(k)

a11(k)
, �2(k) =

a12(k)

a22(k)
.
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•	 Assume that the first column of M(x)
−

 has 2n3 simple zeros, labeled by 
kj and −kj with kj ≠ −kj ( j = 1, 2,… , n3 ) and has n′

3
 simple zeros at k = ibj 

( bj < 0 and j = 1, 2,… , n�
3
 ). Furthermore, assume that the second column of 

M
(x)
+  has 2n4 simple zeros, labeled by k̃j and −k̃j with k̃j ≠ −k̃j ( j = 1, 2,… , n4 ) 

and has n′
4
 simple zeros at k = icj ( cj > 0 and j = 1, 2,… , n�

4
 ). Then 

where M(x,1) and M(x,2) are the first column and the second column of the matrix 
M(x) , respectively.

Proof  (i)–(iv) can be proved from the discussion in Sect. 2.2. In order to prove (v), 
we define the eigenfunctions of the x-part of the Lax pair (15a) evaluated at t = 0

 From Eq. (26a) evaluated at t = 0 , it follows that

Letting

Eq. (44) can be written as the Riemann-Hilbert problem defined by in Eq. (40) with 
the jump matrix given in Eq. (41). Moreover, Eq. (44) yields the residue conditions 
given by Eq. (42).

As shown in Sect.  2.1 (cf. Appendix), we have the asymptotic expansion for 
M(x)(x, k)

with

Thus, eq. (38) can be derived, where

(42)Res
k=kj

M(x,1)(x, k) =
e2ikjxa21(kj)

ȧ11(kj)
M(x,2)(x, kj), Res

k=k̃j

M(x,2)(x, k) =
e−2ik̃jxa12(k̃j)

ȧ22(k̃j)
M(x,1)(x, k̃j),

𝜇1(x, k) = I + ∫
x

0

e−ik(x−𝜉)𝜎̂3U(𝜉, 0, k)𝜇1(𝜉, k)d𝜉,

𝜇2(x, k) = I − ∫
∞

x

e−ik(x−𝜉)𝜎̂3U(𝜉, 0, k)𝜇2(𝜉, k)d𝜉.

(44)𝜇2(x, k) = 𝜇1(x, k)e
−ikx𝜎̂3s(k).

(45)

M
(x)
+ =

(
𝜇
(1)

1
(x, k),

𝜇
(2)

2
(x, k)

a22(k)

)
, Im k > 0,

M(x)
−

=

(
𝜇
(1)

2
(x, k)

a11(k)
,𝜇

(2)

1
(x, k),

)
, Im k < 0,

M(x)(x, k) = I +
1

2ik

(∫ x

0
w0(�)d� 0

w0e
∫ x

0
v0(�)d� − ∫ x

0
w0(�)d�

)
+ O(1∕k2), (k → ∞)

−
v0

4
e− ∫ x

0
v0(�)d� = lim

k→∞
k2M

(x)

12
.
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Definition 3.2  Given smooth functions fn(t), gn(t) ( n = 0, 1 ), we define the map

by S(k) = (Aij) = �3(0, k) , where

Proposition 3.2  The spectral function S(k) has the following properties: 

(i)	 S(1) is analytic for k ∈ D3 ∪ D4 and bounded for k ∈ (D̄3 ∪ D̄4)
[∕0] ; whereas S(2) is 

analytic for k ∈ D1 ∪ D2 and bounded for k ∈ (D̄1 ∪ D̄2)
[∕0].

(ii)	 S(1) =
(
1

0

)
+ O(1∕k) as k → ∞ for k ∈ D3 ∪ D4 ; S(2) =

(
0

1

)
+ O(1∕k) as k → ∞ 

for k ∈ D1 ∪ D2.
(iii)	 det S(k) = 1 , that is, A11(k)A22(k) − A12(k)A21(k) = 1 for k ∈ ℂ[∕0] (if T = ∞ , 

k2 ∈ iℝ[∕0]).
(iv)	 S(−k̄) = S(k).
(v)	 The inverse map ℚ−1 ∶ {Aij(k)} → {fn(x), gn(x)} to the map ℚ is defined by 

 where 

and the matrix functions M(t)

1
(t) and M(t)

2
(t) are determined by the asymptotic 

expansion 

where M(t)(t, k) is the unique solution of the following Riemann-Hilbert 
problem:

e− ∫ x

0
v0(�)d� = 4�

x

0

M
(x)

2
(�)d� + 1.

(46)ℚ ∶ {fn(t), gn(t)} → {Aij(k)}, (i, j = 1, 2)

(47)𝜇3(t, k) = I − ∫
T

t

ek
2(t−𝜏)𝜎̂3V0(𝜏, k)𝜇3(𝜏, k)d𝜏.

(48a)f0e
−2 ∫ t

0
Δ2(�)d� = −4

(
M

(t)

2
(t)
)
12
, g0e

2 ∫ t

0
Δ2(�)d� = 2i

(
M

(t)

1
(t)
)
21
,

(48b)�
t

0

Ω2(�)d� = 2i
(
M

(t)

1
(t)
)
11

,

(g1 + f0g0)e
2 ∫ t

0
Δ2(�)d� = 4

[(
M

(t)

1
(t)
)
11

(
M

(t)

1
(t)
)
21

−
(
M

(t)

2
(t)
)
21

]
,

(49)Δ2(t) =
1

4

(
f 2
0
(t) − f1(t) + 2g0(t)

)
, Ω2(t) =

1

2

(
g1(t) + 2g0(t)f0(t)

)
,

M(t)(t, k) = I +
M

(t)

1
(t)

k
+

M
(t)

2
(t)

k2
+ O(1∕k3), (k → ∞),
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•	
is a meromorphic function for k ∈ ℂ�(L1 ∪ L3).

•	
where the orientation of L1 ∪ L3 is taken so that the regions denoted by + are on 
the left of the positive direction of L1 ∪ L3 and the jump matrix J(t) is given by 

with 

•	 Assume that the first column of M(t)
−

 has 2N3 simple zeros, labeled by �j and 
−�j ( j = 1, 2,… ,N3 ) and assume that the second column of M(t)

+  has 2N4 sim-
ple zeros, labeled by 𝜆̃j and −𝜆̃j ( j = 1, 2,… ,N4 ). Then 

where M(t,1) and M(t,2) are the first column and the second column of the 
matrix M(t) , respectively.

Proof  It is enough to prove (v). Define the eigenfunctions of the t-part of the Lax 
pair (2b) evaluated at x = 0

 From Eq. (26b) evaluated at x = 0 , it follows that

Letting

(50)M(t)(t, k) =

{
M

(t)
+ (t, k), k ∈ D1 ∪ D2,

M(t)
−
(t, k), k ∈ D3 ∪ D4

(51)M
(t)
+ (t, k) −M(t)

−
(t, k) = M

(t)
+ (t, k)J(t)(t, k), k ∈ L1 ∪ L3,

(52)J(t)(t, k) =

(
R1(k)R2(k) e2kt

2

R2(k)

−e−2kt
2

R1(k) 0

)

R1(k) =
A21(k)

A11(k)
, R2(k) =

A12(k)

A22(k)
.

(53)

Res
k=𝜆j

M(t,1)(t, k) =
e
−2𝜆2

j
t
A21(𝜆j)

Ȧ11(𝜆j)
M(t,2)(t, 𝜆j),

Res
k=𝜆̃j

M(t,2)(t, k) =
e
2i𝜆̃2

j
t
A12(𝜆̃j)

Ȧ22(𝜆̃j)
M(t,1)(t, 𝜆̃j),

𝜇1(t, k) = I + ∫
t

0

ek
2(t−𝜏)𝜎̂3V0(𝜏, k)𝜇1(𝜏, k)d𝜏,

𝜇3(t, k) = I − ∫
T

t

ek
2(t−𝜏)𝜎̂3V0(𝜏, k)𝜇3(𝜏, k)d𝜏.

(55)𝜇3(t, k) = 𝜇1(t, k)e
k2t𝜎̂3S(k).
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Eq. (55) can be written as the Riemann-Hilbert problem defined by in Eq. (51) with 
the jump matrix given in Eq. (52). Moreover, Eq. (55) yields the residue conditions 
given by Eq. (53). Note that the asymptotic expansion for M(t)(t, k) becomes

with

Thus, Eqs. (48) can be derived. 	�  ◻

4 � Concluding Remarks

In this work, we studied the IBVP for the BK system posed on the half-line by using 
the Fokas method. The Lax pair first should be transformed into a standard form so 
that we can define the well-controlled eigenfunctions for large spectral parameter k. 
We remark that the solution can be represented in terms of the solution of the matrix 
Riemann-Hilbert problem with the jump matrix defined by the spectral functions. 
We derived the global relation for the BK system involving the given initial val-
ues and the boundary values. When it comes to being well-posed, all boundary val-
ues may not be require to specify as boundary conditions. The fact that the spectral 
functions satisfy the global relation provides a constraint on the initial and boundary 
values, which makes it possible to characterize the unknown boundary values. In 
general, this can be done by solving nonlinear Volterra integral equations for the 
unknown boundary values [15]. We will analyze the global relation for the BK sys-
tem in the near future.

Appendix Asymptotics for eigenfunction

In this section, we determine the asymptotic behavior of the eigenfunction � of the 
Lax pair (15) as k → ∞ . To this end, we expand the eigenfunction as

(56)

M(t)
+ =

(

�(1)
1 (t, k),

�(2)
3 (t, k)
A22(k)

)

, k ∈ D1 ∪ D2,

M(t)
− =

(

�(1)
3 (t, k)
A11(k)

,�(2)
1 (t, k),

)

, k ∈ D3 ∪ D4.

M(t)(t, k) = I +
1

2ik

( ∫ t

0
Ω2(�)d� 0

g0e
2 ∫ t

0
Δ2(�)d� − ∫ t

0
Ω2(�)d�

)
+ O(1∕k2), (k → ∞)

(
M

(t)

2
(t)
)
12

= −
f0

4
e−2 ∫ t

0
Δ2(�)d� ,

(
M

(t)

2
(t)
)
21

= −
1

4

(
g1 + f0g0 + g0 �

t

0

Ω2(�)d�

)
e2 ∫ t

0
Δ2(�)d� .

(57)�(x, t, k) = I +
� (1)(x, t)

k
+

� (2)(x, t)

k2
+⋯ , (k → ∞).
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Substituting this expansion into the x-part of the Lax pair (15a), we find 

 with

where the closed differential one-form Δ(x, t) is defined by

On the other hand, substituting Eq.  (57) into the t-part of the Lax pair (15b), we 
obtain 

 where

with r = v2 − vx and q = wx + wv.
Equations (58a) and (60a) are consistent, and we then have

Note that Eq. (58b) implies that 

(58a)O(1) ∶ i[�3,�
(1)] = U0,

(58b)O(1∕k) ∶ � (1)
x

+ i[�3,�
(2)] = U0�

(1) +
1

2i
U1

U0 =

(
0 0

−we2 ∫
(x,t)

(0,0)
Δ 0

)
, U1 =

(
w ve

−2 ∫ (x,t)

(0,0)
Δ

0 − w

)
,

(59)Δ(x, t) = Δ1dx + Δ2dt =
v

2
dx +

1

4
(r + 2w)dt.

(60a)O(k) ∶ − [�3,�
(1)] = iV0,

(60b)O(1) ∶ − [�3,�
(2)] = iV0�

(1) + V1,

(60c)O(1∕k) ∶�
(1)
t − [�3,�

(3)] = iV0�
(2) + V1�

(1) +
1

4i
V2,

V0 =

(
0 0

−we2 ∫
(x,t)

(0,0)
Δ 0

)
, V1 =

(
0

v

2
e
−2 ∫ (x,t)

(0,0)
Δ

−
q

2
e
2 ∫ (x,t)

(0,0)
Δ 0

)
, V2 =

(
q (r + w)e−2 ∫

(x,t)

(0,0)
Δ

0 − q

)

�
(1)

12
= 0, �

(1)

21
=

w

2i
e
2 ∫ (x,t)

(0,0)
Δ.

(61a)�
(2)

12
= −

v

4
e
−2 ∫ (x,t)

(0,0)
Δ,

(61b)�
(1)

11x
=

w

2i
, �

(1)

22x
= −

w

2i
.
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 From Eq. (60c), it follows that

Thus, letting the closed differential one-form Ω as

the solutions to Eqs. (61b) and (62) can be found as

Finally, we can determine the asymptotics for the eigenfunction as

We remark that � (2)

12
(x, t) is given by eq. (61a) and from eqs. (58b) and (60b), we find
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