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Abstract
In this paper, we study the initial boundary value problem of the pseudo-parabolic 
p(x)-Laplacian equation with logarithmic nonlinearity. The existence of the global 
solution is obtained by using the potential well method and the logarithmic inequal-
ity. In addition, the sufficient conditions of the blow-up are obtained by concavity 
method.

Keywords  Pseudo-parabolic · Variable exponent · Global existence · Blow-up · 
Logarithmic nonlinearity

Mathematics Subject Classification  35K59 · 35K55 · 35B40

1  Introduction

The main purpose of this paper is to study the existence and blow-up of solu-
tions for the following pseudo-parabolic p(x)-Laplacian equation with logarithmic 
nonlinearity:

where Δp(x)u = div(|∇u|p(x)−2∇u) is the p(x)-Laplacian, Ω ⊂ ℝ
N(N ≥ 1) is a 

bounded domain with smooth boundary �Ω, u0 ∶ Ω → ℝ is the initial function, and 
p, q ∶ Ω → ℝ+ are continuous functions which satisfy the following conditions:

(1)

⎧⎪⎨⎪⎩

ut − Δut − Δp(x)u = �u� q(x)−2u log(�u�), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ 𝜕Ω, t > 0,

u(x, 0) = u0(x
�
, x ∈ Ω,
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with

Pseudo-parabolic equations are characterized by the occurrence of a time deriva-
tive appearing in the highest order term, which can be wildly used in some physical 
and biological scenarios, such as the seepage of homogeneous fluids through a fis-
sured rock, the heat conduction involving two temperature systems, the unidirec-
tional propagation of nonlinear, dispersive, long waves, fluid flow in fissured porous 
media, two phase flow in porous media with dynamical capillary pressure and the 
aggregation of populations (see [1, 2]). For problem (1), we can also give an exam-
ple about the non-stationary process in semiconductors in the presence of sources, 
where Δu represents the linear dissipation of free charge current, Δut − ut represents 
the free electron density rate and the nonlinear term including the p(x)-Laplacian 
and logarithmic nonlinearity stands for the source of free electron current (see [3]). 
In particular, the pseudo-parabolic equations involving the p(x)-Laplacian can be 
used to study electrorheological fluids which are characterized by their ability to 
change the mechanical properties under the influence of the external electromag-
netic, more introductions on physical motivations can be found in [4, 5] and the ref-
erences contained therein.

In the past years, many authors make efforts to the investigation of the existence and 
blow-up of solutions for such kinds of equations. In Chen et al. [6], investigated the fol-
lowing semilinear heat equation with logarithmic nonlinearity

they obtained the existence and blow-up at +∞ of solutions of problem (2), they fur-
ther proved that the global weak solution decayed exponentially in the case of p = 2 , 
and decayed algebraically in the case of p > 2 . Subsequently, Peng and Zhou [7] 
considered the following initial boundary value problem of semilinear heat equation 
with logarithmic nonlinearity

where p satisfies

they obtained the existence of global solution, finite time blow-up and the upper 
bound of blow-up time of problem (3). For problem

2 < p− < p(x) < p+ < q− < q(x) < q+ < p∗(x),∀x ∈ Ω

p∗(x) ∶=

{
+∞ if N ≤ p+,
Np(x)

N−p(x)
if N > p+.

(2)ut − Δu = u log(|u|),

(3)
�u

�t
− Δu = |u|p−2u log |u|,

2 < p < 2∗ ∶=

{
+∞ if n ≤ 2,
2n

n−2
if n ≥ 3,

(4)ut − Δut − Δpu = �p(u) log(|u|),
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where �p(z) = |z|p−2z . In case of 2 < p < 2∗ , the existence or nonexistence of global 
weak solutions as well as finite time blow-up phenomenon were obtained in [8]. In 
He et al. [9], considered the following nonlinear equation

they obtained result of decay estimation and finite blow-up of solutions where 
2 < p < q < p(1 +

2

n
) . Recently, Boudjeriou [10] considered the following nonlinear 

equation

which involved the p(x)-Laplacian operator with nonlinearities of variable exponent 
type. They proved that the local solutions of problem (6) blew up in finite time under 
suitable conditions. More results about partial differential equations involving the 
p(x)-Laplacian operator, we refer to [11–14] and the references therein.

A powerful technique for solving the existence of the above problem is the 
so-called potential well method, which was established by Tsutsumi [15], Levine 
[16], Payne and Sattinger in [17]. Liu et  al. [18, 19] generalized and improved 
the method by introducing a family of potential wells which include the known 
potential well as a special case. On the other hand, the physical interpretation of 
blow-up phenomena is generally thought of as a dramatic increase in temperature 
which leads to ignition of a chemical reaction. Many researchers applied different 
methods to derive the sufficient conditions for finite time and infinite time blow-
up result. In particular, Levine [16] studied the abstract equation

where p and A are positive linear operators defined on a dense subdomain D of a 
real or complex Hilbert Space, in which they obtained the blow-up solutions, under 
abstract conditions

for every x ∈ D , where F(x) = ∫ 1

0
(f (�x), x)d� . This work has been recognized as a 

creative and elegant tool for giving criteria for the blow-up, which is called the con-
cavity method. Nowadays, it is one of the most useful method for blow-up of solu-
tions for evolution equations.

Inspired by the above works, by using the potential well method and concav-
ity method, we consider the existence and blow-up of solutions for problem (1) 
which combine with pseudo-parabolic, variable exponent and logarithmic nonlin-
earity term. To our best knowledge, it is the first attempt to study the properties of 
the solutions for such kind of equations.

Here we give some important definitions as follows: for u0 ∈ W
1,p(x)

0
(Ω) , we 

define the energy functional E and Pohozaev functional J as

(5)ut − Δut − Δpu = |u|q−2u log(|u|),

(6)ut − Δp(x)u = |u|s(x)−2u log(|u|),

p
du

dt
= −A(t)u + f (u(t)), t ∈ [0,+∞),

2(𝛼 + 1)F(x) ≤ (x, f (x)),F(u0(x)) >
1

2
(u0(x),Au0(x))
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and

Let P =
{
u ∈ W

1,p(x)

0
(Ω)�{0} ∶ J(u) = 0

}
 be the Pohozaev manifold [10]. Related 

to the above manifold we have the real number Γ = inf {E(u) ∶ u ∈ P}.

To introduce our main results, we first give the definition of weak solutions and 
blow-up for problem (1).

Definition 1  (Weak solution) u = u(x, t) ∈ L∞(0, T;W
1,p(x)

0
(Ω)) with 

ut ∈ L2
(
0, T;L2(Ω)

)
 , is said to be a weak solution of problem (1) on Ω × [0, T) , if it 

satisfies the initial condition u(x, 0) = u0(x) , and the following equality holds

for all � ∈ W
1,p(x)

0
(Ω) , and for almost every t ∈ (0, T).

Definition 2  (Finite time blow-up) Let u(x, t) be a weak solution of problem (1). We 
say u(x,  t) blows up in finite time if the maximal existence time T is finite and 
limt→T ‖u‖2H1

0
(Ω)

= +∞.

2 � Preliminaries and Lemmas

In this section, we will recall some important results of variable exponentials on 
Lebesgue or Sobolev spaces. For more details on variable exponential Sobolev 
spaces, please refer to [20–23].

Let Ω ⊂ ℝ
N be a smooth bounded domain and p ∈ L∞(Ω) be a measurable func-

tion with p+ = ess supx∈Ω p(x) and p− = ess infx∈Ω p(x).
The variable exponent Lebesgue space Lp(x)(Ω) is defined by

with the norm

The variable exponent Sobolev space W1,p(x)(Ω) is defined by

(7)E(u) = ∫Ω

1

p(x)
|∇u|p(x)dx + ∫Ω

1

q2(x)
|u|q(x)dx − ∫Ω

1

q(x)
|u|q(x) log(|u|)dx,

(8)J(u) = ∫Ω

1

p∗(x)
|∇u|p(x)dx − ∫Ω

1

q(x)
|u|q(x) log(|u|)dx.

(9)
∫Ω

utwdx + ∫Ω

∇ut∇wdx + ∫Ω

|∇u|p(x)−2∇u∇wdx = ∫Ω

|u|q(x)−2u log(|u|)wdx,

Lp(x)(Ω) =

{
u(x) ∣ u is measurable inΩand∫Ω

|u|p(x)dx < ∞

}

‖u‖Lp(x) (Ω) = inf

�
𝜆 > 0,�Ω

����
u

𝜆

����
p(x)

dx ≤ +∞

�
.
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with the norm

So with these norms, the space Lp(x)(Ω) and W1,p(x)(Ω) are reflexive and separable 
Banach spaces. The closure of C∞

0
(Ω) in W1,p(x)(Ω) is denoted by W1,p(x)

0
(Ω) , this 

reflexive Banach space is equipped with the norm ||u||
W

1,p(x)

0
(Ω)

= ||∇u||Lp(x)(Ω).
By virtue of the notion p+ = ess supx∈Ω p(x) , p− = ess infx∈Ω p(x) and 

1 ≤ p− ≤ p(x
) ≤ p+ a.e. in x ∈ Ω , we have

The dual space of W1,p(x)(Ω) is denoted by W−1,p�(x)(Ω) , where 1

p(x)
+

1

p�(x)
= 1,∀x ∈ Ω.

Related to the properties of logarithms and Lebesgue space Lp(x)(Ω) , we have the 
following logarithm inequality and generalized Hölder-type inequality.

Lemma 1  (Logarithm inequality [10]) The following inequality holds

for all s ∈ [1,+∞) and q ∶ Ω → (0,+∞) is a continuous function satisfy that

Lemma 2  (Hölder inequality [20]) For any u ∈ Lp(x)(Ω) and � ∈ Lp
�(x)(Ω) , then

We conclude this section by recalling the classical interpolation inequality.

Lemma 3  (Interpolation inequality [24]) If 1 ≤ p0 < p𝜃 < p1 ≤ ∞ , then

for all u ∈ Lp0 (Ω) ∩ Lp1 (Ω) with � ∈ (0, 1) defined by 1
p�

=
1−�

p0
+

�

p1
.

W1,p(x)(Ω) =
{
u(x) ∈ Lp(x)(Ω)|||∇u ∣∈ Lp(x)(Ω)

}

‖u‖W1,p(x)(Ω) = ‖u‖Lp(x)(Ω) + ‖∇u‖Lp(x)(Ω).

‖u‖p−
W

1,p(x)

0
(Ω)

≤ �Ω

�∇u(x)�p(x)dx ≤ ‖u‖p+
W

1,p(x)

0
(Ω)

, if��u��
W

1,p(x)

0
(Ω)

< 1,

‖u‖p+
W

1,p(x)

0
(Ω)

≤ �Ω

�∇u(x)�p(x)dx ≤ ‖u‖p−
W

1,p(x)

0
(Ω)

, if��u��
W

1,p(x)

0
(Ω)

≥ 1.

| log(s)| ≤ 1

q(x)
sq(x),

0 < q− = min
x∈Ω

q(x) ≤ q(x) ≤ q+ = max
x∈Ω

q(x) < +∞.

�����Ω

u�dx
���� ≤

�
1

p−
+

1

p�
−

�
‖u‖p(x)‖v‖p�(x).

‖u‖p� ≤ ‖u‖1−�
p0

‖u‖�
p1
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3 � Main Results

In this section, we will give the three theorems which are, respectively, related to 
global existence, local existence and finite time blow-up of solutions involving 
problem (1). The existence or nonexistence of the global solution is obtained by 
using the potential well method and the logarithmic inequality. The finite time 
blow-up phenomenon is obtained by concavity method.

Theorem 1  (Global existence) Let u0 ∈ W
1,p(x)

0
(Ω) and E

(
u0
)
< Γ, J

(
u0
)
> 0 , then 

the problem (1) has a global weak solution u(x, t) on Ω × [0,+∞).

Proof  First we define the potential well associated with the problem (1) as

In the space W1,p(x)

0
(Ω) , we take a basis 

{
wj

}∞

j=1
 and define the finite dimensional 

space

Let u0m ∈ Vm , then u0m =
∑m

j=1
amiwi → u0 strongly in W1,p(x)

0
(Ω) as m → +∞ . We 

look for the approximate solutions of the following form

where the coefficients �mj(t) =
(
um,wj

)
2
 satisfy the system of ODES

The existence of local solution of system (13, 14) is guaranteed by Peano’s theorem. 
Multiplying the equality of (13) by ��

mj
(t) , summing for j from 1 to m and integrating 

with respect to time from 0 to t, it yields

From (12, 13, 15) and the continuity of E, we get E(um(0)) → E(u0) . According to 
the assumption that E

(
u0
)
< Γ , we have E

(
u0m

)
< Γ for sufficiently large m. There-

fore, we obtain

(10)W = {u ∈ W
1,p(x)

0
(Ω) ∶ E(u) < Γ, J(u) > 0} ∪ {0}.

(11)Vm = Span
{
w1,w2,⋯ ,wm

}
.

(12)um(x, t) =

m∑
j=1

�mj(t)wj(x),m = 1, 2,⋯ ,

(13)
∫Ω

umtwdx + ∫Ω

∇umt∇wdx + ∫Ω

|∇um|p(x)−2∇um∇wdx

= ∫Ω

|um|q(x)−2um log(|um|)wdx,

(14)�mj(0) = amj, j = 1, 2,… ,m.

(15)∫
t

0

‖‖usm(s)‖‖2H1
0
(Ω)

ds + E
(
um(t)

)
= E

(
u0m

)
, t ∈

[
0, t0,m

]
.
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for sufficiently large m. We will show that t0,m = +∞ and

for sufficiently large m. Suppose that (17) does not hold and let t∗ ∈
[
0, t0m

]
 be the 

smallest time for which um(t∗) ∉ W, then by the continuity of the um(t) , we get 
um(t∗) ∈ �W . Hence, it follows that

or

If (18) is true, it contradicts with (16). While if (19) is true, then um(t∗) ∈ P , 
E(um(t∗)) ≥ infu∈P E(u) = Γ , which also contradicts with (16). Consequently, we 
have um(t) ∈ W,∀t ≥ 0.

On the other hand, since um(t) ∈ W and (7), it follows that

Combining the above inequality with (16), we derive

from where it follows that t0,m = +∞.

By (20), there exists functions u, � and a subsequence of 
{
um

}∞

m=1
 which we still 

denote by 
{
um

}∞

m=1
 such that

By (21, 22) and Aubin–Lions–Simon Lemma ([25], Corollary 4), we get

(16)∫
t

0

‖‖usm(s)‖‖2H1
0
(Ω)

ds + E
(
um(t)

)
< Γ, t ∈

[
0, t0,m

]
,

(17)um(t) ∈ W,∀t ≥ 0,

(18)E
(
um

(
t∗
))

= Γ

(19)J
(
um(t∗)

)
= 0.

E(um) ≥ �Ω

1

p(x)
|∇um|p(x)dx − �Ω

1

q(x)
|um|q(x) log(|um|)dx

≥ �Ω

1

p+
|∇um|p(x)dx − �Ω

1

p∗(x)
|∇um|p(x)dx

≥ p∗
−
− p+

p∗
−
p+ �Ω

||∇um||p(x)dx.

(20)∫
t

0

‖‖usm(m)‖‖2H1
0
(Ω)

ds < Γ and ∫Ω

|∇um|p(x)dx <
p+p

∗
−
Γ

p∗
−
− p+

,

(21)um → u weakly star in L∞
(
(0,+∞);W

1,p(x)

0
(Ω)

)
,

(22)umt → ut weakly star in L2
(
(0,+∞);H1

0
(Ω)

)
,

(23)−div(|∇um|p(x)−2∇um) → �(t) weakly star in L∞
(
(0,+∞);W

−1,p�(x)

0
(Ω)

)
.
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thus

This implies

On the other hand, by a direct calculation, we have

Hence, by Lion’s Lemma (see [25], Lemma 1.3), it yields

weakly star in L∞
(
(0,+∞);Lq

�(x)(Ω)
)
.

By (21, 22, 23) and (27), passing to the limit in (10) and (12) as m → ∞ , we can 
show that u satisfies the initial condition u(0) = u0 and

The next step is to prove that

Let Au = −div(|∇u|p(x)−2∇u) , we observe A ∶ W
1,p(x)

0
(Ω) → W

−1,p�(x)

0
(Ω) is bounded, 

monotone and hemicontinuous operator (see [21]). In addition,

From (27), we have

(24)um → u strong in C
(
(0,+∞),Lr(x)(Ω)

)
, ∀r(x) ∈

[
2, p∗(x)), x ∈ Ω,

(25)um → u a.e. x ∈ Ω,∀t > 0.

(26)|um|q(x)−2um log(|um|) → |u|q(x)−2u log(|u|) a.e. x ∈ Ω,∀t > 0.

�Ω

||||um|
q(x) log(|um|)|||

q+

q+−1
dx

≤ �x∈Ω,|um|≥1
||||um|

q(x)−1 log(|um|)|||
q+

q+−1
dx

+ �x∈Ω,|um|≤1
||||um|

q(x)−1 log(|um|)|||
q+

q+−1
dx

≤ �x∈Ω,|um|≥1
||||um|

q(x)−1 log(|um|)|||
q+

q+−1
dx + c|Ω|

≤ �x∈Ω,|um|≥1
||||um|

q(x)|||
q+

q+−1
dx + c|Ω|

≤ c|Ω| + c|Ω| ⋅ ||um||Lp∗ (Ω)
≤ c.

(27)||um||q(x)−2um log
(||um||

)
⟶ |u|q(x)−2u log(|um|),

(28)∫Ω

utwdx + ∫Ω

∇ut∇wdx+ < 𝜒(t),w >= ∫Ω

|u|q(x)−2u log(|u|)wdx.

(29)�(t) = −div(|∇u|p(x)−2∇u).

⟨Au, u⟩ = ∫Ω

�∇u�p(x)dx,∀u ∈ W
1,p(x)

0
(Ω).
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for any � ∈ Lq+(Ω) . We observe that

From (30), we have

as m → ∞.

Using the Hölder inequality, we get

From (24) we have

as m → ∞.

This combined with (31) implies that

Integrating (28) with respect to time from 0 to T, we can obtain

Taking u = w in (33), we obtain

(30)∫
T

0 ∫Ω

||um||q(x)−2um log
(||um||

)
�dxdt → ∫

T

0 ∫Ω

|u|q(x)−2u log(|u|)�dxdt,

|||�Ω

|um|q(x) log(|um|) − |u|q(x) log(|u|)dx|||
≤ |||�Ω

(um − u)|um|q(x)−2um log(|um|)dx|||
+
|||�Ω

u
(
|um|q(x)−2um log(|um|) − |u|q(x)−2u log(|u|)

)
dx
|||.

(31)
|||∫Ω

u
(
|um|q(x)−2um log(|um|) − |u|q(x)−2u log(|u|)

)
dx
||| → 0,

����Ω

(um − u)�um�q(x)−2um log(�um�)dx��� ≤ ‖um − u‖q+‖�um�q(x)um log(�um�)‖ q+

q+−1

.

|||∫Ω

(um − u)|um|q(x)−2um log(|um|)dx||| → 0,

(32)∫Ω

|um|q(x) log(|um|)dx → ∫Ω

|u|q(x) log(|u|)dx.

∫
T

0 ∫Ω

utwdxdt + ∫
T

0 ∫Ω

∇ut∇wdxdt + ∫
T

0

⟨�(t),w⟩dt

(33)= ∫
T

0 ∫Ω

|u|q(x)−2u log(|u|)wdxdt.
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Multiplying the equality of (13) by �mj
(t) , summing over j form 1 to m and integrat-

ing over (0, T), it yields

From (24) and (32), we deduce that

Combing (34) and (36), we obtain

Finally, by (37) and ([26] Lemma 3.2.2) we deduce that (29) holds, which implies

for all w ∈ W
1,p(x)

0
(Ω)) and a.e. t ∈ [0,∞).

In view of Definition 1 and the above discussions, we get the global existence of 
the solution of problem (1). The proof of Theorem 1 is complete. 	�  ◻

Theorem  2  (Local existence) Let u0 ∈ W
1,p(x)

0
(Ω) and assume 

2 < q− < q(x) < q+ <
Np−

N−p−
,∀x ∈ Ω , then the problem (1) admit a local weak solu-

tion. Moreover, u satisfy the energy inequality

Proof  Similar to the proof of Theorem 1, by means of Galerkin method, we consider 
the approximate solution of problem (1) as um(x, t) =

∑m

j=1
�mj(t)wj(x) , which satis-

fies the following equations

(34)
∫

T

0

⟨�(t), u⟩dt

= ∫
T

0 ∫Ω

�u�q(x) log(�u�)dxdt − 1

2
��u(T)��2

H1
0
(Ω)

+
1

2
��u(0)��2

H1
0
(Ω)

.

(35)

1

2
��um(T)��2H1

0
(Ω)

−
1

2
��um(0)��2H1

0
(Ω)

+ ∫
T

0

⟨Aum, um⟩dt

= ∫
T

0 ∫Ω

�um�q(x) log(�um�)dxdt.

(36)
lim
m→∞

sup∫
T

0

⟨Aum, um⟩dt

= ∫
T

0 ∫Ω

�u�q(x) log(�u�)dxdt − 1

2
‖u(T)‖2

H1
0
(Ω)

+
1

2
‖u(0)‖2

H1
0
(Ω)

.

(37)lim
m→∞

sup∫
T

0

⟨Aum, um⟩dt = ∫
T

0

⟨�(t), u⟩dt.

(38)
∫Ω

utwdx + ∫Ω

∇ut∇wdx + ∫Ω

|∇u|p(x)−2∇u∇wdx = ∫Ω

|u|q(x)−2u log(|u|)wdx

(39)�
t

0

‖‖us(s)‖‖2H1
0
(x)
ds + E(u(t)) ≤ E

(
u0
)
a.e. t ∈

[
0, T∗

]
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Due to u0 ∈ W
1,p(x)

0
(Ω) , then it exists 

{
bmj, j = 1, 2,⋯ ,m

}
 such that

The existence of local solution of system (40) (41) is guaranteed by Peano’s theorem.
Multiplying the equality of (40) by �mj(t) and summing over j from 1 to m, we 

obtain

By virtue of Lemma 1, we have

Choosing � such that 2 < p− < 𝜇 <
Np−

N−p−
− q+ , we have

where � ∈ (0, 1) and 1

�+q+
=

�(N−p−)

Np−
+

1−�

2
.

Due to Lp∗(x)(Ω) ↪ L
Np−
N−p− (Ω) and W1,p(x)(Ω) ↪ Lp∗(x)(Ω) , we have

Combing the above inequality with (44), we obtain

By virtue of H1
0
(Ω) ↪ L2(Ω) , it yields

(40)
∫Ω

umtwidx + ∫Ω

∇umt∇widx + ∫Ω

|∇um|p(x)−2∇um∇widx

= ∫Ω

|um||q(x)−2um log |um|widx,

(41)um(0) = u0m.

(42)um(0) =

m∑
j=1

bmjwj → u0 strongly in W
1,p(x)

0
(Ω).

(43)
1

2

d

dt
‖‖um‖‖2H1

0
(Ω)

+ ∫Ω

||∇um||p(x)dx = ∫Ω

||um||q(x) log
(||um||

)
dx.

�Ω

||um||q(x) log
(||um||

)
dx

≤ �{x∈Ω||um|>1}
||um||q(x) log

(||um||
)
dx

≤ �{x∈Ω||um|>1}
||um||q+ log

(||um||
)
dx

≤ 1

𝜇 �Ω

||um||q++𝜇dx = 1

𝜇
‖‖um(t)‖‖q++𝜇q

+
+𝜇
.

(44)�Ω

||um||q(x) log
(||um||

)
dx ≤ ||um||(1−�)(q++�)2

||um||�(q++�)Np−
N−p−

,

||um|| Np−
N−p−

≤ c||um||W1,p(x)

0
(Ω)

.

�Ω

|um|q(x) log(|um|) ≤ c||um||(1−�)(q+�)2
||um||�(q++�)

W
1,p(x)

0
(Ω)

.
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We discuss the proof into two cases as follows.
Case 1 Suppose ‖um‖ ≥ 1 , then

Due to 1

�+q+
=

�(N−p−)

Np−
+

1−�

2
 , we get

Setting N−p−
Np−

<
1

2
 , we obtain

By Young’s inequality and (46), it follows that

Case 2 Suppose ||um|| ≤ 1 , then

Due to p− − �(q+ + �) and p−

p−−𝜃(q++𝜇)
> 1 , it follows that

By (47) and (49), we obtain

Choosing � =
(1−�)(q++�)p−

2p−−2�(q+�)
 and using 1

�+q+
=

�(N−p−)

Np−
+

1−�

2
 , we derive that

Setting � ∈ (0, 1) , we have

Let Sm(t) = ‖um‖2H1
0
(Ω)

 , we obtain

(45)�Ω

|um|q(x) log(|um|)dx ≤ c||um||(1−�)(q+�)H1
0
(Ω)

||um||�(q++�)
W

1,p(x)

0
(Ω)

.

(46)�Ω

|um|q(x) log(|um|)dx ≤ c||um||(1−�)(q++�)H1
0
(Ω)

(
�Ω

|∇um|p(x)dx
) �(q++�)

p−
.

1 =
𝜃(N − p−)(𝜇 + q+)

Np−
+

(1 − 𝜃)(𝜇 + q+)

2
>

𝜃(N − p−)(𝜇 + q+)

Np−
.

p−

𝜃(q+ + 𝜇)
> 1.

(47)�Ω

|um|q(x) log(|um|)dx ≤ c
(
||um||2H1

0
(Ω)

) (1−�)(q++�)p−

2p−−2�(q+�)
+ ��Ω

|∇um|p(x)dx.

(48)�Ω

|um|q(x) log(|um|)dx ≤ c
(
||um||2H1

0
(Ω)

) (1−�)(q++�)

2

.

(49)�Ω

|um|q(x) log(|um|)dx ≤ c +
(
||um||2H1

0
(Ω)

) (1−�)(q++�)p−

2p−−2�(q++�)
.

�Ω

|um|q(x) log(|um|)dx ≤ c
(
||um||2H1

0
(Ω)

) (1−�)(q++�)p−

2p−−2�(q+�)
+ ��Ω

|∇um|p(x)dx.

(50)𝛼 − 1 =
𝜃p−(𝜇 + q+)

N[p− − 𝜃(q+ + 𝜇)]
> 0.

1

2

d

dt
‖um‖2H1

0
(Ω)

+ �Ω

‖∇um‖p(x)dx ≤ c
�
‖um‖H1

0
(Ω)

��

+ ��Ω

�∇um�p(x)dx.
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Integrating inequality (51) with respect to time from 0 to t, we get

Since (Sm(t))
1−𝛼 > 0 , it yields t ≤ S1−�

m
(0)

c(�−1)
= T∗ and 

Sm(t) = ||um||2H1
0
(Ω)

< c,∀ t ∈ [0, T∗].

Multiplying the equality of (40) by ��
mj
(t) and summing over j from 1 to m, and 

integrating over (0,t) yields

By the continuity of the functional E and (41), there exists a constant c > 0 satisfying

for any positive integer m.
On the other hand,

thus

By (53, 54, 55) and ||um||2H1
0
(Ω)

< c , there exists functions u,� and a subsequence of {
um

}∞

m=1
 which we still denote by 

{
um

}∞

m=1
 such that

(51)S�
m
(t) = c(Sm(t))

� .

(52)(Sm(t))
1−� ≤ c(1 − �)t + (Sm(0))

1−� .

(53)∫
t

0

||ums(s)||2H1
0
(Ω)

ds + E(um(t)) = E(um(0)).

(54)E(u0m) ≤ c,

E(um) = �Ω

1

p(x)
|∇um|p(x)dx + �Ω

1

q2(x)
|um|q(x)dx − �Ω

1

q(x)
|um| log |um|dx

≥ �Ω

1

p(x)
|∇um|p(x)dx − �Ω

1

q(x)
|um|q(x) log |um|dx

≥ 1

p− �Ω

|∇um|p(x)dx − 1

q+ �Ω

|um|q(x) log |um|dx

≥ 1

p− �Ω

|∇um|p(x)dx − �

q+ �Ω

|∇um|p(x)dx − c

q+
(||um||2H1

0
(Ω)

)�

=

(
1

p−
−

�

q+

)
�Ω

|∇um|p(x)dx − c

q+
(||um||2H1

0
(Ω)

)� ,

(55)(
1

p−
−

𝜀

q+
)∫Ω

|∇um|p(x)dx − c

q+
(||um||2H1

0
(Ω)

)𝛼 < c.

(56)um → u weakly star in L∞
(
[0, T∗];W

1,p(x)

0
(Ω)

)
,

(57)umt → ut weakly star in L2
(
[0, T∗];H

1
0
(Ω)

)
,
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The remaining proof of the existence of local solutions is similar as described in 
Theorem 1 , then it yields

for all � ∈ W
1,p(x)

0
(Ω) , a.e. in [0, T∗].

In view of the Definition 1, we get the local existence of the solution of problem 
(1). Now, let’s prove that the solution satisfies the energy inequality. By (53), we get

Due to the second term of the left-hand side ∫ T∗
0

E(um(t))�(t)dt is lower semi-contin-
uous with respect to the weak topology of W1,p(x)

0
(Ω) , then it follows that

By (59) and (60) and letting m → +∞ , we have

Since �(t) is arbitrary, we get

The proof of Theorem 2 is complete. 	�  ◻

Theorem  3  (Blow-up) Let u0 ∈ W
1,p(x)

0
(Ω) and 2 < q− < q(x) < q+ <

Np−

N−p−
 . If 

E(u0) < 0, p+ < q(x) = q , the local weak solution of problem (1) blows up at finite 
time.

Proof  Defining

and then taking the second derivative of Γ(t) , we get

By (38) and taking � = � , we obtain

(58)−div(|∇um|P(x)−2∇um) → �(t) weakly star in L∞
(
[0, T∗];W

−1,p�(x)

0
(Ω)

)
.

∫Ω

utwdx + ∫Ω

∇ut∇wdx + ∫Ω

|∇u|p(x)−2∇u∇wdx = ∫Ω

|u|q(x)−2u log |u|wdx,

(59)
∫

T∗

0

�(t)dt ∫
t

0

‖ums(s)‖2H1
0
(Ω)

ds + ∫
T∗

0

E(um(t))�(t)dt = ∫
T∗

0

E(um(0))�(t)dt.

(60)�
T∗

0

E(u(t))�(t)dt ≤ lim
n→∞

�
T∗

0

E(um(t))�(t)dt.

�
T∗

0

�(t)dt �
1

0

||us(s)||2H1
0
(Ω)

ds + �
T∗

0

E(u(t))�(t)dt ≤ �
T∗

0

E(u(0))�(t)dt.

(61)�
t

0

‖‖us(s)‖‖2H1
0
(x)
ds + E(u(t)) ≤ E

(
u0
)
, a.e. t ∈

[
0, T∗

]
.

(62)Γ(t) =
1

2 �
t

0

||u(s)||2
H1

0
(Ω)

ds +
T − t

2
||u0||2H1

0
(Ω)

, 0 ≤ t < T ,

Γ��(t) = (ut(t), u(t)) + (∇ut(t),∇u(t)).
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It implies Γ��(t) ≥ −qE(u(t)). Due to the energy equality (61), we have

where � = −qE(u0).
By Γ�(t) = ∫ t

0
(ut(s), u(s))H1

0
(Ω)ds and Hölder inequality, we obtain

then Γ(t)Γ��(t) −
q

2
(Γ�(t))2 ≥ Γ(t)𝛽 > 0, t ∈ [0, T].

Let y(t) = (Γ(t))−
q−2

2  , then

and

Since y��(t) < 0, y(t) is a concave function and y�(t) ≤ y�(0) = 0, 0 ≤ t < T . And due 
to y�(t) < 0 and y��(t) < 0, 0 ≤ t < T , it implies as long as T is large enough, there 
exists T∗ ∈ [0, T) , lim

t→T−
∗

y(t) = 0. Consequently, we obtain lim
t→T−

∗

||u(s)||2
H1

0
(Ω)

= +∞.

In view of the Definition 2, we get the blow-up of the solution of problem (1). 
The proof of Theorem 3 is complete. 	�  ◻

Γ��(t) = −�Ω

|∇u|p(x)dx + �Ω

|u|q(x) log(|u|)dx

≥ −�Ω

|∇u|p(x)dx + �Ω

|u|q(x) log(|u|)dx + �Ω

(
q

p+
−

q

p(x)

)
|∇u|p(x)dx

=

(
q

p+
− 1

)
�Ω

|∇u|p(x)|dx + 1

q �Ω

|u|qdx − qE(u(t)).

Γ��(t) − � ≥ −qE((u(t))) + q(E(u0)) ≥ q�
t

0

||us(s)||2H1
0
(Ω)

ds,

(Γ�(t))2 ≤ �
t

0

||us(s)||2H1
0
(Ω)

ds�
t

0

||u(s)||2
H1

0
(Ω)

ds

≤ 2�
t

0

||us(s)||2H1
0
(Ω)

ds
(
1

2 �
t

0

||u(s)||2
H1

0
(Ω)

ds +
T − t

2
||u0||2H1

0
(Ω)

)

= 2�
t

0

||us(s)||2H1
0
(Ω)

ds(Γ(t)),

y�(t) = −
q − 2

2
Γ−

q

2 (t)Γ�(t),

y�(t) = −
q − 2

2
Γ−

q

2 (t)Γ��(t) +
q

2
(
q − 2

2
)(Γ(t))−

q+2

2 (Γ�(t))2

= Γ−
q

2 (t)(
2 − q

2
Γ��(t) +

q(q − 2)

4
(Γ�(t))2Γ−1(t))

≤ Γ−
q

2 (t)(
2 − q

2
Γ��(t) +

(q − 2)

2
(Γ��(t)) − 𝛽)

= Γ−
q

2 (t)
(
−

q − 2

2
𝛽

)
< 0.
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4 � Conclusion

In this paper, by virtue of the potential well method and logarithmic inequalities, we 
obtain the global existence of solutions of problem (1). What’s more, the finite time 
blow-up phenomenon is obtained by concavity method. The first attempt to study 
the properties of the solutions for such kind of equations will enrich the research of 
mathematical physics equations.
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