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Abstract
A new model for Korteweg and de-Vries equation (KdV) is derived. The system 
under study is an open channel consisting of two concentric cylinders, rotating about 
their vertical axis, which is tilted by slope � from the inertial vertical z , in uniform 
rate Ω

1
= �Ω , and the whole tank is elevated over other table rotating at rate Ω . 

Under these conditions, a set of Kelvin waves is formed on the free surface depend-
ing on the angle of tilt, characterized by the slope � , volume of water, and rotation 
rate. The resonant mode in the system appears in the form of a single Kelvin solitary 
wave, whose amplitude satisfies the Korteweg-de Vries equation with forced term. 
The equation was derived following classical perturbation methods, the additional 
term made the equation a non-integrable one, that cannot be solved without the help 
of numerical methods. Invoking the simple finite difference scheme method, it was 
found that the numerical results are in a good agreement with the experiment.

Keywords KdV equation · Shallow water theory · Precession · Open channels · 
Weakly nonlinear

1 Introduction

Most wave phenomena in modern science are decribed by nonlinear equations. 
The most beautiful model was the one derived in 1895 by two Dutch mathemati-
cians  [20], which the equation takes their names: Korteweg and de-Vries (KdV) 
equation.1 Although it was first dedicated for water waves in open channel, after 
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1 The KdV equation was also derived by Boussinesq in the 1870’s. He found its first three conservation 
laws, and its one-soliton and periodic traveling wave solutions, see Eq.  (30), page 77, of the paper J. 
Boussinesq, Theorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizon-
tal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface 
au fond, J. Math. Pures Appl. 17 (2) (1872) 55–108, and Eqs. (283, 291) of the work J. Boussinesq, Essai 
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the discovery of solitary wave by Russell [30], later in the sixties the equation was 
noticed in other applications like: internal gravity waves in stratified fluid, ion-
acoustic waves in plasma, axisymmetric waves in a nonuniformly rotating fluid, 
nonlinear waves in cold plasmas, axisymmetric magnetohydrodynamic waves and 
several other physical applications [6].

In this paper I introduce a new model of this KdV equation with azimuthal 
dependence where the cylindrical geometry, incorporates both tilt and rotation 
effects. This is a new case, as all the previous cases that discussed the solitary wave 
invoked the rotation effect only. The rotation effect, however, is old enough as the 
internal solitary waves are the famous example that may occur in lakes, oceans, 
fjords, etc. The earliest experiment was carried out by Maxworthy [23] to study the 
rotation effect on the internal solitary wave in a rectangular tank mounted over a 
rotating table, he noticed that the rotation affected the wave form as it was noticed 
to be curved backward while moving. He called this wave the internal Kelvin soli-
tary wave, that generated when the pressure gradient normal to the lateral boundary 
opposes the Coriolis effect generated by the wave motion. The author finally con-
firmed that the wave speed is independent of the rate at which the system rotates and 
depends only on the stratification and maximum wave amplitude. A similar experi-
ment was carried out later by Renouard et al. [29] with approximately similar obser-
vations of Maxworthy [23]. Their observations about the wave showed that the crest 
of the wave is neither horizontal nor contained in a vertical plane perpendicular to 
the side due to rotation effect, but is curved backward, hence there is a spatial phase 
shift which increases by increasing the distance from the wall, and at a given dis-
tance from the wall increases by increasing Coriolis parameter.

Deep mathematical studies about rotation effect was thoroughly discussed by 
Grimshaw [9], who proposed two different models discussing whether the rotation 
effect is strong or weak. His results showed that if scaling the transverse direction 
with � where �−1 the dimensionless measure of Rossby radius, if it has either unity 
value or of order � (the shallowness parameter) i.e., strong rotation conditions, then 
the amplitude of the linear internal Kelvin satisfies a Korteweg-de Vries equation 
for shallow fluids at the wall, or its counterpart for the deep fluids. The second case, 
when weak rotation occurs, the scaling of the transverse direction is of order �2 , then 
the effects of rotation are small and comparable to those of nonlinearity and disper-
sion, in this case the transverse variation of wave amplitude is undetermined at the 
leading order, and is instead contained in the evolution equation, which is a modi-
fication of the two-dimensional Korteweg-de Vries equation for shallow fluids, or 
its counterpart for deep fluids. Although the solitary wave is of the stable type, that 
does not change its shape while moving, Grimshaw et  al. [11] studied the extinc-
tion of KdV solution in finite time due to the presence of low-frequency rotational 
term (additive term to KdV). The extinction time was 2

√
A0∕�

2 , where A0 the initial 
solitary wave amplitude, and � = f 2

2c
 (with long wave velocity c =

√
gh , and Coriolis 

parameter f = 2Ωsin(�) , g the gravity acceleration, h the depth of the basin, Ω Earth 

Footnote 1 (continued)
sur la theorie des eaux courants, Mem. Acad. Sci. Inst. Nat. France 23 (1) (1877) 1–680. This historical 
observation is due to Prof. P.J. Olver (~ 2001).
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rotation frequency, and � geographic latitude location) is responsible for low fre-
quency dispersion, which typically describes the effect of rotation in a physical sys-
tem. They noted that this extinction time could be as important as frictional decay 
times for internal waves in the ocean.

It was shown that cylindrical symmetric flows can support stationary waves of 
finite amplitude under certain circumstances. [21]. This encouraged both Derzho 
and Grimshaw [26] to study the structure of steady travelling solitary waves of large 
amplitudes in axially symmetric rotating flows in a long tube including the recircu-
lation zone effect. There was critical amplitude where the flow reversal (recircula-
tion) first occurred. The critical amplitude was related to the incipient rotation and 
the lowest mode of boundary problem solution at the lowest order. It was noticed 
that the small parameter that determined the critical width of recirculation area 
could be related to the amplitude parameter that determined the nonlinearity of the 
problem, and it took two extreme values, at the minimum level the wave was mov-
ing out of the recirculation zone with the normal solitary form, and the recirculation 
zone reaches a minimum radial extent �min . And at the maximum level the width of 
the recirculation zone became infinite, and the crest of the wave looked flattened. In 
fact, the flow in tubes under rotation conditions was also studied when some obsta-
cle in the direction of the flow exists. Grimshaw [10] proposed the theory for this 
case, precisely when upstream flow is nearly resonant (critical) defined with respect 
to long waves mode, that has a phase celerity almost zero. They used the forced KdV 
equation for the simulation with forcing term related to the obstacle, and advection 
term that contained the detuning effect. Later Grimshaw and Zhu [12] completed the 
same problem for the unbounded radial swirling flow, they showed that this wave 
equation is similar to another one derived by Leibovich [21] for freely propagating 
weakly nonlinear waves on a radially unbounded swirling flow.

The numerical methods that processed Kortweg-de Vries equation under rotation 
effects are varied, for instance Katsis and Akylas [17] prepared a numerical scheme 
of the modified Kadomtsev–Petviashvili (KP) equation to investigate the nature 
of the waves generated from typical initial conditions. The KP model was solved 
numerically where the trapezoidal rule was used for performing the integrals, while 
the equation was discretized through a simple explicit second-order Lax-Wendroff 
finite-difference scheme. Their results suggested that weakly nonlinear inviscide the-
ory actually revealed the main features of the observed waves, and that wave front 
curvature is possible because of slow attenuation of the wave amplitude. In their 
later work similar numerical scheme using Lax-Wendorff finite-difference scheme 
was used, but this time for the forced KP equation, for the sake of the dependence 
of soliton radiation on channel width. This equation was derived under conditions 
of pressure distribution travelling at a speed near the linear-long-wave speed, and 
it had three-dimensional formulae to express the effects of nonlinearity, linear dis-
persion, and three-dimensions close to critical speed. The linearized KP equation 
showed that no steady state is reached at critical conditions. Motivated by study-
ing the dynamics of internal Kelvin waves, Melville et al. [25] studied the effect of 
nonlinear resonance with Poincaré waves on the stability of weakly nonlinear dis-
persive Kelvin waves of finite bandwidth, this resonance arose from the nonlinear 
correction to the speed of the Kelvin wave. Their numerical analysis using Fourier 
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transformation showed that the leading-order Kelvin wave solution in the horizontal 
direction was unstable, owing to resonant forcing of the transverse velocity associ-
ated with the linear Poincaré modes of the channel.

Motivated by studying the nonlinear plasma waves, a group of Chinese research-
ers Peng et al. [28] carried out the derivation of KP equation in cylindrical geometry, 
where the effect of ions’ densities and their temperature were noticed in the coeffi-
cients of the final CKP (cylindrical KP equation). This equation was solved numeri-
cally to study three different types of waves: breather, rogue waves, and solitons. 
The authors invoked the Grammian solutions to solve the soliton problem, and the 
bilinear Hirota method to solve the breather waves. And finally the rogue equation 
that was treated in the limit of long wave function that is assumed an exponential 
polynomial. Their final result showed that the amplitude of rogue waves decreased 
with the absolute value of time, thus the energy of the wave was damped with the 
increase of time value. Another novel method used to solve the extended modified 
KdV equation, using the �-dressing methods, is proposed by Li and Tian [22]. The 
authors introduced a spectral transform matrix to construct the spatial-time spec-
tral problems of the nonlocal emKdV based on Cauchy-Green integral operator. 
And then to find the hierarchy of nonlinear evolution equations they used a recur-
sive operator based on the proper spectral transformation matrix, so that the final 
N-soliton solution is derived and solved.

The new techniques in solving the nonlinear equations are varied, like the inverse 
scattering transform, the Lax Pairs, the Darboux transformation. However, Hirota 
bilinear method is of high interest, it was used to solve many type of KdV equa-
tion. For instance the form of soliton breaking was solved by Hossen et  al. [14], 
where they discussed the interaction with rogue waves, by introducing different 
quadratic polynomials that include either sinh term or exponential term, and solved 
the problem accordingly. The (2 + 1)-dimensional KdV version which has indefinite 
integrate operator in the direction perpendicular to the dominant one was solved by 
Wang et al. [33] who proposed a solution based on the Bell’s polynomial, where a 
general bilinear Hirota form was derived. Guo et al. [7] discussed the three dimen-
ional KP equation. Wang et al. [15] studied the dynamics of the generalized normal 
(3 + 1) KdV equation. The B-type KP equation, which is weakly dispersive wave 
propagate in a quasi-media, was also solved based on Hirota bilinear method by Yan 
et al. [34].

A relatively new case of the solitary wave under rotation conditions was exam-
ined by Abderrahmane et al. [1], this wave was observed during the liquid drainage 
through a centrally located circular opening on the bottom of the container, when 
shallow water conditions were reached. The free surface first displayed long wave-
length increases as the water height decreased, then when the shallow water condi-
tions were reached the free surface undulations transformed almost instantly into a 
surface bulge or solitary wave rotating around the cylindrical wall of the container. 
Their case here was treated under swirl conditions using full Euler equations, but by 
taking the wave variation dominantly along the azimuthal direction of the flow and 
the radial motion was neglected. In later work by Amaouche et al. [3], the same case 
study of the wave in the cylindrical tank was treated in different model contained all 
velocity components plus Coriolis effect. In this case the linearized solution of the 
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boundary value problem led to a modified Bessel equation that included rotational 
effects, and in both cases the material derivative was considered as a function of 
time and the azimuthal coordinates from which they included the rotational effect 
of the cylinder itself. Even if the dimensionless scaling took into consideration the 
normal shallow water speed.

In open channels one may find simple linear waves, as well as other nonlinear 
ones, this includes the weakly and strongly nonlinear waves. Those waves can be 
generated by navigation, or the operation of hydraulic controls or accidentally, then 
all waves happened to occur because of them are forced ones, and the „great pri-
mary wave”, i.e., the solitary wave, is forced wave that accompanied a canal boat 
in its motion [27]. Such phenomena affect the hydraulic conditions in the channel 
and pose engineering problems. The violent impacts of water waves on walls create 
velocities and pressures that are bigger in magnitude than the normal ones, which 
may increase the erosive action and warrant the reinforcement or redesign of the 
channel. Also, one should not forget the dynamics of sediment transport processes 
generated by the action of the flow phenomena. Thus, this work in the present paper 
is motivated by studying the forced oscillations and their instabilities in open chan-
nels. Precisely, studying the solitary wave which is carried out here theoretically by 
deriving the new KdV version, and experimentally by comparing the mathematical 
model with the experiment. This wave is also called the single Kelvin resonance 
mode. As the interested reader can see the previous work (cfr. [2] about the forced 
oscillations that were studied linearly first, it turned out that when resonance occurs 
the wave becomes singularly large and the linear analysis is not valid anymore. Thus, 
to complete the linear analysis in this work I introduce the weakly nonlinear case 
where this specific wave is under consideration, because it has similar features to the 
famous solitary wave first observed by Russell [30]. The paper is divided as follows: 
in §2 The governing equations where the new system of coordinates after transfor-
mations from the laboratory frame to frame fixed on the tank is introduced, in addi-
tion to flow assumptions, in §3 experiment and results where a description of the 
design is carried out with comparing the results experimentally, in §4 conclusion.

2  Governing Equations

The motion of the wave is supposed to occupy cylindrical annulus that is confined 
between the inner cylinder with radius rmin , and the outer cylinder with radius 
rmax . This distance does not exceed 10  cm, and it was deduced by the work of 
Akylas and Katsis [18]   that in such small geometries if the width 2b smaller 
than specific ratio which is b ≤ h

2

∕A , where h the average depth of water, A the 
typical wave amplitude, the three-dimensional effect can be negligible. This ratio 
was computed in the designed flume for relatively big amounts of water inside 
it, those are the cases where the solitary wave was observed. Table  1 presents 
those results. Thus, the motion is assumd two-dimensional one, where the pre-
dominant direction is the azimuthal one, as water was the main liquid fluid used 
in the experiment, then the flow is assumed incompressible and inviscid one. 
Additional assumption was on replacing velocity components (which are u,w in 
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the azimuthal and axial directions, respectively) with scalar potential function � , 
and assume the flow irrotational one. As the surface of the wave is under the 
atmospheric conditions then the pressure is assumed negligible. The flume was 
filled with different volumes of water that are characterized with their average 
depth h . The evolution of the free surface function is a time–space depenent func-
tion �(�, t) . Any solitary wave appear on the surface has an amplitude A . In this 
work we assume that the total mechanical energy of the flow is conserved in the 
fully developed flow, thus, turbulence, wall friction due to boundary layers, inter-
nal friction due to viscosity, capillarity due to the surface tension and dissipa-
tion of vorticity are all connected to energy dissipation and will be neglected. As 
mentioned that the channel is tilted from the axial direction, this is characterized 
by the slope of the upper tilted table � . (cfr.§3 Experimental Procedure). As the 
solitary wave is a long wave, thus the platform in studying this wave is the shal-
low water theory, this theory depends on the hydrostatic pressure distribution, 
and one important feature of this theory is that no assumption is made regarding 
the magnitude of surface elevation or the velocity components [31]. Thus, the 
parameter that describes the evolution of waves in shallow water is called the 
shallowness parameter and it is going to appear in the system of equation when 
introducing the scaling process for the dimensionless analysis. This is also called 
the dispersion parameter �:

where � = 2�rmax represents the length scale or the horizontal scale, which is 
assumed to be the periphery of the outer cylinder. In the experiment this ratio was 
all the time satisfied, as it is clear in Table 1.

As usual z-axis is taken vertically upward, the bottom is given by: z = 0 , while 
the free surface as: z = h + �(�, t) , the flow is confined between the inner and the 
outer radii of the channel. The boundary conditions on rigid walls like the bottom 
satisfy the impermeability condition so that the normal velocity is zero: w = 0 at 
z = 0 . At the free surface of water, the kinematic condition is given by:

We can now write Euler equations as the following:

𝜎 =
h

𝜆

≪ 1,

(1)w =
��

�t
+

u

r

��

��

.

Table 1  Two-dimensional 
and shallowness effects in the 
channel

Volume (ml) A(m) h(m) b(m)
h
2

∕A(m) � �

10,000 0.112 0.0933 0.049 0.078 0.0167 0.0666
12,000 0.0886 0.112 0.049 0.142 0.0117 0.0799
14,000 0.1024 0.1307 0.049 0.167 0.0233 0.0933
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where D
Dt

 represents the material derivative operator:

The conservation of mass or continuity equation can be written as:

The condition for irrotational flow is worth to be split as follows:

To find the nonlinear type of wave motion represented by KdV equation, there 
should be other important variable to measure the nonlinearity is called the ampli-
tude parameter, and it is going to be included in the process of dimensionless analy-
sis as well, it has the form:

Thus, the unknown quantities of velocity field components, the pressure and 
water surface are first going to be scaled as follows to include the shallowness effect:

Where the long wave speed is given by: c =
√

gh . Where we assume that H = h . 
After substitution into the major equations of continuity, momentum, and bounday 
conditions, we find:

(2)

Du

Dt
= g�sin(Ωt − �) −

P
�

r.�
− 2Ω�cos(Ωt − �)w + Ω

2
�sin(Ωt − �)z − O

(
�
2
)
,

(3)
Dw

Dt
= −g −

Pz

�

+ 2Ω�cos(Ωt − �)u − Ω
2
�cos(Ωt − �)r − O

(
�
2
)
,

(4)
D

Dt
=

d

dt
+

u

r

d

d�
+ w

d

dz
.

(5)u
�
+ rwz = 0.

(6)�r =

(
1

r

�w

��

−
�u

�z

)
= 0.

� =
A

h

.

u = cu,w = �cw, � = �, � = ��, z =
z

H
, r =

r

�

, � =
�

H
,

t =
�

c
t, P = g(H − z) + �gHP, Ω =

c

�

Ω,

(7)u
�
+ rwz = 0,

(8)

Du

Dt

= τsin

(
Ωt − �

)
−

P
�

r

+ �
2

[
−2Ω�cos

(
Ωt − �

)
w + Ω

2

�sin

(
Ωt − �

)
z

]
,

(9)�
2Dw

Dt

= −P
z
+ �

2

[
2Ω�cos

(
Ωt − �

)
u − Ω

2

�cos

(
Ωt − �

)
r

]
,
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with the irrotational condition:

In effect Eqs.  (7), (8), (9), (10) represent the shallow water equations at the 
leading order of O(�) , as it is obvious from (9) that this scaling leads to the 
hydrostatic pressure distribution, the main assumption of shallow water theory. 
One can also notice at the leading order that the effect of both Coriolis and Euler 
forces in Eqs. (8) and (9) are of second order of the shallowness parameter O

(
�
2
)
 , 

thus, they vanish and only pressure and gravity act. The KdV derivation can be 
further pursued depending on Eqs.  (7), (8), (9), (10) by taking higher orders of 
the factor � this was done by Keller [19] for instance: it led to fully nonlinear 
solution. However, we can instead make it easier, especially since our equations 
are more complicated and here comes the usage of the amplitude parameter �:

We find after rescaling the following:

Equation  (14) is the free surface kinematic condition that is applied at: 
z = 1 + �� . There are two standard approximations to these equations: ε→0, 
δ(fixed): this covers the most general linear problem. δ→0, ε(fixed): the long-
wave or shallow-water problem, which is fully nonlinear [16]. But for KdV equa-
tion the first one is chosen, and the beautiful balance between quadratic nonlinear 
term and the linear dispersive one is achieved by invoking: [13]:

Or equivalently for simplicity:

(10)w =
��

�t
+

u

r

��

��

on z = 1 + �,

�
2w

�

r
= uz.

(
u,w, p, �, �

)
→ �

(
u,w, p, �, �

)
.

(11)u
�
+ rwz = 0,

(12)
u
t
+ �

(
uu

�

r

+ +wu
z

)
= τsin

(
Ωt − �

)
−

P
�

r

+ �
2

[
−�2Ω�cos

(
Ωt − �

)
w + Ω

2

�sin

(
Ωt − �

)
z

]
,

(13)

�
2

[
w
t
+ �

(
v

uw
�

r

+ ww
z

)]
= −P

z
+ �

2

[
�2Ω�cos

(
Ωt − �

)
u − Ω

2

�cos

(
Ωt − �

)
r

]
,

(14)w =
��

�t
+ �

(
u

r

��

��

)
.

� = O
(
�
2
)
.
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So, we find after substitution:

The irrotational condition then becomes:

Before expanding in terms of the amplitude parameter for the unknown quantities, it 
is better to integrate the equation replacing the nonlinear terms with the corresponding 
irrotational versions, and also by using the scalar velocity potential function for each 
velocity projection: u =

�
�

r
 , �w = �z , so that we get the Forced Bernoulli Equation in 

the system, where the forcing term is the integral of azimuthal gravity force projection 
radially as in (19):

Now the expansion of the unknown quantities (the amplitude and velocity potential) 
will be in terms of the amplitude parameter and takes the form:

Let’s re-write the equations, mainly the continuity, Bernoulli, the kinematic and 
boundary conditions, respectively. We get:

�
2
= �.

(15)u
�
+ rwz = 0,

(16)
u
t
+ �

(
uu

�

r

+ +wu
z

)
= τsin

(
Ωt − �

)
−

P
�

r

+ �

[
−�2Ω�cos

(
Ωt − �

)
w + Ω

2

�sin

(
Ωt − �

)
z

]
,

(17)

�

[
w
t
+ �

(
v

uw
�

r

+ ww
z

)]
= −P

z
+ �

[
�2Ω�cos

(
Ωt − �

)
u − Ω

2

�cos

(
Ωt − �

)
r

]
,

(18)w =
��

�t
+ �

(
u

r

��

��

)
atz = 1 + �

−

�,

w = 0atz = 0.

�

w
�

r
= uz.

(19)�
t
+ �

(
�
2

�

2

)
+

�
2

z

2
+ � − r�cos

(
Ωt − �

)
= 0.

� = �
(0)

+ ��
(1)

+ �
2
�
(2)

+ …

� = �
(0)

+ ��
(1)

+ �
2
�
(2)

+ …
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The unified form of the phase of tilt Ωt , with the azimuthal angle � in the forced 
term can be harnessed in favor of d’Alambert wave solution, as in the first order of 
the problem we have:

This will give the linear long wave equation:

which has d’Alembert solution in the dimensional form as:

where c here is assumed the mean azimuthal velocity that the wave in the channel 
flume is assumed to rotate with about the outer periphery, thus it has the form:

Thus, in the dimensionless form of the problem we can write:

Hence, we can introduce the following:

We also assume slow time evolution for the wave by introducing:

𝜀

[
𝜙
𝜃𝜃

r
2

]
+ 𝜙zz = 0 at 0 < z ≤ 1 + 𝜀𝜂,

�
t
+ �

(
�
2

�

2

)
+

�
2

z

2
+ � − r�cos

(
Ωt − �

)
= 0,

�
z
= �

(
�
t
+ �

(
�
�

r
2
�
�

))
atz = 1 + ��,

�z = 0atz = 0.

�1z = �0t = −�0tt,

�1z = −
z

r
2
�
0��

.

�0tt −
1

r
2
�
0��

= 0.

(20)�(�, t) = f (r� − ct) + g(r� + ct),

c = rΩ.

(21)�(�, t) = f (� − Ωt) + g(� + Ωt),

� − Ωt = �,

�� = ��,

�t = −Ω��,
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Substituting back into Bernoulli and continuity, and dropping the bars we get:

Equations (22), (23), (24) are going to be expanded in terms of � . It is worth 
to mention up to this point that the tilt angles in this system are in general small 
ones, and that the cases where the solitary wave were noticed corresponded to 
very small tilt character factor: � , (cf. Table 1), thus it is assumed that if � → 0 
(which is the solution we are interested in for small wave amplitude) then � → 0 , 
so that at the leading order of the problem the forced term can be neglected.

The most important result at the leading order then is the fact that the connec-
tion between potential velocity and the amplitude is the dimensionless rotation 
speed:

Collecting similar terms in higher orders will lead to the final version of KdV 
equation in the channel under precession conditions, is given as:

This equation is KdV type which unfortunately does not have integrable solu-
tion and the usage of numerical method is carried out in the next section. Of 
course, the form in (26) is dimensionless and using the assumed scaling the 
dimensional version is recovered to be compared with the experiment. The final 
version in the dimensional form takes the form:
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where the coefficients A, B, C, D, are respectively given by:

If we assume periodic initial condition for � as:

then the forced term can be approximately assumed to be:

Thus, Eq. (26) if it is rescaled into the dimensional form can be written as:

Then the linearization of this equation by searching solution of the form solution: 
� = ei(k�−Ωt) , will lead to the dispersion relation between the frequency and the wave-
number takes the form:

2.1  Finite Difference Scheme

The finite difference method is the oldest and the simplest numerical method. The mod-
ern version is the spectral method, which is not going to be considered here. The KdV 
equation has three different differential terms, the third derivative, and the quadratic 
nonlinear term, and the variation with time of the problem. Each term can be extracted 
using Taylor series expansion. Starting from the third derivative, we are interested in 
the central difference, so we can write:
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By adding (27), (28) and then (29), (30), we get:

The same when subtracting (27), (28) and then (29), (30), we get:

By manipulating and re-arranging the previous equations we get:

Which finally leads to:

The first order differentiation also is going to be treated using central difference 
which is:

And finally forward Euler finite difference for the time is assumed as follows:

Then the final equation is given as:
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2.2  Implementation

The grid in the azimuthal direction is going to be discretized depending on the num-
ber of points extracted from the Xmm grid, which is different for each case depending 
on the extracted pixels and their corresponding millimeters, where the mm grid is 
built on the outer periphery of the cylinder and has center at the paper clip num-
ber 5 as it is clear in Fig. 1 that is why we have a domain of negative and positive 
values. Those Xmm points are relatively big like for the case of 10000 ml we have 
m = 749 points, for the case of 12000 ml we have m = 899 points, and for the case 
of 14000 ml we have m = 649 points, the starting point of the domain is the first 
value of each angle and it is called a1 , and the ending point is b1 , the initial guess 
of the problem is assumed a Gaussian fit, where it takes its values based on the 
extracted pixles from which we determine both the average avg and the standard 
deviation st . The distance between each point of the pixel coordinates causes insta-
bility problem using Courant number defined in (35) below, unless small value is 
introduced to ensure Eq. (35) is satisfied, which is a specific ratio between the time 
and the distance represented by Courant number Cr:

where u is assumed to be the mean velocity or the stream velocity, and c is the dis-
turbance speed. It is well known that choosing the value of Courant number bigger 
than one will certainly lead to instability of the assumed solution, that is why it is 
preferable to take value between zero and one. In the experiment, the time difference 
was chosen so that we satisfy the following:

 

(35)Cr =
Δt(u + c)

rmaxΔ�
,

(36)Δt = Cr

Δ�rmax�
Ωrmax +

√
gH

� .

Fig. 1  Kelvin solitary wave, 
volume 4000 ml, � = 0.0117 , 
Ω = 4.24 rad/sec
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3  Experiment and Results

Full details of the experimental apparatus and procedure are in [2]. In order to track 
the different oscillations in the channel under precession conditions, a real flume 
was constructed for this purpose. The Fig. 2 shows the model, that consists of two 
concentric cylinders elevated over two different tables, the lower one rotates uni-
formly about the vertical axis, and the second one rotates and tilts about the axial 
axis of the cylinders. The tilt of the upper table is adjustable through three different 
screws distributed in 120˚ apart from each other, the center of this table is mounted 
on a support column through a Cardano type universal ball joint. The joint contains 
two mutually perpendicular horizontal axles around which the upper table can freely 
tilt in any direction, but it prevents any rotation around the vertical axis. The tilt is 
being represented by the slope of the upper table and is characterized by � . This 
value varied during the experiments, it was noticed that the localized wave that has 

Fig. 2  a The Real Flume Channel in the Laboratory. b Sketch of experimental setup. The camera system 
in front of the flume almost at the same level of the water level inside the tank

Table 2  Geometrical 
information of the channel

Notation Value Description

R = r
max

223 mm Outer Radius
�R = r

min
125 mm Inner Radius

2b 98 mm Channel Width
� =

r
min

r
max

0.5605 Radial Ratio

h 260 mm Maximum Wall Height
A
r

0.1071  m2 Base Area
∀ 0.0275  m3 Maximum Volume
� 0.0117 … 0.115 Tilt
H 20… 140 mm Mean Water Level
Ω 1.5… 8 rad/s Angular Velocity
z
0

≈ 50mm Elevation of Flume Bottom
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the solitary wave characteristics can only appear in the channel for small slopes, 
the results discussed below include relatively big volumes of water like 10000 ml, 
12000 ml, 14000 ml. Table 2 shows some characteristic and geometrical features of 
the design. This includes the three adjustable control parameters of the system: (i) 
The first is the amount of water in the tank, which can be quantified either by its vol-
ume or, preferably, by the mean water depth H = h , by which we ensure the mean 
water level constraint, which is one–one relationship between volume of water and 
the average water level:

(ii) The second is the tilt angle, characterized by its tangent � as mentioned above, 
which is also the largest slope of the tilting table. (iii) The third is the angular veloc-
ity Ω of the rotating table.

The energy is provided to the channel by using DC electrical motor that has exter-
nal electrical supply, which is battery. The whole system is placed on the laboratory 
floor by a metal base, noting that currently the rotating table can be turned only in 
the counterclockwise sense. The inner cylinder has wall length higher than the outer 
one, the inner one was covered from inside with white papers A4 in size to reduce 
the light reflection. The motion inside the channel was tracked using JAI PULNiX 
TM-1405 GE camera, which has Charge-Coupled Device (CCD) sensor type. It has 
high picture resolution 1392 × 1040 , with focal length 8 mm, and pixel resolution 
4.65 × 4.65�m.

The pictures of this camera were extracted first, and then they were calibrated 
using a program was designed by the current author for this purpose, it depended on 
Zhang’s method [35], and the algorithm was applied is the one introduced by Burger 
[5], with slight modification that included more radial distortion coefficients. The 
camera was set at fixed position in front of the channel where it could take continu-
ous pictures, the frequency of capturing the pictures was 1 frame per 30 s. The outer 
cylinder was also covered with some white papers so that only the place in front of 
the camera was not covered for better vision. The outer illumination for the system 
was two bulbs fixed on the inner cylinder’s wall to cover the whole inside area, and 
other external big lamp which was adjustable in its height was sometimes used and 
fixed in the laboratory floor next to the camera.

The waves that may form in such system are called the inertial forced oscilla-
tions, and the linear problem of their solutions leads to a set of modes that are called 
the Kelvin modes. Such oscillations appear as long as their frequencies smaller 
than twice the natural one, thus in this system, they all have the same frequency, 
but they may differ in their wavelength. The solitary wave in the Fig. 1 is a solitary 
Kelvin wave, which accords with mode n = 1 in the axial direction of motion, with 
radial integer wavenumber m = 1 , and azimuthal base mode �1 = 2 . This result was 
extracted when analyzing the linear case of this problem, from which it was found 
that resonance in the system occurs when the wavelength matches the outer periph-
ery of the channel (cfr [2].

(37)V = ∫
2�

0
∫

rmax

rmin
∫

z0+href+�(t,�,r)

z0

rdzdrd� = h
(
r2
max

− r2
min

)
�.



482 Journal of Nonlinear Mathematical Physics (2021) 28:466–491

1 3

The observations of single Kelvin mode in the channel was first for the small-
est tilt � = 0.0117 , for different volumes of water varied from 2000 to 12000  ml, 
the crest was little flattened, and had symmetric form, stable, and of course rotat-
ing without changing in its speed, approximately like the wave in the Fig. 1, but it 
looked as if it is going to break, the crest slightly proceded the whole wave body. 
During the computation of those waves for relatively small volumes 2000  ml, to 
6000 ml, it was noticed that the nonlinearity is much bigger than the dispersion. This 
leads to assume that such Kelvin solitary mode can be considered for bore develop-
ment [8], and that work also is being carried out by the present author. Increasing 
the volume of water in the channel, leads to bigger amplitudes thus bigger wave 
lengths, like the wave in the Fig. 3 for instance. Those cases look really like soli-
tary waves, symmetric in form, not changing their speeds as propagating ahead, but 
unfortunately they are not stable, they preserve this smooth symmetric form for only 
one round about the outer periphery of the channel, then disperse into waves have 
smaller amplitudes and flattened crests. In connections with the forced oscillations 
in such systems under precession, similar observations in closed tanks were first 
noticed by McEwan [24]. He called this phenomenon resonance collapse, where big 
waves retain their smooth form for relatively short time, then they collapse. Where 
the original form cannot be regained even if the flow waxes and wans. And in fact, 
the computations for the wave in Fig. 3 showed that slight priority for dispersion at 
the expense of nonlinearity, still in good balance to be computed using KdV equa-
tion form assumed in (26), using its numerical estimation in (34). Taking time his-
tory for the wave in such case is presented in Figs.  4 and 5 shows how the wave 
evolves with time, which shows how flattened the crest with time becomes.  

The finite scheme model introduced in the previous section in Eq. (34) is applied 
to the observed waves in different volumes, and comparison has been carried out. 
The initial condition was a Gaussian initial fit from the experimental data:

where (avg) the average of azimuthal data points, (st) their standard deviation, 
Am the wave amplitude. For instance in Fig. 6 the results of the wave in Fig. 3 is 
presented, where Δ� = 0.001778 , Δt = 1.243 × 10

−6 , Cr = 0.01 , volume 10000 ml, 

�0 = Am.e
−

(
�−avg

st

)2

.

Fig. 3  Kelvin solitary wave, 
volume 10000 ml, � = 0.0167 , 
Ω = 6.84 rad/sec
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� = 0.0167 , Ω = 6.84 rad/s. All results were captured at a specific time and the 
solution corresponds to this time only. In Fig. 7 other wave was noticed with vol-
ume 12000  ml, by assuming Δ� = 0.001594 , we get Δt = 1.25 × 10

−6 , Cr = 0.01 , 
� = 0.0167 , Ω = 6.018 rad/s. Another one is presented in Fig. 8, for the case of vol-
ume 14000 ml, Ω = 6.822 rad/s, � = 0.0233 , Δ� = 0.002243 , Δt = 1.66 × 10

−6 , but 
this wave is almost in breaking form, the crest proceeds the whole body.

As no exact analytical solution for the derived equation, an analytical solution for 
the problem was derived as proposed by Brauer [4] with little change as in Eq. (38). 

t = 0.533 sec t = 3.167 sec

t = 6.667 sec                      t = 16.367 sec

Fig. 4  The real wave variation with time

Fig. 5  a Amplitude history of single wave’s peak in resonant oscillation Ω = 6.84 rad/s, volume 
10000 ml, mode 

∼

�
1m2

 , � = 0.01667
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It is kind of fit solution for the results, and it was compared with the experiments at 
each time, as it is clear in Fig. 9).

To track the wave evolution with time we construct the solution on the outer 
periphery of the cylinder to show the far field, Fig. 10 shows how the wave evolves 
with time, the equation is not stable thus the need for weight coefficients is harnessed 

(38)�(t, �) = Amsech
2

(√
BΩrmax

3C

(
�

2
−

c ∗ t

2C

))
.

Fig. 6  Finite difference solution derived in (34), h = 0.0933 , � = 0.01667 , Ω = 6.84 rad/s thick line for 
numerical solution, and the curvy one from the experiment

Fig. 7  Finite difference solution derived in (34) h = 0.112 m, Ω = 6.018 rad/sec. � = 0.0117
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to keep it stable with time, the nonlinear term is multiplied with 0.01 , and the dis-
persion term was multiplied with 0.001 , the number of points m = 70 , and the time 
difference 0.00176 s. Of course, the wave starts to disperse under rotation effect, and 
the system is not stable at all, but the procedure of wave evolution with time shows 
that the wave starts to decay to the right which is similar to the real decay depicted 
in Fig. 4. However, we cannot assume according to Fig. 4 that we still have the soli-
tary wave in essence, but this is the sample of how this system works.

The solitary wave really can be formed in such systems if the amount of water is 
big enough, but this wave also can suffer from breaking. It is well known in natu-
ral cases, out of rotational effects, from the gas dynamic theory that waves which 
travel in one direction only, their crests travel faster than troughs, so that the front 
of each crest continuously steepens, until it breaks down. [32]. In Fig.  11 we got 
such collapse of the inertial Solitary Kelvin mode. It is clear how the wave crest 
precedes the whole body of the wave in the same direction of the system propaga-
tion, which is counterclockwise. Russell [30] stated that the wave breaks when its 
amplitude equals the depth of water under it, which is the case in Fig. 11, h = 9.33 
cm, A = 9.17 cm. In the transverse direction on the other hand, it was noticed that 
the wave has exponential decay form away from the wall, without curving backward 
in that direction. The radial wavenumber that is used in the experiment is given by:

where � =
rmin

rmax
 the ratio between the inner and the outer radii as in Table 2. Simple 

fit was used assuming exponential form as follows:

(39)M =
�

1 − �

,

(40)Ar = Ame
(Mr−�1) + B,

Fig. 8  Finite difference solution derived in (34) h = 0.1307m, Ω = 6.822 rad/sec. � = 0.0233
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where B is an arbitrary constant that suits the fit, and it is different in each experi-
ment, Am the wave amplitude, r the radial distance between the inner and the outer 
cylinders, �1 is dimensionless Rossby Radius, which is given as: 

where C the shallow water velocity: C =

√
gh , and � the normal  frequency of 

oscillation. This exponential fit for the radial amplitude decay is presented in Fig. 12 
in comparison with the experimental results.

To estimate the rotation and viscous effects, a computation of Reynolds, 
Ekman, and Rossby numbers was carried out, for each Solitary Kelvin wave men-
tioned above, at different volumes of water. Reynolds number determines the type 
of the flow, like laminar and turbulent. In open channels it can be given in terms 
of its characteristic length, the hydraulic radius, in the system under study it is 
assumed as:

where v is the kinematic viscosity which has a constant value assumed dur-
ing the experiment 1.03 × 10

−6 , Rh = A∕Pw the hydraulic radius, Pw the wetted 

(41)�1 =
C

�

,

(42)Re =

ΩR2

h

v
,

Fig. 9  Analytical solution derived in (38) with time h = 0.0933 m, � = 0.01667 , Ω = 6.84 rad/s
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perimeter: Pw = r + 2h , as the cross-section for the channel has rectangular form, 
with r = rmax − rmin the channel width and h is the average depth, Ω the rotation 
speed. It is known that Reynolds in open channels has different ratios in comparing 
the turbulent and laminar effects. If Re ≤ 500 the flow is laminar, and Re ≥ 1000 the 
flow is turbulent. In this system, the computations showed that for resonant condi-
tions that agree with Kelvin Solitary wave, the flow is always turbulent. To measure 
the rotational effect Rossby number is computed, which is a dimensionless number 

Fig. 10  Wave evolution with time, volume 12000 ml, � = 0.0117 , the smooth curve is experiment Gauss-
ian intial guess, and the dotted one is the numerical solution

Fig. 11  Breaking of the 
solitary resonance Kelvin 
mode, the crest precedes the 
wave body, volume = 10000 ml, 
� = 0.02333 , Ω = 6.25 rad/sec
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that represents the ratio between inertial and Coriolis forces, it is assumed in this 
system as in (43):

where Ω1 = �Ω precession rate. The computations of Rossby number showed that 
for all the above-mentioned cases of tilt is constant and approximately for all angles 
of tilt about 0.5, which shows moderate rotation effect on wave motion. Ekman num-
ber represents the balance between the small viscous forces and the small Corio-
lis ones, and it plays an important role in determining the boundary layer effect on 
the solid walls. It is assumed to be the inverse of Reynolds number as it is clear in 
(44), to ensure that the inviscid effect is satisfied. The computations of this number 
showed that it is of order O

(
10

−4
)
:

As we deal with open channel, computations for Froude number using (45) 
showed that the flow all the time supercritical regardless the volume of water in 
the channel:

The velocity of the wave was measured by taking the difference in time 
between two different pictures, from which the difference between the wave crest 
in each one is approximately � = 2�rmax , which is the crossed distance per time. 

(43)Ro =
Ω1

2
(
Ω1 + Ω

) ≤ 1,

(44)Ek =
�

ΩR2

h

.

(45)Fr =
rmaxΩ√

gh

.

Fig. 12  Radial exponential decay of solitary wave amplitude, volume 10000  ml, Ω = 6.84 rad/sec 
τ=0.01667 dashed line is the exponential fit
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Amaouche et  al. [3] proposed that the velocity in their tank theoretically was 
given by:

In comparison with this work, it was found high match with experiment as shown in 
Table 3.

4  Conclusion

In this paper, a new KdV model equation was derived for the case of the flow in an open 
cylindrical channel under precession conditions. The derivation starts from assuming 
the inviscid irrotational conditions in two-dimensions of the problem, as the radial part 
is short and barely affects the dominant azimuthal flow direction. The derivation first 
was to the forced Bernoulli equation, then it followed the classical perturbation method 
to derive the final version of this eqaution. The equation has a forcing term, that makes 
the equation is not solvable directly, and a simple Finite Difference Scheme is used to 
solve it. However, as noticed from the experiment that this term is small and can be 
neglected from the equation and kind of analytical solution was derived, accordingly. 
Both the numerical and the analytical one were compared with the observed wave in 
the experiment, with very good agreement. It is worth to mention that during the exper-
iment an assumption was made for Rossby radius that takes the local frequency, not its 
double value. The radial variation of the waves observed in this system has exponen-
tial decay, and the wave crest was not curved backward. It was noticed that the effect 
of rotation in this case is severe where once the wave amplitude is bigger or equal to 
the average depth of water it either breakes or disperses, in waxing and wanning mode 
from which no recovery to its original form, this case is called the resonance collapse 
for the case of forced oscillations. Other thing is worth to mention that the breaking 
effect when starting from rest conditions is similar to the normal rotation effect in gas 
dynamics [32] where the observed waves have crests proceed the whole body of the 
wave. Although the velocity of the wave is taken the solid-body rotation one, another 
one that was proposed by Amaouch et al. [3] based on the long wave one was used. It 
was in a perfect match with the wave velocity noticed in the experiment.
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