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Abstract
The	African	continent	carries	 the	greatest	malaria	burden	 in	 the	world.	Falciparum	malaria	especially	has	 long	been	 the	
leading	 cause	 of	 death	 in	Africa.	 Climate,	 economic	 factors,	 geographical	 location,	 human	 intervention	 and	 unstable	
security	are	factors	influencing	malaria	transmission.	Due	to	repeated	infections	and	early	interventions,	the	proportion	of	
clinically	atypical	malaria	or	asymptomatic	plasmodium	carriers	has	 increased	significantly,	which	easily	 lead	 to	misdi-
agnosis	and	missed	diagnosis.	African	countries	have	made	certain	progress	in	malaria	control	and	elimination,	including	
rapid	diagnosis	of	malaria,	promotion	of	mosquito	nets	and	 insecticides,	 intermittent	prophylactic	 treatment	 in	high-risk	
groups,	 artemisinin	 based	 combination	 therapies,	 and	 the	 development	 of	 vaccines.	Between	 2000	 and	 2022,	 there	 has	
been	a	40%	decrease	in	malaria	incidence	and	a	60%	reduction	in	mortality	rate	in	the	WHO	African	Region.	However,	
many	challenges	are	emerging	in	the	fight	against	malaria	in	Africa,	such	as	climate	change,	poverty,	substandard	health	
services	 and	 coverage,	 increased	 outdoor	 transmission	 and	 the	 emergence	 of	 new	 vectors,	 and	 the	 growing	 threat	 of	
resistance	 to	 antimalarial	 drugs	 and	 insecticides.	 Joint	 prevention	 and	 treatment,	 identifying	molecular	 determinants	 of	
resistance,	new	drug	development,	expanding	seasonal	malaria	chemo-prevention	intervention	population,	and	promoting	
the	 vaccination	 of	RTS,	 S/AS01	 and	R21/Matrix-M	may	 help	 to	 solve	 the	 dilemma.	China’s	 experience	 in	 eliminating	
malaria	 is	 conducive	 to	Africa’s	 malaria	 prevention	 and	 control,	 and	 China-Africa	 cooperation	 needs	 to	 be	 constantly	
deepened	and	advanced.	Our	review	aims	to	help	the	global	public	develop	a	comprehensive	understanding	of	malaria	in	
Africa,	thereby	contributing	to	malaria	control	and	elimination.
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SMC	 	Seasonal	malaria	chemo-prevention
PfSPZ  Plasmodium falciparum sporozoite
MDGs	 	Millennium	Development	Goals
ALMA	 	African	Leaders	Malaria	Alliance
LLINs	 	Long-lasting	insecticide	treated	nets
1,7-mRCTR	 	1,7-malaria	Reactive	Community-based	

Testing and Response

1 Introduction

Malaria	is	an	infectious	disease	caused	by	Plasmodium spe-
cies	that	affects	humans	and	other	animals.	The	main	symp-
toms	of	malaria	are	fever,	fatigue,	vomiting,	and	headaches.	
In	severe	cases,	malaria	can	cause	jaundice,	seizures,	coma,	
or	even	death	[1].	It	is	a	prominent	global	public	health	issue.	
In	2022,	there	were	249	million	cases	of	malaria	worldwide	
resulting	in	an	estimated	608,000	deaths	[2].	Approximately	
95%	of	the	cases	and	deaths	occurred	in	sub-Saharan	Africa,	
and the most deaths are caused by Plasmodium falciparum 
(P. falciparum)	 [2].	 Climate	 change,	 poverty,	 substandard	
health	 services	 and	 coverage,	 increased	outdoor	 transmis-
sion and drug resistance are the reasons for the sustained 
outbreak	 of	malaria	 in	Africa,	 and	 they	 are	 also	 the	 huge	
challenges	faced	by	Africans	in	combating	malaria	[3–5].

With	the	progress	of	drug	development	and	the	assistance	
of	 World	 Health	 Organisation	 (WHO),	 Africa	 has	 made	
certain	progress	in	malaria	control	and	elimination,	includ-
ing	rapid	diagnosis	of	malaria,	promotion	of	mosquito	nets	
and	 insecticides	 to	 block	 malaria	 transmission,	 intermit-
tent	 preventive	 therapy	 (IPT),	 chemo-prevention	 in	 high-
risk	 groups,	 and	 artemisinin	 based	 combination	 therapies	

(ACTs)	for	malaria	treatment	[6, 7].	Thus,	since	2000,	the	
mortality	of	malaria	has	fallen	by	60%	in	the	WHO	African	
region	 [2].	However,	 about	 300,000	African	 children	 still	
die	from	malaria	every	year,	and	much	remains	to	be	done	
to	control	the	malaria	epidemic	in	Africa.

In	this	paper,	we	summarize	the	current	status	of	malaria	
in	Africa	 by	 searching	 research	 papers	 through	 electronic	
databases of PubMed, MEDLINE, Web of Science and 
Embase	up	 to	March	30th,	2024.	The	search	was	 focused	
on	 the	epidemiological	characteristics,	 risk	 factors,	patho-
genesis,	diagnosis,	prevention	and	 treatment	of	malaria	 in	
Africa,	as	well	as	progress	and	challenges	in	the	fight	against	
malaria.	 To	 obtain	 the	 comprehensiveness	 of	 the	 search,	
we	conducted	an	additional	search	for	global	malaria	pro-
grammes	reported	over	the	past	20	years	on	the	WHO	web-
site (https://www.who.int/).	Through	this	review,	we	hope	to	
help	the	global	public	fully	understand	malaria	in	Africa	and	
propose	measures	to	improve	the	status	quo,	with	a	view	to	
contribute	to	the	elimination	of	malaria	in	Africa.

2 Epidemiological Characteristics of Malaria 
in Africa

2.1 The Overall Prevalence of Malaria in Africa, as 
well as the Incidence and Mortality in Areas of High 
Endemicity

Based	 on	 the	World	 malaria	 report	 2023,	 the	 data	 about	
malaria	 incidence	 and	 deaths	 in	 the	WHO	Africa	 Region	
are	 presented	 in	 Fig.	1.	 In	 2022,	 there	were	 an	 estimated	
249	 million	 cases	 of	 malaria	 worldwide,	 of	 which	 94%	

Fig. 1	 Estimated	malaria	cases	and	deaths	in	the	WHO	African	Region	from	2000–2022.	
(Source: WHO estimates)
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(approximately	 233	 million	 cases)	 were	 from	 countries	
in	 the	 WHO	 African	 region	 [2].	 Four	 countries–	 Nige-
ria	 (27%),	 the	Democratic	Republic	 of	 the	Congo	 (12%),	
Uganda	(5%)	and	Mozambique	(4%)–	accounted	for	almost	
half	of	all	cases	globally	[2].	Malaria	incidence	in	the	WHO	
African	Region	reduced	from	370	to	226	per	1,000	popula-
tions	at	risk	between	2000	and	2019,	but	increased	to	232	
per	1,000	populations	at	risk	in	2020,	mainly	because	of	dis-
ruptions	to	health	services	during	the	COVID-19	pandemic	
[8].	In	2022,	malaria	incidence	in	the	WHO	African	region	
has	declined	to	223	per	1,000	population,	due	to	the	contain-
ment	of	the	COVID-19	[2].	Africa	also	accounts	for	about	
95%	of	global	malaria	deaths.	Malaria	deaths	in	the	WHO	
African	Region	decreased	from	143	to	57	deaths	per	100,000	
population	at	risk	between	2000	and	2019,	but	increased	to	
61	 in	2020.	Similarly,	 estimated	malaria	 related-deaths	of	
WHO	African	Region	 decreased	 again	 to	 56	 per	 100,000	
population	in	2022,	which	is	consistent	with	the	incidence	
[2, 8].	Four	African	countries	occupy	more	than	half	of	all	
malaria	deaths	globally,	with	Nigeria	accounting	for	31%,	
Democratic	Republic	of	Congo	for	12%,	United	Republic	of	
Tanzania	for	4%	and	Niger	for	6%	[2].	Malaria	control	has	
been	largely	achieved	in	some	areas	of	Africa.	In	2021,	Afri-
can	countries,	like	Botswana,	the	Comoros,	Eritrea,	Eswa-
tini,	and	Sao	Tome	and	Principe	all	reported	fewer	than	10	
deaths.	And	no	malaria-related	deaths	have	been	reported	in	
Harari	Region	and	Cabo	Verde	since	2013	and	2015,	respec-
tively	[9, 10].

2.2 Species and Distribution of Plasmodium

There	are	five	Plasmodium	parasite	species	causing	malaria	
in	humans,	including	P. falciparum, Plasmodium malariae (P. 
malariae),	Plasmodium vivax (P. vivax),	Plasmodium ovale 
(P. ovale),	and	Plasmodium knowlesi (P. knowlesi)	[11–14].	
Among them, P. falciparum and P. vivax pose a huge threat 
to	human	health.	As	the	main	cause	of	malaria	in	Africa,	P. 
falciparum	has	caused	large	number	of	deaths,	accounting	
for	more	than	90%	of	the	world’s	malaria	mortality.	In	2020,	
120.4	million	pregnancies	globally	were	at	risk	of	infection	
with P. falciparum,	and	two-thirds	of	which	(81.0	millions,	
67.3%)	 occurred	 in	 areas	 of	 stable	 transmission	 [15].	 P. 
vivax	 was	 previously	 considered	 to	 be	 dominant	 in	 most	
countries	outside	of	sub-Saharan	Africa,	because	people	of	
African	 descent	 often	 lack	 the	Duffy	 antigen	 receptor	 for	
chemokines.	However,	increasing	evidences	showed	that	P. 
vivax	can	transmit	between	Duffy-negative	individuals	[16, 
17].	In	some	areas,	P. vivax	infection	in	Duffy-negative	indi-
viduals	is	as	high	as	100%	[18].	It	has	been	demonstrated	
that	a	subset	of	Duffy-negative	erythroblasts	express	Duffy	
antigen	receptor	for	chemokines	during	terminal	erythroid	
differentiation,	 which	 facilitates	 the	 invasion	 of	 P. vivax 

[19].	In	addition,	P. vivax may	 invade	erythrocyte	through	
other	Duffy-independent	pathways	[20].	Due	to	its	high	tem-
perature	tolerance	and	ability	to	form	dormant	hypnozoites	
leading	to	relapse,	P. vivax	is	enable	to	spread	through	the	
diverse	African	climate	and	outcompete	P. falciparum, pos-
ing	a	serious	health	threat	to	Africa	[21].	P. malariae is com-
monly	seen	in	South	America,	Asia,	and	Africa.	P. malariae 
only	 invades	aged	erythrocytes	with	a	 low	 incidence,	 and	
the	severe	disease	rate	is	only	3%	(95%	confidence	interval	
[CI]:	2-5%)	[12].	P. ovale has been reported in Africa and 
Western	Pacific	countries,	which	affects	3	billion	people	and	
causes	1–3	million	of	deaths	each	year	[13].	P. knowlesi has 
been	detected	in	South	East	Asia,	and	males	are	the	highest	
risk	groups	of	getting	infected,	especially	those	working	in	
forest	[14].	But	P. knowlesi	is	almost	absent	in	Africa,	prob-
ably	because	there	are	neither	long-tailed	macaques	nor	pig-
tailed	macaques,	both	of	which	are	the	host	of	P. knowlesi.

2.3 Presusceptible Population

According	 to	 the	World	Malaria	Report	2023	 [2],	malaria	
infection	 rates	 vary	 widely	 among	 populations.	 The	 sus-
ceptible	population	mainly	 includes	 the	 following	catego-
ries:	(1)	infants	and	young	children	with	imperfect	immune	
system	 development	 [22];	 (2)	 pregnant	 women	 without	
a	 strong	 immunity.	Pregnant	women	are	 three	 times	more	
exposed	 to	malaria	 infection	compared	with	non-pregnant	
women	 [23];	 (3)	 pregnant	 women	 with	 partial	 immunity	
in	 the	endemic	area	 [24];	 (4)pregnant	women	with	partial	
incomplete	immunity	and	HIV	infection	in	endemic	areas;	
(5)	 HIV-infected	 persons:	 the	 two	 often	 coexist	 together,	
leading	 to	a	worse	prognosis;	 (6)	an	 international	 traveler	
without	immunity;	(7)	immigrants	from	non-endemic	areas	
and	their	children.

Due	 to	 low	 acquired	 immunity,	 especially	 children	
younger	 than	 5	 years	 and	 pregnant	 women	 are	 the	 most	
susceptible	populations	[25].	It	was	estimated	that	the	mor-
tality	rate	of	children	under	the	age	of	five	was	as	high	as	
70%	in	2015	worldwide	[26].	In	2021,	in	38	moderate	and	
high transmission countries in the WHO African Region, 
there	was	an	estimated	40	million	pregnancies,	13.3	million	
(32%)	of	which	were	exposed	 to	malaria	 infection	during	
pregnancy	 [27].	And	 malaria	 in	 sub-Saharan	Africa	 kills	
10,000	pregnant	women	every	year,	causing	8–14%	of	low-
weight	newborns	and	3–8%	of	neonatal	deaths	[24].	Nota-
bly,	since	seasonal	malaria	chemo-prevention	(SMC)	is	only	
conducted	in	children	under	5	years	of	age	in	many	areas,	
older	siblings	and	parents	who	are	not	covered	by	SMC	are	
more	likely	to	become	parasites	reservoir	[28, 29].	In	Mali,	
malaria	prevalence	of	children	aged	5–15	years	was	higher	
than	those	younger	than	5	years	after	SMC	[30].	Attempts	
to	extend	the	SMC	intervention	to	children	under	10	years	
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asymptomatic	 infected	 persons	 are	 at	 high	 risk	 of	 devel-
oping	 into	 symptomatic	 infections.	Olliaro	 et	 al.	 [45]	 fol-
lowed	up	post-treatment	 asymptomatic	parasitemia	 for	28	
days,	found	that	42%	of	total	cases	were	still	febrile,	30%	
had	parasitemia	but	remained	asymptomatic,	only	23%	had	
parasites	cleared.	Young	age,	parasitemia	≥	500	parasites/µl,	
onset of parasitemia after day 14, and treatment with amo-
diaquine	were	risk	factors	for	developing	febrile	symptoms	
[45].	Because	asymptomatic	infections	are	difficult	to	iden-
tify,	they	represent	an	important	potential	source	and	reser-
voir	of	malaria	transmission	in	Africa	and	even	the	world.

3 Factors Associated with Malaria Infection 
in High-endemic Areas in Africa

3.1 Differences in Urban and Rural

Malaria	 rates	 vary	 greatly	 between	urban	 and	 rural	 areas,	
due	to	huge	differences	in	economic	levels	and	health	care	
conditions.	 Increased	access	 to	health	care,	 education	and	
prevention	services	in	cities	has	led	to	lower	rates	of	Anoph-
eles	bites,	transmission	intensity,	and	parasitic	infection	[46, 
47].	It	is	reported	that	low	socioeconomic	status	households	
were	 strongly	 associated	 with	 malaria	 hotspots	 (adjusted	
odds	ratio	[aOR]	=	1.21,	95%	CI:	1.03–1.40)	in	Burkina	Faso	
[46].	Iqbal	et	al.	[47]	found	that	the	infected	population	in	
rural	(Dodowa)	was	significantly	younger	than	that	of	urban	
(Accra)	 regions	 (median	age	17	vs.	36	years,	p <	0.0001).	
The	 incidence	of	parasitemia	has	 significantly	 elevated	 in	
rural	areas,	especially	among	school-age	children,	as	 they	
usually	spend	more	time	outdoors	and	have	more	exposure	
to infected water and Anopheles	mosquitoes	[47].	However,	
another	study	took	place	in	1999	in	Burkina	Faso	indicated	
that	severe	anemia	(hemoglobin	<	5	g/dl)	was	higher	in	rural	
patients	 (47.4%	 vs.	 14.8%,	 p <	0.0001),	 while	 coma	 was	
higher	in	the	urban	patients	(53.6%	vs.	28.9%,	p <	0.0001),	
which	may	be	related	to	policy	and	economic	conditions	in	
different	 regions	 and	 periods	 [48].	 In	 rural	 areas,	 seeking	
treatment	outside	often	is	delayed	for	the	inability	to	pay	for	
medical	expenses	[49].

3.2 Nutritional Status

The	infection	and	fatality	rate	of	malaria	are	closely	related	
to	nutritional	status.	Jeremiah	et	al.	[50] conducted a study 
about	the	relationship	between	malaria	and	nutrition	in	Port	
Harcourt,	Nigeria,	and	found	malnourished	children	under	
5	years	old	were	 susceptible	 to	malaria	with	high	mortal-
ity	 rate	 (relative	 risk	 [RR]	=	3.625,	 95%	 CI:	 1.81–5.43;	
p <	0.06).	 A	 cross-sectional	 assessment	 conducted	 in	 the	
North	Region	of	Cameroon	also	supports	a	significant	link	

of	age	have	shown	satisfactory	results	in	multiple	malaria-
prone	areas	[31, 32].

2.4 Plasmodium Infection Rate in Patients with 
Fever

The	most	typical	symptom	of	malaria	is	fever.	African	coun-
tries	have	a	high	proportion	of	malaria	among	febrile	people,	
especially	children,	 in	highly	endemic	areas	 [33, 34].	The	
correlation	 between	 fever	 and	malaria	 infection	 in	Africa	
is strong, but the association decreases with age, suggest-
ing	that	anti-parasitic	immunity	may	have	some	protective	
effect	in	adults	[35].	Mabunda	et	al.	[36]	investigated	8,816	
cases	of	children	under	10	years	old	nationwide	and	mea-
sured	the	temperature	simultaneously,	and	found	52.4%	of	
patients	with	falciparum	infection	and	9.4%	had	fever.	The	
proportion	decreased	with	 increasing	 age,	 peaking	 among	
children	 during	 the	 first	 12	 months	 of	 life	 (15.1%)	 [36].	
Therefore,	the	current	WHO	guidelines	for	malaria	control	
recommend	 empirical	 antimalarial	 treatment	 for	 children	
with	fever	in	high	endemic	areas.	Notably,	malaria	is	rou-
tinely	over-diagnosed	and	over-treated	in	Africa,	especially	
in	rural	areas	with	limited	medical	resources,	where	many	
febrile	 patients	 are	 treated	 with	 anti-malarial	 drugs	 only	
based	 on	 clinical	 manifestations	 [37, 38].	A	 survey	 con-
ducted	in	rural	Uganda	found	that	62.0%	of	patients	were	
misdiagnosed	with	malaria	based	on	symptomatic	diagnosis	
[38].	Rapid	diagnostic	test	(RDT)	for	malaria	and	rational	
treatment	are	important	to	reduce	malaria	overdiagnosis	and	
abuse	of	antimalarial	drugs	[39, 40].

2.5 Asymptomatic Malaria Infection Rate in African 
Countries

There	are	a	large	number	of	asymptomatic	infected	residents	
in	endemic	areas	of	Africa,	because	they	have	developed	par-
tial	immunity	from	repeated	infections	[41].	A	large	cross-
sectional	survey	conducted	in	the	western	Kenyan	highlands	
of	Rachuonyo	South	reported	that	93.2%	(2,481/2,663)	of	
malaria	 infections	were	asymptomatic	 [42].	The	 recessive	
infection	of	malaria	accounts	for	a	significant	proportion	in	
children	[43].	Salgado	et	al.	[43]	investigated	1,354	healthy	
patients	in	three	communities	in	western	Kenya	and	found	
that	 children	 aged	11–15	years	 accounted	 for	 the	 greatest	
proportion	 total	 and	 sub-microscopic	asymptomatic	 infec-
tions	across	all	communities.	Bousema	et	al.	[44] reported 
a	cohort	 study	of	526	 infants	and	children	aged	6	months	
to	16	years	 in	western	Kenya,	and	found	 that	 the	positive	
rate	of	gametocyte	was	33.8%	in	children	below	5	years	of	
age,	which	gradually	decreased	with	age.	Without	prompt	
and	effective	treatment,	18.6%	of	the	untreated	test-positive	
children	 developed	 gametocytaemia	 [44], suggesting that 
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outdoors at night, standing water near houses and the num-
ber	 of	 children	 under	 5	 years	 old	 per	 household	 are	 risk	
factors	for	malaria	 in	refugee	[60].	Refugee	children	have	
higher	 in-hospital	malaria	mortality,	partly	due	 to	delayed	
visits	and	higher	rates	of	malnutrition	[61].	Therefore,	con-
trolling	 unstable	 security	 is	 important	 to	 reduce	 the	 inci-
dence	of	malaria.	For	populations	in	refugee	areas,	there	is	
a need to promote the reduction of outdoor stays at night, 
the	elimination	of	standing	water	and	the	use	of	insecticide-
treated	 mosquito	 nets,	 especially	 considering	 the	 number	
of	 children	 under	 5	 years	 of	 age	 per	 household	 [60].	 For	
patients	with	severe	malaria,	rapid	diagnosis	and	referral	are	
needed	to	reduce	malaria	mortality	[61].

4 The Pathogenic Mechanism of Malaria

Malarial	 infection	 begins	 when	 a	 person	 is	 bitten	 by	 an	
infected	female	anopheles	mosquito	and	Plasmodium	spp.	
in	the	form	of	sporozoites	are	injected	into	the	bloodstream.	
The	sporozoites	travel	to	the	liver	and	reproduce	asexually	
over	the	next	7–10	days.	There	are	no	symptoms	during	this	
period.	 The	 parasites,	 in	 the	 form	 of	 merozoites,	 emerge	
from	the	liver	cells	in	vesicles	and	travel	through	the	heart	
to	the	capillaries	of	the	lungs.	The	vesicles	eventually	disin-
tegrate	and	release	the	merozoites	to	the	bloodstream	where	
they	invade	and	multiply	in	erythrocytes,	causing	destruc-
tion	 of	 red	 blood	 cells	 and	 anemia	 [62].	P. vivax	 mainly	
invades	senescent	red	blood	cells,	so	anemia	is	less	obvious	
[63].	P. falciparum	 influences	 red	 blood	 cells	 of	 different	
ages	with	high	infection	density,	so	anemia	appears	earlier	
and	more	prominent	[64].

After	 the	malaria	 parasite	 and	 its	 decomposition	 prod-
ucts	enter	the	human	body,	macrophages,	immune	cells	and	
inflammatory	 factors	 are	 rapidly	 activated	 and	 participate	
in	 the	 process	 of	 removing	 pathogens	 and	 red	 blood	 cell	
debris,	so	patients	often	have	splenomegaly	and	hypersplen-
ism	 [65].	 During	 initial	 infection,	 the	 ingestion	 of	 mero-
zoites and fragments by macrophages or the presence of 
antigen-presenting	trophozoites	in	the	circulation	or	spleen	
leads	 to	 the	 release	 of	 tumor	 necrosis	 factor-alpha	 (TNF-
α)	[66].	Then,	TNF-α	induces	aggregation	of	interleukin-10	
and	γ-interferon,	which	mediates	an	inflammatory	cascade,	
causing	 fever	during	 infection	 [67, 68].	Subsequently,	 the	
acquired	immune	system	is	activated,	and	a	certain	degree	
of	antibody	cascade	produced	by	the	macrophage-T	cell-B	
cell	 axis	 amplifies	macrophage	 activity,	 resulting	 in	more	
efficient	 removal	 of	 the	 parasite	 [69, 70].	With	 sustained	
immune	stimulation,	additional	antibodies	bring	more	pro-
tection,	which	explains	some	asymptomatic	infections.

Cerebral	malaria	(CM)	is	a	serious	type	of	Plasmodium 
infection	 and	 occurs	 more	 frequently	 in	 P. falciparum, 

between	malaria	 and	malnutrition	 in	 children	 (OR	=	1.89,	
95%	CI:	1.12–3.19;	p =	0.017)	[51].	And	anemia,	low	body	
weight	and	developmental	delays	are	also	common	in	them	
[51].

3.3 Seasons and Climate

Climate	 and	 humidity	 are	 also	 important	 factors	 affecting	
the	incidence	of	malaria.	Tropical	and	subtropical	areas	are	
the	most	preferable	by	mosquitoes	because	the	temperature	
range	is	between	15.4	°C	and	35	°C	[52].	Malaria-transmit-
ting	mosquitoes	prefer	areas	with	monthly	precipitation	of	
more	than	80	mm	and	relative	humidity	of	more	than	60%.	
A	large	survey	analysis	of	Plasmodium infection and socio-
economic	factors	in	Burkina	Faso	indicated	that	rainfall	and	
temperature	were	 positively	 associated	with	malaria	 inci-
dence	[46, 53].	Another	study	conducted	 in	Ouagadougou	
involving	3,354	children	aged	6	to	12	years	found	that	the	
overall	 blood	 anti-circumsporozoite	 (CSP)	 antibody	 posi-
tive	rate	and	falciparum	detection	rate	during	the	dry	season	
were	significantly	lower	than	those	during	the	rainy	season	
(7.7%	and	16.6%	vs.	12.4%	and	26.1%,	respectively)	[54].	
Andrade	et	al.	[55]	finds	that	dry	season	limits	the	spread	of	
P. falciparum	parasites	and	low	levels	of	parasites	persist	in	
the	 blood	of	 asymptomatic	Malian	 individuals	 during	dry	
season,	with	minimally	affecting	the	host	immune	response	
and	rarely	causing	clinical	symptoms.	They	believe	that	it	is	
related	to	increased	splenic	clearance	of	longer-circulating	
infected	erythrocytes	[55].

3.4 Geographical Location and Altitudes

In	 the	 highlands,	 different	 altitudes	 affect	 the	 survival	 of	
vectors	in	their	breeding	habitats,	leading	to	divergent	risks	
of	 malaria	 transmission	 and	 prevalence	 [56].	 It	 has	 been	
shown	that	altitude	is	a	major	driver	of	malaria	transmission	
in	the	western	Kenyan	highlands.	The	prevalence	of	malaria	
antibody	was	 strongly	 related	 to	 altitude	 (1,350-1,600	m,	
p <	0.001)	 [42].	There	also	was	a	significant	negative	cor-
relation	 between	 elevation	 and	 polymerase	 chain	 reac-
tion	(PCR)	parasite	prevalence	[42].	Another	cohort	study	
involving	246	schoolchildren	conducted	in	a	highland	area	
of	western	Kenya	found	that	the	prevalence	and	duration	of	
P. falciparum	 infection	decreased	with	age	and	altitude	as	
well	[57].

3.5 Unstable Security

Malaria	is	a	major	health	threat	during	and	after	war,	due	to	
the	collapse	of	health	systems,	mass	displacement	of	popu-
lations,	and	concentrated	living	in	refugee	camps	prone	to	
vector	 breeding	 [58, 59].	 It	 has	 been	 shown	 that	 staying	
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5 Diagnosis of Malaria

The	diagnosis	of	malaria	depends	on	epidemiological	his-
tory,	clinical	symptoms,	and	laboratory	tests	[79].

5.1 Clinical Manifestations

Due	to	differential	pathogenic	characteristics,	Plasmodium 
parasites	have	certain	differences	in	incubation	period	and	
clinical	manifestations	[79],	as	shown	in	Table	1.	Accord-
ing	to	the	clinical	symptoms	and	severity	of	comorbidities,	
the	patients	can	be	divided	into	normal	and	severe	malaria.	
Ordinary	 infected	 persons	 may	 have	 fever,	 chills,	 sweat-
ing,	headache,	nausea,	muscle	pain,	and	vomiting.	Typical	
symptoms	of	the	onset	last	6–10	h,	with	no	symptoms	dur-
ing	intermittent	period.	But,	there	was	no	obvious	pattern	of	
onset	in	atypical	patients.	The	younger	the	children,	the	less	
typical	 the	 symptoms,	 can	 appear	 stunting,	 malnutrition,	
anemia,	 giant	 spleen	 and	 other	manifestations	 [80].	 Preg-
nant	women	with	atypical	symptoms	may	have	miscarriage	
and	stillbirth.	In	severe	cases,	malaria	may	cause	jaundice,	
seizures,	 coma,	 kidney	 failure,	 and	 even	 death,	 known	 as	
severe	malaria	[1].	All	five	Plasmodium species can cause 
severe	malaria,	but	most	deaths	are	caused	by	P. falciparum, 
the	cerebral	form	of	which	is	most	common.	Specific	diag-
nostic	criteria	for	severe	malaria	are	shown	in	Table	2.

Notably,	 some	 patients	 with	 P. vivax or P. ovale may 
relapse,	 which	 is	 related	 to	 the	 presence	 of	 dormant	 or	
delayed	 sporozoites	 of	malaria	 parasites	 in	 the	 liver	 [81].	
Therefore, the treatment of P. vivax and P. ovale	should	be	
supplemented	with	drugs	against	 intrahepatic	Plasmodium 
in addition to drugs against intraerythrocytic Plasmodium.	
P. falciparum, P. malariae, P. knowlesi	 usually	 do	 not	
recrudesce owing to the absence of dormant seeds in their 
extracellular	phase.	All	kinds	of	Plasmodium parasites can 
reignite,	which	 is	 related	 to	 incomplete	 drug	 treatment	 in	
the intraerythrocytic phase, often appearing within 1 month 
after	clinical	cure.

which	is	mainly	related	to	 the	red	blood	cells	 in	 the	brain	
capillaries	 [71].	P. falciparum	 attaches	 to	 capillary	 endo-
thelial	 cells	 through	 Plasmodium falciparum erythrocyte 
membrane	protein	 1	 (PfEMP1)	 and	 causes	 local	 capillary	
obstruction	 and	 cell	 hypoxia	 through	 cross-agglutination	
and	 adsorption,	which	 can	 cause	 severe	 brain	 edema	 and	
brain	 cell	 damage,	 leading	 to	 severe	 headache,	 delirium,	
and	even	coma	[72].	In	addition,	parasite-infected	erythro-
cyte	specific	protein	2	(PIESP2)	is	also	involved	in	mediat-
ing	CM	by	sequestrating	infected	red	blood	cells,	inducing	
the	 inflammation	 response,	 and	 impairing	 the	 integrity	 of	
blood-brain	 barrier.	 PIESP2	 is	 a	 P. falciparum-specific	
immunogenic	protein,	which	expression	begins	at	the	early	
trophoblast	stage	and	gradually	increases	with	the	develop-
ment	of	the	parasite	[73].

When	macromolecular	 substances	 such	 as	 hemoglobin	
and	antigen/antibody	complexes	block	the	glomerular	base-
ment	 membrane,	 it	 can	 cause	 acute	 immunoallergy.	And	
patients	often	have	soy	sauce-like	meurine,	oliguria/anuria,	
and	acute	renal	failure	manifestations	with	a	sharp	increase	
in	creatinine	and	urea	nitrogen,	known	as	hemolytic	uremic	
syndrome	[74].	It	is	one	of	the	most	dreaded	complications	
of	severe	malaria.

In	 addition,	VAR2CSA,	 the	variant	 of	PfEMP-1,	 binds	
to	 chondroitin	 sulfate-A	 in	 the	 placenta	 and	 evades	 host	
immune	 recognition,	preventing	 immune	activation	of	 the	
parasite	 and	 spleen	 clearance,	 thus	 pregnant	 women	 are	
more	susceptible	to	malaria	than	non-pregnant	women	[75, 
76].	 In	 addition,	 parasitemia	 in	 placental	malaria	 induces	
immune	 imbalances,	 as	 well	 as	 inflammation,	 which	 dis-
rupt	placental	function	and	deplete	fetal	nutrients	[77, 78].	
Therefore,	 low-weight	 infants	 and	 stillbirths	 among	preg-
nant	women	infected	with	malaria	are	very	common.

Table 1	 Characteristics	of	different	types	of	malaria	infection
Plasmodium
species

Incuba-
tion 
period,
days

Interval	
between 
outbreaks

Hyp-
nozoite 
stage

Relapse Recrudescence Main epidemic areas

P. falciparum 9–14 within 24 h 
without 
regularity

No No Yes Sub-Saharan Africa, South and Southeast Asia, 
Eastern	Mediterranean,	Western	Pacific,	South	
America

P. vivax 11–14 every	48	h Yes Yes	(6–12	months)	
(> 2 years in some 
cases)

Yes Similar	to	P. falciparum	and	also	present	in	the	
Korean	Peninsula

P. ovale 16–18 every	48	h Yes Yes	(8–45	months) Yes Sub-Saharan	Africa,	Southeast	Asia,	Western	Pacific
P. malariae 18–40 every	72	h No No Yes South America, Asia, Africa
P. knowlesi 9–12 within 24 h 

without 
regularity

No No Yes Southeast Asia
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standard”	 recommended	 by	 WHO	 for	 malaria	 diagnosis	
[83].	But	the	accuracy	of	the	test	depends	on	the	proficiency	
of	 the	 microscopist.	 Automated	 microscopy	 and	 digital	
malaria	 microscopyare	 have	 been	 developed	 to	 improve	
diagnostic	performance	[84, 85].

5.2.2 RDT

RDT	 is	 characterized	 by	 simple	 and	 rapid	 detection.	The	
results	 showed	 that	 the	 sensitivity	 and	 specificity	of	RDT	
in the diagnosis of P. falciparum	 were	 92%	 and	 96.6%,	
and those of P. vivax	were	72.9%	and	99.1%,	respectively,	
compared	with	microscopy	[83].	RDT	is	a	reliable	alterna-
tive	for	the	diagnosis	of	malaria,	especially	in	remote	areas	
where	 qualified	 microscopists	 are	 scarce	 [86].	 However,	
the	performance	of	RDT	is	affected	by	batch,	brand,	abil-
ity	to	cross	the	membrane,	specificity	and	sensitivity	of	the	
antigen-antibody	complex	[87].	For	example,	the	diagnostic	
strip	with	histidine	rich	protein	(HRP)2/HRP3	as	the	target	
antigen	showed	high	sensitivity	and	specificity	for	P. falci-
parum,	but	could	not	detect	other	Plasmodium	strains	[88].	
The	diagnostic	test	strips	with	lactate	dehydrogenase	(LDH)	
as the target antigen can detect P. falciparum or non-P. fal-
ciparum, but cannot distinguish the species of non-P. falci-
parum,	and	was	less	sensitive	to	low	protozoa	density	[87].	
In	 addition,	 gene	 deletions	 of	 pfHRP2	 and	 pfHRP3	 in	P. 
falciparum	are	increasingly	prevalent,	even	up	to	86.5%	in	
some	areas	[88].	P. falciparum infections by parasites with 
both	pfHRP2	and	pfHRP3	deletions	were	tested	HRP2-neg-
ative	by	RDT,	which	lead	to	a	large	number	of	missed	diag-
noses	[88, 89].	Moreover,	RDT	cannot	monitor	response	to	
antimalarial	therapy.	New	highly	sensitive	RDTs	are	devel-
oping	 to	 overcome	 these	 deficiencies	 [90, 91].	Wherever	
possible,	PCR	and	microscopy	 should	be	used	 to	 confirm	
and	monitor	malaria.

5.2.3 Plasmodium Gene Detection

Using	PCR	to	copy	the	deoxyribonucleic	acid	(DNA)	can	
not	only	identify	the	species	of	Plasmodium,	but	also	detect	
the	genes	related	 to	drug	resistance	[92, 93].	This	method	
facilitates	 the	 detection	 of	 misdiagnosed	 submicroscopic	
and	asymptomatic	individuals	using	RDT	and	microscopy,	
with	specificity	and	sensitivity	up	to	88-94%	and	98-100%,	
respectively	 [94].	However,	 it	 is	 very	 expensive,	 requires	
specialized	equipment	and	experienced	experts,	and	is	not	
suitable	for	large-scale	deployment	in	Africa.

5.2.4 Biosensors

Biosensors	 rely	 on	 biochemical	 interactions	 between	 bio-
logical	components	and	the	transducer	matrix	and	analytes	

5.2 Etiological Examination

5.2.1 Microscopic Detection of Peripheral Blood Smear

Plasmodium	parasites	can	be	identified	by	examining	a	drop	
of	a	patient’s	blood	under	a	microscope	with	Gilles	or	Reye	
stain	 [82].	This	method	 is	 intuitive	and	clear,	can	 identify	
the species and density of Plasmodium parasites, contribute 
to	 the	 early	 detection	 of	 severe	malaria,	 and	 is	 the	 “gold	

Table 2	 Diagnostic	criteria	for	severe	malaria
Plasmodium
species

Criteria
Signs and symptoms Laboratory	and	radiology

P. falciparum 1.Impaired	
consciousness:
Glasgow	Coma	Scale	
score <	11,	or	Blantyre	
Coma	Scale	< 3 in 
children

1.Acidosis:	base	deficit	
of >	8	mEq/L	or	plasma	
bicarbonate <	15	mEq/L	
or	venous	plasma	lactate	
≥	5	mmol/L

2.Convulsions	(> 2 
within	24	h)

2.Anemia:	hemoglobin	
concentration <	7	g/dL	or	
hematocrit <	20%	with	
a parasite count >	10	
000/µL

3.Respiratory	distress	
(acidotic	breathing)

3.Hypoglycemia	(blood	
glucose	<	2.2	mmol/L	or	
<	40	mg/dL)

4.Prostration:	unable	to	
sit, stand,
or	walk	without	
assistance

4.Parasitemia:	≥5%

5.Significant	bleeding:	
recurrent
or	prolonged	bleeding	
from the nose,
gums,	or	venipuncture	
sites;
hematemesis	or	melena

5.Jaundice:	plasma	or	
serum	bilirubin	>	3	mg/
dL and parasite 
count >	100,000/µL

6.Jaundice 6.Renal	impairment	
(creatinine >	265	mmol/L	
[3	mg/dL]	or	blood	
urea >	20	mmol/L)

7.Anuria 7.Pulmonary	edema:	
radiologically	confirmed	
or	oxygen	satura-
tion <	92%	on	room	
air with a respiratory 
rate >	30/min

8.Hemoglobinuria	
(blackwater)
9.Repeated	vomiting

P. vivax Defined	as	for	falci-
parum	malaria	but	with	
no parasite density 
thresholds

P. knowlesi Defined	as	for	falci-
parum	malaria

except	as	below:	P. 
knowlesi parasite density 
>	100,000/µL;	Jaundice	
and parasite density 
>	20,000/µL
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the	contribution	of	asymptomatic	patients	to	malaria	trans-
mission	needs	to	be	vigilant,	as	this	group	is	huge	and	easily	
overlooked.

6.3 Comprehensive Environmental Management 
and Chemical Drug Spraying

Many	areas	of	South	Africa	have	tropical	rainforest	climates,	
with	a	dry	season	and	a	rainy	season.	The	rainy	season	is	hot	
and	 humid,	 and	 the	 environment	 is	 surrounded	 by	 strong	
trees	and	thick	grass,	which	create	favorable	conditions	for	
mosquito	breeding	and	growth.	Therefore,	 comprehensive	
management	of	the	residential	area	by	eradicating	the	sur-
rounding	weeds	and	shrubs,	leveling	the	camp	site,	dredging	
ditches,	clearing	the	water	in	the	depression	and	the	use	of	
larval	agents	is	beneficial	for	reducing	larval	breeding	[103, 
104].	And	 adult	 mosquitoes	 could	 be	 controlled	 through	
indoor	residual	spraying	(IRS)	and	insecticide-treated	nets	
(ITNs)	 [105, 106].	 Compared	 to	 equivalent	 populations	
with	no	nets,	 ITNs	reduced	child	mortality	by	17%,	para-
site	prevalence	by	13%,	uncomplicated	malaria	episodes	by	
50%,	and	severe	malaria	by	45%	[105].	A	recent	meta-anal-
ysis	reported	that	IRS	reduced	the	risk	of	malaria	by	65%	
[107].	 However,	 the	 increasing	 resistance	 of	 insecticides	
reduces	 the	 effectiveness	 of	 IRS	 and	 ITNs	 [108], pose a 
growing	threat	to	malaria	control.	Chemoprophylaxis	is	also	
the	primary	route	of	prevention,	mainly	for	people	who	have	
traveled	to	malaria-endemic	countries	[109].	The	choice	of	
drugs	depend	on	the	travelling	destination,	the	duration	of	
potential	 exposure	 to	 vectors,	 parasite	 resistance	 patterns,	
season,	 and	 susceptible	 population.	 In	 endemic	 countries,	
SMC has been recommended for autochthonous infants, 
young	children	and	pregnant	women,	depending	on	ende-
micity	 level	and	seasonality	of	 transmission	 [110, 111].	A	
cluster-randomised	 trial	 conducted	 in	 twenty-four	villages	
of	south-east	Senegal	demonstrated	that	SMC	for	children	
under	 10	 years	 of	 age	 given	 over	 5	months	was	 feasible,	
well	tolerated,	and	effective	in	preventing	malaria	episodes.	
Besides,	 SMC	 reduced	 the	 prevalence	 of	 parasitemia	 and	
anaemia	 in	 children	 [112].	The	most	 common	drugs	 used	
for	 chemoprophylaxis	 include	Sulfadoxine-pyrimethamine	
plus	amodiaquine,	atovaquone-proguanil,	doxycycline,	and	
mefloquine	[112, 113].

6.4 Regulating Individual Behavior and Selecting 
Appropriate Protective Measures

Personal	protection	can	be	divided	into	drugs	and	physical	
protection.	Drug	protection	is	divided	into	oral	preventive	
drugs	and	in	vitro	repellent	drugs.	People	traveling	in	areas	
with	malaria	 cases	 are	 advised	 to	 use	 antimalarial	 drugs:	
mefloquine,	chloroquine,	malarone	(atovaquone-proguanil),	

(PfHRP-2,	 pLDH,	 aldolase,	 and	biocrystalline	 heme)	 [95, 
96].	 The	 transduction	 characteristics	 of	 the	 sensor	 are	
changed	by	this	reaction,	as	a	positive	or	negative	correla-
tion	of	 temperature,	absorbance,	or	conductivity,	and	 thus	
the	 analyte	 concentration	 is	 deduced	 [95, 97].	 Compared	
to	 the	common	RDT,	 the	sensitivity	and	specificity	of	 the	
automated	fluorescent	blue-ray	device-based	malaria	diag-
nostic	equipment	were	98.1%	and	54.8%,	respectively	[98].	
The	device	can	also	detect	asymptomatic	people	 [95, 97].	
Biosensor	is	still	less	used,	but	it	seems	to	be	a	promising	
detection	technique.

6 Preventive Measures against Malaria in 
African Countries

As	 an	 infectious	 disease,	 malaria	 transmission	 can	 be	
blocked	by	good	management,	cutting	off	the	transmission	
route,	and	protecting	the	susceptible	population.	But	how	to	
block	these	three	links	is	influenced	by	many	factors,	such	
as	 natural	 environment,	 humanities,	 economic	 environ-
ment	 and	 so	 on.	 Comprehensive	 preventive	measures	 are	
needed	to	block	malaria.	In	malaria	endemic	countries,	cer-
tain	protection	against	malaria	should	be	offered	to	vulner-
able	groups	including	pregnant	women,	under-five	children,	
nomadic	populations,	and	visitors.

6.1 Strengthening Publicity and Improving the 
Awareness of Malaria Prevention

To	prevent	malaria,	awareness	is	the	key.	The	quality,	living	
environment	and	religious	beliefs	of	the	residents	in	African	
countries	are	different.	People	in	some	areas	think	that	only	
those	who	are	sick	need	to	take	medicine,	while	ignoring	the	
risk	 of	 occult	 infection.	The	 government	 propaganda	 and	
policy	promotion	 is	 crucial	 for	 the	 prevention	of	malaria.	
Active	case	detection	is	recommended	by	WHO.	And	there	
is	a	need	to	strengthen	social	interaction.	It	is	showed	that	
mothers	and	pregnant	women	can	learn	about	the	benefits	of	
malaria	prevention	behaviors	through	conversation	or	direct	
observation	from	neighbor’s	experiences	with	mosquito	nets	
or	preventive	treatment	during	pregnancy,	thus	reducing	the	
risk	of	infection	in	pregnant	women	and	children	[99].

6.2 Timely Monitoring and Treatment of Malaria

In	recent	years,	in	many	parts	of	Africa,	malaria	epidemio-
logical	 surveillance	 platforms	 and	 parasite	 genetic	 testing	
platforms	have	been	established	based	on	the	national	health	
system	in	schools	and	other	places	[100–102].	With	targeted	
monitoring	measures	 and	 treatment	of	malaria,	 the	preva-
lence	of	malaria	has	been	significantly	reduced.	However,	
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CI:	 61–74%;	p <	0.0001)	 at	 the	 standard	 sites	 before	 first	
clinical	malaria	 episode	 [123].	 Similarly,	 vaccine	 efficacy	
against	multiple	 clinical	malaria	 episodes	was	 75%	 (95%	
CI:	 71–78%;	 p <	0.0001)	 at	 the	 seasonal	 sites	 and	 67%	
(95%	CI:	59–73%;	p <	0.0001)	at	standard	sites	[123].	The	
efficacy	 of	R21/Matrix-M	vaccine	 also	wanes	moderately	
[123].	But	overall,	R21/Matrix-M	is	efficient,	low-cost	and	
has	been	licensed	in	many	African	countries	[121, 124].

According	to	the	prediction,	at	100%	vaccine	coverage,	
5.2	 million	 cases	 (95%	 CI:	 3.5–8.2	 million)	 and	 27,000	
deaths	(95%	CI:	14,000–43,000)	 in	children	younger	 than	
5	 years	 could	 be	 averted	 annually	 at	 a	 dose	 constraint	 of	
30	million,	and	10.0	million	cases	(95%	CI:	6.7–15.7	mil-
lion)	and	51,000	deaths	(95%	CI:	25,000–82,000)	at	a	dose	
constraint	of	60	million	[125].	However,	there	are	difficul-
ties	 such	as	 low	acceptance,	 lack	of	 funds	 to	promote	 the	
vaccine	 in	Africa,	 and	 how	 to	maintain	 longer	 protective	
efficacy	[126].	Novel	vaccine	delivery	approaches	are	now-
adays	being	advanced,	including	self-amplifying	RNA	vac-
cine	delivery,	self-assembling	protein	nanoparticle	methods,	
CSP	protein-based	approaches,	and	whole	organism	vacci-
nation	 [127].	Other	 novel	 vaccines,	 including	GMZ2,	 the	
Plasmodium falciparum	sporozoite	(PfSPZ)	vaccine	and	so	
on,	are	also	currently	in	clinical	development	[128, 129].

7 Drug Treatment for Malaria

Malaria	 treatment	 includes	 etiology	 treatment,	 symptom-
atic	and	complication	 treatment,	and	necessary	supportive	
therapy to maintain homeostasis and protect core organ 
function	 [79, 130].	Among	 them,	 etiological	 treatment	 is	
crucial,	which	 requires	 the	 selection	of	 antimalarial	drugs	
with	fewer	adverse	reactions	to	kill	the	parasite	quickly	and	
avoid	 long-term	 recurrence.	Drugs	used	 to	kill	 intraeryth-
rocytes	 (control	 clinical	 symptoms)	 includes	 Chloroquine	
phosphate,	 Piperaquine	 phosphate,	 Linalidine	 phosphate,	
Artemisinin	 drugs.	 Drugs	 killing	 Plasmodium in intrahe-
patic	stage	(control	recurrence	and	stop	transmission)	is	pri-
maquine	phosphate.	Details	were	shown	in	Table	3.

7.1 Treatment of Non-severe Malaria

Except	for	early	pregnancy,	ACTs	are	recommended	as	the	
first	line	treatment	for	uncomplicated	P. falciparum infection 
in	all	populations.	Quinine	plus	clindamycin	7-day	treatment	
is	 the	 recommended	 method	 for	 uncomplicated	 P. falci-
parum	infection	in	early	pregnancy	[2].	ACT	is	also	effec-
tive	against	non-P. falciparum, therefore it is recommended 
for	the	treatment	of	mixed	and	non-specific	infections	[131].	
In	 the	 event	 of	 standard	ACT	 treatment	 failure,	 it	 can	 be	
administered	together	with	artesunate	and	primaquine.	The	

primaquine.	 The	 combination	 of	 physical	 and	 chemical	
approaches	 has	 been	 proven	 to	 be	more	 effective	 against	
malaria,	reducing	the	adverse	drug	reactions	and	the	occur-
rence of drug resistance to Plasmodium	 [112].	 Personal	
protective	measures	 to	 reduce	 the	 risk	 of	 getting	 bites	 by	
mosquito	include	the	mosquito	bed	nets	(preferably	ITNs)	
[105],	 sleeping	 or	 resting	 in	 screened	 or	 air-conditioned	
rooms,	 wearing	 clothes	 to	 cover	 most	 of	 the	 body	 when	
going	outside	[114],	and	using	mosquito	repellent	[115].

6.5 Vaccine Development and Piloting

To	overcome	the	threat	of	drug	resistance,	multiple	vaccines	
are	 being	 actively	 developed	 and	 clinically	 studied	 [116].	
RTS,	 S/AS01	 vaccine	 is	 the	most	 extensively	 tested	 vac-
cine	and	as	a	candidate	for	prevention	of	P. falciparum by 
inducing	the	production	of	anti-CSP	IgG	antibodies	[117].	
Phase	3	clinical	trials	conducted	in	11	African	sites	shows	
that	 the	RTS,	S/AS01	vaccine	has	a	protective	efficacy	of	
46%	in	children	during	the	18	months	after	vaccine	dose	3	
(per	protocol)	[116].	But,	 the	protection	of	vaccine	is	par-
tial,	wanes	over	time,	and	may	be	also	depending	on	age.	In	
both	infants	aged	6	to	12	weeks	and	young	children	5	to	15	
months	old,	vaccine	efficacy	waned	rapidly	[116].	And	the	
protection	was	lower	in	infants	of	6–12	weeks	than	in	young	
children	of	5–17	months	old.	For	kids	who	received	the	first	
three	vaccinations	in	a	period	of	0-1-2	month	schedule,	the	
incidence	of	clinical	malaria	has	been	reduced	by	51%	over	
the	first	year	of	follow-up.	And	the	efficacy	dropped	to	26%	
over	48	months	of	follow-up	[118].	Clinical	 trials	 in	Mali	
and	Burkina	Faso	show	that	providing	children	the	vaccine	
just	 prior	 to	 high	 transmission	 seasons	 results	 in	 substan-
tial	reduction	in	the	incidence	of	clinical	malaria	and	severe	
malaria,	 and	 achieves	 better	 effectiveness	 in	 combination	
with	SMC	[119].	At	present,	RTS,	S/AS01	is	recommended	
by	the	WHO	for	active	immunization	against	malaria	in	a	
schedule	of	4	doses	to	children	from	5	months	of	age	[120].	
For	countries	with	areas	of	highly	seasonal	transmission	of	
malaria,	 an	 optional	 alternative	 5-dose	 seasonal	 delivery	
strategy	can	be	used	to	optimize	vaccine	efficacy	[120].

R21/Matrix-M	 is	 the	 second	malaria	 vaccine	 officially	
recommended	 for	 children	 in	 high-transmission	 settings	
by	the	WHO	[121].	Much	like	RTS,	S/AS01,	R21/Matrix-
M	 is	 also	 based	 on	 the	 fusion	 of	 C-terminal	 portion	 of	
the CSP from P. falciparum	 to	 the	N-terminus	 of	HBsAg	
[117].	Nevertheless,	the	R21	is	combined	with	the	Matrix-
M	 proprietary	 adjuvant	 and	 does	 not	 include	 unfused	
HBsAg,	 allowing	 for	 a	 higher	 concentration	 of	 CSP	 at	 a	
lower	dose	[122].	R21/Matrix-M	vaccine	is	well	tolerated,	
with	low	frequent	adverse	events	and	no	treatment-related	
deaths.	The	12-month	vaccine	efficacy	was	75%	(95%	CI:	
71–79%;	p <	0.0001)	 at	 the	 seasonal	 sites	 and	 68%	 (95%	

1 3



Journal of Epidemiology and Global Health

Medicine Function	characteristics Function	
stage

Note

Sulfadoxine/pyrimethamine an	antifolate	antima-
larial	drug;	Sulfadoxine	
targets Plasmodium 
dihydropteroate syn-
thase; Pyrimethamine 
inhibits	dihydro-folate	
reductase.

intrahepatic 
stage, game-
tocyte stage

It has a high rate of drug resis-
tance and can be used in combi-
nation	with	other	anti-malarial	
drugs.

Chloroquine	phosphate 4-aminoquinolines	
drug; enriched in dis-
eased	red	blood	cells;	
rapid	and	well	absorbed	
orally;	its	concentra-
tion	in	red	blood	cells	
is	10–20	times	higher	
than	in	plasma.

asexual	
blood	stages	
of	various	
Plasmodium 
parasites

not	recommended	for	falciparum	
treatmen

Piperaquine	phosphate 4-aminoquinolines	
drug;	well	absorbed	
orally;	stored	in	the	
liver,	and	then	gradu-
ally	released	into	the	
blood,	with	a	plasma	
half-life	of	up	to	28	d

asexual	
blood	stages	
of	various	
Plasmodium 
parasites

cross-resistant	to	chloroquine	
phosphate

Linalidine	phosphate a	new	antimalarial	drug	
of benznaphidine

asexual	
blood	stages	
of	various	
Plasmodium 
parasites

It can be used in the treatment of 
chloroquine	phosphate	-resistant	
falciparum	malaria.

Artemisinin drugs a	new	sesquiterpenoid	
lactone	antimalarial	
drug	extracted	from	
the	traditional	Chinese	
medicine Artemisia 
annual

asexual	
blood	stages	
of	various	
Plasmodium 
parasites

(1)	Artesunate	injection:	a	water-
soluble	derivative	of	artemisinin,	
recommended as the treatment 
of	choice	for	severe	malaria;	(2)	
Artemether	injection:	a	lipid-
soluble	derivative	of	artemisinin,	
recommended as one of the 
alternative	treatments	for	severe	
malaria	in	areas	without	artesu-
nate	injection;	(3)	ACTs:	include	
artemether/alcohol,	artesunate/
amodiaquine,	dihydroartemis-
inin/piperaquine	phosphate,	
artesunate/Norine,	artesunate-
mefloquine	and	artesunate-sulfa-
midoxine-pyrimethamine,	which	
shorten the course of artemisinin 
treatment	and	delay	the	develop-
ment	of	resistance.

Primaquine	phosphate rapidly	and	completely	
absorbed	orally,	with	a	
plasma	half-life	of	only	
5	to	6	h

intrahepatic 
stage, game-
tocyte stage

It is often used in combination 
with erythroid Plasmodium 
drugs	for	the	radical	treatment	of	
malaria	with	P. vivax and P. ovale 
infections.	In	the	falciparum	
endemic	zone,	a	single	dose	of	
low-dose	primaquine	phosphate	
has	also	been	recommended	in	
combination	with	ACTs	for	falci-
parum	therapy	and	is	not	affected	
by	G6PD	deficiency.

Table 3	 Antimalarial	drugs

ACT: artemisinin based combi-
nation therapy
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respiratory	failure,	anemia,	liver	and	kidney	function	injury	
et	 al.,	 antipyretic	 drugs,	 mannitol	 dehydration,	 sedation,	
sodium	bicarbonate	acid	correction,	diuresis,	blood	transfu-
sion,	 respiratory	 function	 support,	 and	 nutritional	 support	
are	 required.	 If	 necessary,	 blood	 purification,	 ventilator-
assisted	 support	 therapy,	 and	 antibiotics	 should	 also	 be	
given	in	time	[79].

7.3 Potential Novel Antimalarial Drug Candidates

However,	emerging	drug	resistance	has	prompted	an	urgent	
search	 for	new	antimalarial	drugs.	 It	has	been	shown	 that	
many	marine	natural	products,	such	as	paenidigyamycin	A,	
tedania	braziliensis,	ceratinadin	E,	have	strong	antimalarial	
effects,	but	their	clinical	application	is	limited	by	funding,	
experimental	 conditions	 and	 the	 amount	 of	 compounds	
[133].	 Selective	P. falciparum	 histone	 deacetylase	 inhibi-
tor	 is	also	an	emerging	potential	antimalarial	agent,	but	 it	
is	 still	 in	 the	 preclinical	 research	 stage	 due	 to	 its	 toxicity	
[134].	 Moreover,	 OZ439,	 DSM265	 or	 OZ439/DSM265	
combination	therapy	can	be	promising	alternatives	for	treat-
ing	 uncomplicated	 P. falciparum and P. vivax infections 
[135–137].	OZ439,	also	known	as	artefenomel,	 is	a	novel	
antimalarial	 drug	with	 a	mechanism	 similar	 to	 artesunate	
but	 with	 a	 longer	 half-life	 [137, 138].	 DSM265,	 another	

uncomplicated	P. vivax, P. ovale, and P. malariae obtained 
in	 chloroquine	 sensitive	 areas	 can	be	 treated	with	 chloro-
quine.	 Adults	 and	 children	 with	 uncomplicated	 P. vivax, 
P. ovale, P. malariae, and P. knowlesi	infections	should	be	
treated	 with	ACT	 containing	 piperaquine,	 mefloquine,	 or	
phenylfluorenol	(excluding	early	pregnancy)	[79].

7.2 Therapy of Severe Malaria

Severe	 malaria	 has	 a	 high	 mortality	 rate,	 which	 requires	
comprehensive	rescue	measures	of	both	etiology	and	symp-
tomatic	treatment,	and	timely	transfer	to	intensive	care	unit	
for	 treatment	when	 necessary.	Artesunate	 is	 the	 first	 drug	
and	 has	 been	 shown	 to	 significantly	 reduce	 mortality	 of	
severe	malaria.	Compared	with	quinine	(previous	first-line	
treatment),	the	mortality	of	children	in	Africa	was	decreased	
by	22.5%	(95%	CI:	8.1–36.9%)	after	Artesunate	treatment	
[132].	If	 there	is	no	artesunate	injection,	artemether	injec-
tion	can	be	used	intramuscularly.	It	is	important	to	note	that	
artemether	 is	 absorbed	more	 slowly	 and	 is	more	 unstable	
than	 water-soluble	 artesunate,	 especially	 in	 patients	 with	
shock.	 Intravenous	 infusion	 of	 pyronaridine	 phosphate	
also	 can	 be	 used	 for	 treatment.	The	 dosage	 and	 usage	 of	
above	drugs	are	shown	in	Table	4.	For	the	complications	of	
severe	malaria,	 such	as	high	 fever,	brain	edema,	acidosis,	

Drug Recommendation Route of 
administration

Specific	usage Note

Artesunate preferred treatment intravenous	
injection

adults:	0,	12	and	24	h	
each,	120	mg/time	
(2.4	mg/kg);	children	
with body mass <	20	kg:	
3	mg/kg,	once	a	day,	
120	mg/time	for	at	least	
7	days.

When the patient 
regains consciousness 
and restores to eat, the 
artesunate injection 
can be stopped and 
replaced	with	com-
pound artemisinin for 
1	course	of	treatment.	
The compound artemis-
inin	can	be	extended	
if	necessary	until	the	
parasites	disappear.

Artemether alternative	treatment intramuscular	
injection

adults:	the	first	dose	is	
160	mg,	followed	by	1	
dose/day,	80	mg/time,	
or	first	dose	3.2	mg/kg,	
later	1.6	mg/kg	for	at	
least	7	consecutive	days;	
children:	the	usual	injec-
tion	dose	is	similar	to	
that	for	adults	(calculated	
according	to	kg	of	body	
weight).

If	the	patient	is	awake	
and	able	to	eat,	at	least	
1 course of con-
solidation	therapy	with	
compound artemisinin 
can	be	taken	until	the	
parasites	disappear.

alternative	treatment intravenous	
infusion

adults:	once	a	day,	
160	mg/time,	for	3	con-
secutive	days;	children:	
the	usual	injection	dose	is	
similar	to	that	for	adults	
(calculated	according	to	
kg	of	body	weight).

Intravenous	injection	
is	strictly	prohibited.	
It	should	be	used	with	
caution in patients with 
serious	heart,	liver	and	
kidney	diseases.

Table 4	 Etiological	treatment	of	
severe	malaria
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9 Ongoing Malaria Challenges in African 
Countries

Although	 remarkable	 progress	 has	 been	 achieved	 in	 the	
fight	 against	malaria,	 the	 outbreak	 of	 COVID-19	 has	 led	
to	 a	 renewed	 increase	 in	malaria,	which	 remains	 a	major	
burden	of	disease	in	many	African	countries	[8].	It	should	
not	be	 ignored	 that	about	300,000	African	children	die	of	
malaria	each	year.	Following	challenges	need	to	be	actively	
addressed	to	control	the	malaria	pandemic	in	Africa.

9.1 Climate Change and Destruction of the Natural 
Environment

The	tropical	and	subtropical	climate	of	sub-Saharan	Africa	is	
suitable	for	the	ancient	malaria	vectors,	Anopheles gambiae.	
Therefore,	malaria	is	prone	to	outbreak	in	Africa.	Malaria	is	
low	transmissible	in	plateau	areas	due	to	low	temperatures	
[147].	However,	in	recent	years,	due	to	frequent	changes	in	
the	climate,	Africa	has	experienced	continuous	temperature	
rise,	accelerated	sea	level	rise	and	extreme	weather,	result-
ing	in	more	and	more	malaria	in	the	plateau	region	[148].	
Fortunately,	many	areas	are	being	monitored	as	quickly	as	
possible	 to	 control	 the	 outbreak	 of	malaria.	 Studies	 have	
confirmed	 that	 deforestation	 and	 other	 actions	 destroying	
the	 natural	 environment	 also	 promote	malaria.	Deforesta-
tion	expands	areas	of	sunny	and	stagnant	water,	increasing	
mosquito	larval	habitat	[149].	Anyway,	excessive	deforesta-
tion	is	undesirable	and	not	conducive	to	ecological	balance.

9.2 Poverty, Substandard Health Services and 
Coverage

On	 the	African	continent,	 there	 is	 a	vicious	cycle	of	pov-
erty	and	malaria	[150].	Housing	conditions	and	poor	living	
environments	 are	 factors	 of	 malaria	 exposure	 [151].	 Due	
to	the	low	level	of	economic	development	of	most	African	
countries,	health	services	and	coverage	are	substandard,	and	
the	population	has	limited	access	to	diagnostic	services	and	
effective	treatment.	Government	funding	for	vector	control,	
disease	diagnosis	and	surveillance	is	inadequate,	and	some	
areas	even	 rely	on	donations	 to	fight	malaria,	 resulting	 in	
persistently	high	morbidity	and	mortality	[152].	Poverty	is	
one	of	the	main	challenges	facing	malaria	in	Africa,	as	well	
as	the	survival	of	Africans.

9.3 Controlling Cross-border Malaria

Malaria	 is	 a	 regional	 problem,	 but	 not	 a	 country-specific	
one.	 Populations	 are	 constantly	 on	 the	 move,	 and	 areas	
with	 low	 transmission	 or	 eradication	 need	 to	 be	 mindful	
of	the	challenge	of	imported	malaria	from	areas	with	high	

novel	synthetic	antimalarial	drug,	kills	the	parasite	by	inhib-
iting Plasmodium dihydroorotate dehydrogenase, which is 
an important enzyme for pyrimidine biosynthesis in para-
sites	[135].	DSM265	is	a	single-dose	regimen	with	a	long	
elimination	half-life	(up	to	100	h)	and	satisfactory	tolerance	
[139].	Both	OZ439	and	DSM265	have	entered	the	clinical	
phase	2	studies	[138, 140].

8 The Progress Fight against Malaria in 
African Countries

Since	 the	 launch	 of	 the	 Repel	 Malaria	 Initiative	 and	 the	
United	 Nations	Millennium	 Development	 Goals	 (MDGs)	
in	 2000,	 international	 funding	 for	 malaria	 control	 in	 the	
sub-Saharan	continent	has	increased	nearly	20	times	[141, 
142].	 Subsequently,	 the	African	Leaders	Malaria	Alliance	
(ALMA)	 was	 established	 and	 declared	 25th	 of	 April	 as	
“Africa	Malaria	 Day”.	 Since	 that	 period,	 many	 advances	
of	malaria	control	have	been	achieved,	including	ACTs	for	
malaria	treatment,	rapid	diagnostic	of	malaria,	long-lasting	
insecticide	 treated	 nets	 (LLINs),	 and	 the	 development	 of	
vaccines.	Although	 the	 MDGs,	 set	 in	 2000	 to	 achieve	 a	
75%	reduction	in	malaria	incidence	in	Africa,	have	not	yet	
been	met,	the	results	have	been	remarkable.	From	2000	to	
2022,	 the	 rate	of	 falciparum	malaria	mortality	 in	 the	 sub-
Saharan	desert	continent	has	been	halved,	and	the	incidence	
of	malaria	with	significant	clinical	symptoms	has	decreased	
by	40%	[2].	It	means	that	about	663,000,000	clinical	cases	
have	been	prevented.	It	is	estimated	that	a	10%	decrease	in	
incidence	is	attributed	to	the	use	of	IRS,	22%	to	ACT	pro-
grams,	and	68%	was	associated	with	the	use	of	ITNs	[143].

Cooperation	 with	 other	 countries	 has	 also	 contributed	
significantly	to	malaria	control	and	elimination	in	Africa	and	
made	certain	achievements.	For	example,	China,	which	has	
achieved	zero	malaria,	has	carried	out	long-term	Sino-Afri-
can	medical	and	health	cooperation	in	the	field	of	malaria	
with	African	 countries,	 including	 sending	medical	 teams,	
carrying out training programs and joint drug research, 
donating	drugs	and	medical	equipment,	assisting	in	disease	
network	surveillance,	and	conducting	academic	exchanges	
[141, 144, 145].	With	the	85	rounds	of	1,7-malaria	Reactive	
Community-based	Testing	and	Response	(1,7-mRCTR),	the	
conduction	 of	 China-UK-Tanzania	 tripartite	 pilot	 project	
reduced	 the	 odds	 of	 malaria	 infection	 in	 the	 intervention	
wards	 in	 southern	 Tanzania	 by	 66%,	 which	 significantly	
eased	 the	 local	malaria	 burden	 [146].	These	 indicate	 that	
China’s	 systematic	model	and	 strategy	of	malaria	 surveil-
lance	 and	 response	 are	 worthy	 of	 reference	 for	 endemic	
countries	in	Africa.
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areas	 of	Africa,	 and	 even	Artemisinin	 resistance	 has	 also	
emerged	[158, 163, 164].	The	emergence	of	drug	resistance	
is	 closely	 related	 to	 the	 abuse	 of	 antimalarial	 drugs	 and	
the	 imperfect	 course	of	drug	 treatment	 [165].	 In	 addition,	
genetic mutation of Plasmodium	is	also	the	main	mechanism	
of	drug	resistance.	In	the	context	of	SMC,	there	are	several	
mutations in genes of P. falciparum	affecting	the	metabolism	
of	 sulfamidoxine-pyrimethamine	 and	 amodiquine,	 includ-
ing Pfcrt (Plasmodium falciparum	 chloroquine-resistant	
transporter),	 Pfmdr1	 (Plasmodium falciparum	 multidrug	
resistance	 1),	DHFR	 (dihydrofolate	 reductase)	 and	DHPS	
(dihydrosphenoate	synthetase)	genes	[166, 167].	And	Kelch	
13	 (K13)-propeller	 mutations	 were	 identified	 as	 a	 major	
determinant	of	artemisinin	resistance	[168].	Drug	resistance	
leads	 to	 poor	 efficacy	 of	 chemo-prevention	 and	 first-line	
drug	therapy.	Studies	have	shown	that	rotating	or	alternating	
the	use	of	antimalarial	drugs	could	reduce	resistance.	Alter-
natively,	drugs	with	different	resistance	characteristics	can	
be	deployed	in	parallel.	Boni	et	al.	[169] proposes a strategy 
of	“multiple	first-line	therapies”	to	maintain	the	efficacy	of	
therapeutic	 drugs.	Triple	ACTs,	 combining	 an	 artemisinin	
and	 two	 existing	 partner	 drugs,	 could	 be	 one	 of	 the	 last	
remaining	safe	and	effective	treatments	for	multidrug-resis-
tant P. falciparum.	 In	 addition,	 matching	 and	 combining	
long-acting	and	short-acting	partner	drugs	according	to	their	
pharmacokinetic	characteristics	is	also	a	potential	mean	to	
reduce	drug	resistance	[170, 171].	Governments,	research-
ers	and	clinicians	should	try	and	scale	up	these	novel	strate-
gies	to	address	drug-resistant	problem.

10 Conclusion

At	present,	malaria	remains	a	major	disease	burden	on	the	
African	continent,	especially	falciparum	malaria,	which	 is	
the	highly	 lethal.	With	 the	help	of	 the	 international	health	
organizations,	Africa	has	launched	a	series	of	effective	anti-
malaria	 measures,	 which	 have	 greatly	 reduced	 mortality	
and	morbidity	of	malaria	in	Africa.	However,	due	to	Afri-
ca’s	special	climate	and	poor	living	conditions,	population	
mobility,	 and	 increasing	 drug	 and	 insecticide	 resistances,	
fighting	 against	 malaria	 faces	many	 difficulties	 and	 chal-
lenges.	To	 achieve	MDGs	 of	 the	United	Nations,	African	
governments	 and	 even	 international	organizations	need	 to	
mobilize	more	funds	to	strengthen	basic	health	facilities	and	
services	 in	Africa,	 improve	 malaria	 detection,	 strengthen	
surveillance	 and	 treatment	 coverage,	 and	 advance	 drug	
and	vaccine	development.	There	is	a	need	for	African	gov-
ernments	 to	provide	 IRS	and	LLINs	 to	 all	 people	 at	 risk,	
especially	for	African	women	and	children.	Free	testing	and	
treatment	should	be	fully	available	for	pregnant	women	and	
children	infected.	For	external	travelers	and	aid	providers,	

transmission.	 Many	 neighboring	 countries	 have	 achieved	
mutual	benefit	and	win-win	results	through	cooperation,	like	
Lobamba	Spatial	Development	Initiative	between	Mozam-
bique,	South	Africa	and	Swaziland,	which	brings	an	80%	
reduction	in	malaria	prevalence	in	Mozambique	and	a	98%	
reduction	 in	South	Africa	and	Swaziland	 [153].	Similarly,	
the	implementation	of	the	MoSaSwa	(Mozambique,	SA	and	
Swaziland)	 initiative,	 the	Trans-Kunene	Malaria	 initiative	
and	the	Zim-Zam	initiative,	have	also	significantly	reduced	
the	 burden	 of	malaria	 in	 the	 participating	 countries	 [154, 
155].

9.4 Increased Outdoor Transmission and the 
Emergence of New Vectors

In	response	to	long-term	insecticide	pressure,	vectors	have	
changed	 their	 biological	 behavior	 and	bite	 hosts	 outdoors	
more	 and	 earlier	 to	 avoid	 exposure	 to	 pesticides	 [156].	
There	is	an	urgent	need	to	develop	effective	means	of	pre-
vention	against	outdoor	transmission.	The	Centres	for	Dis-
ease	Control	light	trap	and	the	human	decoy	trap	may	be	a	
good	method	for	outdoor	insect	trapping	and	surveys	[157].	
The	emergence	of	new	vectors	contributes	to	low	levels	of	
outdoor	transmission,	since	traditional	insecticidal	methods	
only	target	Anopheles gambiae (s.s),	An. arabiensis and An. 
funestus.	Researches	on	new	vectors	also	are	necessary	to	
carry	out.

9.5 Resistance to Antimalarial Drugs and 
Insecticides

One	 of	 the	 biggest	 threats	 to	 eliminating	 and	 eradicating	
malaria	is	the	emergence	of	insecticide	and	drug	resistances.	
Both	 the	malaria	 vectors	 and	 parasites	 have	 proved	 to	 be	
very	adaptable.	They	have	 rapidly	developed	mechanisms	
to	survive	and	multiply	in	the	presence	of	insecticides	and	
antimalarial	 drugs,	 including	 biological	 behavior	 changes	
and	genetic	mutations	[158].	Insecticide	resistance	is	wide-
spread	across	the	African	continent.	It	reduces	the	efficacy	of	
strategies	based	on	suppressing	vectors,	such	as	LLINs	and	
IRS	[159].	The	next-generation	ITNs	are	trying	to	popular-
ize	universally	to	change	the	status	quo.	Pirimiphos-methyl	
is	a	better	alternative	than	pyrethroids	for	IRS	in	areas	with	
widespread	of	pyrethroid	resistance	[160].	In	addition,	local	
insecticide	resistance	monitoring	may	be	necessary	to	select	
highly	sensitive	insecticides	prior	to	implementation	of	IRS	
[108].	There	are	also	studies	attempting	to	combine	ITN	and	
IRS	to	maximize	the	benefits	of	both	approaches	[159, 161].

Resistance	to	antimalarial	drugs	is	also	very	troublesome	
and	has	been	reported	in	almost	all	malarial	regions	[162].	
At	present,	the	failure	rate	of	chloroquine	and	sulfadoxine-
pyrimethamine	 in	malaria	 treatment	 is	 very	high	 in	many	
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free	testing	and	oral	prophylactic	drugs	also	should	be	avail-
able	 to	help	 control	 the	global	 spread	of	malaria.	China’s	
experience	in	eliminating	malaria	is	conducive	to	the	fight	
against	malaria	of	Africa,	and	it	is	necessary	to	continue	and	
deepen	 China-Africa	 cooperation.	 Our	 article	 systemati-
cally	 reviews	 the	epidemiology,	diagnosis,	prevention	and	
treatment,	 progress	 and	 challenges	 of	 malaria	 in	African	
countries,	with	a	view	to	helping	the	global	public	develop	
a	 comprehensive	 understanding	 of	 malaria	 in	Africa	 and	
promoting	the	elimination	of	malaria	in	Africa	and	even	the	
world.
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