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Abstract
Background Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), was varied in disease symptoms. We aim to explore the effect of host genetic factors and comorbidities on severe 
COVID-19 risk.
Methods A total of 20,320 COVID-19 patients in the UK Biobank cohort were included. Genome-wide association analy-
sis (GWAS) was used to identify host genetic factors in the progression of COVID-19 and a polygenic risk score (PRS) 
consisted of 86 SNPs was constructed to summarize genetic susceptibility. Colocalization analysis and Logistic regression 
model were used to assess the association of host genetic factors and comorbidities with COVID-19 severity. All cases were 
randomly split into training and validation set (1:1). Four algorithms were used to develop predictive models and predict 
COVID-19 severity. Demographic characteristics, comorbidities and PRS were included in the model to predict the risk of 
severe COVID-19. The area under the receiver operating characteristic curve (AUROC) was applied to assess the models’ 
performance.
Results We detected an association with rs73064425 at locus 3p21.31 reached the genome-wide level in GWAS (odds ratio: 
1.55, 95% confidence interval: 1.36–1.78). Colocalization analysis found that two genes (SLC6A20 and LZTFL1) may affect 
the progression of COVID-19. In the predictive model, logistic regression models were selected due to simplicity and high 
performance. Predictive model consisting of demographic characteristics, comorbidities and genetic factors could precisely 
predict the patient’s progression (AUROC = 82.1%, 95% CI 80.6–83.7%). Nearly 20% of severe COVID-19 events could be 
attributed to genetic risk.
Conclusion In this study, we identified two 3p21.31 genes as genetic susceptibility loci in patients with severe COVID-19. 
The predictive model includes demographic characteristics, comorbidities and genetic factors is useful to identify individuals 
who are predisposed to develop subsequent critical conditions among COVID-19 patients.
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LD  Linkage disequilibrium
OR  Odds ratio
PRS  Polygenic risk score
SARS-CoV-2  Severe acute respiratory syndrome corona-

virus 2

1 Introduction

Coronavirus disease 2019 (COVID-19), caused by the novel 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), has infected over 630 million people and resulted in 
6 million deaths as of 11 November 2022 [1]. Epidemiologi-
cal data and clinical records have shown high heterogeneity 
of COVID-19, with a wide spectrum of clinical symptoms 
varying from asymptomatic, mild to moderate, severe, and 
critical conditions [2, 3]. Although only a small proportion 
of cases with critical conditions (5%) [4], they will contrib-
ute to a considerable number of individuals at high risk of 
death due to the large number of infections in total. Mortal-
ity is primarily attributed to patients with severe and criti-
cal conditions, such as severe respiratory failure associated 
with interstitial pneumonia and acute respiratory distress 
syndrome [5]. Patients with severe COVID-19-related res-
piratory failure usually require prolonged mechanical ven-
tilatory support [6].

Although the pathogenesis of severe COVID-19 and 
related respiratory failure is unclear, previous studies have 
reported many key factors associated with COVID-19 sever-
ity, including demographic characteristics such as age, gen-
der, BMI, and socioeconomic status, and comorbidities 
such as chronic kidney disease, chronic lung disease, car-
diovascular disease, diabetes, and cancer [7–11]. Addition-
ally, a series of genome-wide association studies (GWASs) 
have demonstrated the crucial role of host genetic factors 
in modulating the risk of infection and disease severity [8, 
12–14], especially single nucleotide polymorphisms (SNPs) 
on immune-related genes, such as TLR7, IFNAR2, and 
IL10RB [15, 16]. These SNPs provided quantitative meas-
ures of genetic susceptibilities and contribute to population 
stratification. Based on the results of GWAS, polygenic risk 
scores (PRSs) could be calculated and applied to help iden-
tify individuals at high risk of specific diseases as the highly 
polygenic of genetic architecture [17].

However, there are limited studies considering the joint 
effect of genetic and non-genetic factors in predicting the 
severity of COVID-19. And most severe COVID-19-re-
lated GWASs used uninfected populations as control [14, 
16, 18, 19], which could not reflect the difference between 
severe and non-severe patients among those with infection. 
Therefore, in this study we sought to evaluate host genetic 
factors focusing on severe COVID-19, to explore the asso-
ciation of comorbidities and COVID-19 severity, and to 

predict individual predisposition for adverse prognosis after 
infection.

2  Methods

2.1  Study Population

We include individuals with COVID-19 based on UK 
Biobank (UKB) study, a large prospective cohort study 
involving over 0.5 million participants aged 40 to 69 
between 2006 and 2010 with comprehensive phenotyping 
and genomic data. Details of the design and method of UKB 
have been described previously [20]. The flowchart of the 
selection of study samples was shown in Fig. 1. Briefly, we 
involve all COVID-19 cases that passed the GWAS quality 
control procedure with Caucasian ethnic backgrounds.

2.2  Definition of Outcome

COVID-19 cases were identified according to qPCR testing 
or the International Classification of Diseases, Tenth Revi-
sion (ICD-10) for COVID-19-related diagnoses. We defined 
individuals who met any of the following criteria as COVID-
19 cases [14]: (1) a positive qPCR for SARS-CoV-2; (2) 
COVID-19-related inpatient diagnosis (ICD-10: U071, U072 
and U073 in variable ‘diag_icd10’ in table ‘hesin_diag’); (3) 
COVID-19 related death (ICD-10: U071, U072 and U073 in 
variable ‘cause_icd10’ in table ‘death_cause’). Based on the 
above criteria, severe cases need to fulfill additional criteria: 
(1) respiratory support in the hospital (ICD-10: Z998); (2) 
respiratory support during operation (ICD-10: E85, E87, 
E89, X56, and X58); (3) COVID-19 related death (ICD-10: 
U071, U072 and U073).

2.3  Demographic Characteristics and Comorbidities

We evaluated participants’ demographic characteristics 
and comorbidities. Considering the influence of eco-
nomic status on health care and the severity of COVID-
19, average annual household income assessed at recruit-
ment was involved as a covariate and categorized into five 
groups: < £18,000, £18,000–30,999, £31,000–51,999, 
£52,000–100,000 and > £100,000. We introduced the 
Charlson Comorbidity Index (CCI) to account for indi-
viduals’ comorbidities before COVID-19 onset [21, 22]. 
Chronic diseases in cerebrovascular, cardiac, pulmonary, 
hepatic and renal, as well as diseases affecting systemic 
function such as diabetes, paraplegia, dementia, malig-
nancy and AIDS were included in CCI. Details about 
components of CCI were shown in supplement Table S1. 
The conditions in CCI were confirmed ICD-10 in the 
UK Biobank inpatient hospital data. All conditions were 
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diagnosed before Jan 1, 2020, when COVID-19 began. The 
distribution of CCI for each participant was shown in Fig 
S1. We defined individuals with no more than one mild 
comorbidity (CCI score ≤ 1) as the low CCI group, and 
participants with a CCI score > 1 as the high CCI group, 
which indicates the individual had at least one severe 
comorbidity. Other characteristics such as age, gender and 
BMI were assessed at recruitment as described in previ-
ous studies [20]. Individuals with missing values in age or 
gender were excluded from our analysis. Missing values in 

other covariates (proportions range from 2.5 to 11%) were 
imputed with median value.

2.4  Genetic Association Analyses for Severe 
COVID‑19

Genotyping data in the UK Biobank were derived from the 
GWAS chip (Affymetrix UK BiLEVE and UK Biobank 
Axiom arrays) using blood samples collected at baseline for 
each participant. These genotyping data were imputed using 

Fig. 1  The flowchart for the selection of study participants from the UK Biobank cohort
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reference panels of the Haplotype Reference Consortium, or 
UK10K, and 1000 Genomes Project phase 3 [23]. We then 
applied filters to achieve high-quality variants with (1) INFO 
score (information metric)  ≥ 0.5; (2) call rate  ≥ 99%; (3) 
minor allele frequency (MAF)  ≥ 1%; (4) Hardy–Weinberg 
equilibrium (HWE) ≥ 1 ×  10–6. We further excluded variants 
in the MHC region (chr6 25-35 Mb) due to extensive link-
age disequilibrium (LD). The final set of data contained a 
total number of 8,378,356 variants. Firth logistic regression 
test was implemented in PLINK (version 1.9) to test the 
association of single nucleotide polymorphisms (SNPs) and 
phenotype [24, 25]. Age, gender, genotyping array and first 
10 principal components (PCs) were adjusted for population 
heterogeneity in the multi-variable regressions. We addition-
ally performed a GWAS in participants low CCI group, each 
severe COVID-19 patient was matched with four non-severe 
COVID-19 control by gender and age, that’s 3,860 partici-
pants in total (772 cases and 3,088 controls).

Independent significant SNPs were extracted when 
their P-values reach genome-wide significant threshold 
(P ≤ 5.0 ×  10–8) and in low LD (r2 < 0.4) with other SNPs 
within a 500-Kb window. Lead SNPs were identified as a 
subset of the independent significant SNPs with the lowest 
P-values and were in LD with each other at r2 < 0.1 within 
a 1-Mb window.

2.5  Colocalization of cis‑eQTL and COVID‑19 GWAS 
Signals

Since cis-regulation of gene expression is a common path-
way for genetic variation to affect complex diseases [26], 
expression trait loci (eQTL) mapping could be used to iden-
tify candidate genes for traits or diseases of interest [27]. To 
explore the association between COVID-19 GWAS signals 
and gene expression, we performed a colocalization analysis 
of cis-eQTL and COVID-19 GWAS signals. eQTL data were 
obtained from the GTEx Portal [28], including all SNP-gene 
association tests, either significant or non-significant in all 
GTEx V8 tissues of 838 post-mortem donors and gene-level 
information. For the COVID-19 GWAS significant signals 
(P ≤ 5.0 ×  10–8), we expanded each variant’s position to 
a special locus by 500 kb upstream and downstream and 
located functional genes in this region.

We used the colocalization method in ‘Coloc’ (version 
5.1.0) to evaluate the probability that the same signal can 
both modify the risk of severe COVID-19 and affect the 
expression level of a specific gene [29, 30]. ‘Coloc’ uses 
estimated approximate Bayes factors from summary associa-
tion data to compute posterior probabilities (PPH4) assum-
ing one causal variant per trait [31]. Colocalization was per-
formed between genes’ cis-eQTL signals in each of 49 GTEx 
tissues and COVID-19 severity GWAS to find the candidate 

causal variants [29]. In the present study, PPH4 over 0.75 
were considered as strong evidence for colocalization.

2.6  Polygenetic Risk Score

For the calculation of PRS, we selected COVID-19 sever-
ity-related meta-GWAS summary published by HGI (A2 
leave 23andme and UKBB, Release V7) to avoid possible 
overfitting [32]. Only biallelic SNPs with MAF > 5% were 
included in the PRS analysis. We derived independent SNPs 
(r2 < 0.1 within a 1-Mb window) associated with COVID-19 
severity based on GWAS summary statistics at different P 
value threshold (5 ×  10–15, 5 ×  10–10, 5 ×  10–7, 1 ×  10–5, 0.001, 
0.05). For each participant, PRS was calculated as the sum 
of risk alleles present at each locus, weighted by the odds 
ratio. We used Nagelkerke’s  R2 and the number of SNPs 
for constructing PRS to select the most appropriate thresh-
old via PRSice-2 (version 2.3.5) [33, 34]. The best-fitted 
PRS were applied as an indicator of genetic risks for severe 
COVID-19 in the following analysis. PRS was classified into 
low (bottom 50%) and high (top 50%) groups according to 
the quantile of PRS scores.

2.7  Statistical Analysis

Characteristics of participants were described as means 
(standard deviations) or frequencies (percentages) in severe 
COVID-19 and non-severe COVID-19 patients. Associa-
tions of covariates and PRS with COVID-19 severity were 
analyzed in the logistic model. Genome-association analysis 
was performed in Plink adjusted with age, gender, genotyp-
ing array and first 10 PCs. Considering the potential con-
founding of commodities and age, we further assessed the 
association of lead SNPs with comorbidities and age in a 
multivariate logistic model.

All COVID-19 patients were randomly split into a train 
set and validation set (1:1). Setting severe COVID-19 as 
an outcome, we constructed predictive models using four 
different machine learning methods [Logistic regression, 
random forest, partial least squares (PLS) regression, and 
bagged flexible discriminant analysis (FDA)] [35–37]. Age, 
gender, income, BMI, CCI and PRS were involved as predic-
tors in constructing the model. Ten-fold cross validation and 
the areas under the receiver operating characteristic curves 
(AUROCs) were used to measure the models’ performance 
in training set. The best-fit models in the training set were 
applied and validated in the validation set. AUROC, sensi-
tivity and specificity were used to assess the performance 
of the model. The basic prediction model was constructed 
using age, gender, income as predictors, and other risk fac-
tors (BMI, CCI, and PRS) were added to the model, respec-
tively. And a full model including all predictors above was 
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constructed. All analyses were performed with R (version 
4.2.0) software and ‘caret’ package.

3  Results

3.1  Study Participants

A total of 20,320 individuals who were confirmed with 
COVID-19 between Feb 21, 2020 and Mar 18, 2021, aged 
50–83 years, were included in our analysis (Table 1). Of 
these, 1287 (6.33%) participants were identified as severe 
COVID-19 if COVID-19-related respiratory support or 
death occurred. The demographic characteristics and comor-
bidities were significantly different between severe and non-
severe COVID-19 patients. Specifically, severe cases were 
more likely to be man, elder, with high BMI, low income, 
and high CCI. Age group over 80 had the highest odds ratio 
(OR = 21.8, 95%CI 16.8–28.2) in severe COVID-19 com-
pared to non-severe cases, suggesting that age might play an 
important role in disease progression. We further compared 
the distribution of each item in constructing CCI and found 
all but AIDS diagnosed prior to COVID-19 were associated 
with severity (Table 2). Among the comorbidities, chronic 
pulmonary disease was the most common (22.1%) comor-
bidity among severe patients, followed by diabetes (19.7%). 

The details of the effect for each type of comorbidity could 
be found in Table 2. In short, CCI scores were a good repre-
sentation of the underlying health status of the population, 
and individuals with more comorbidities had a higher risk of 
severe COVID-19. We categorized participants into low-CCI 
(CCI ≤ 1) and high-CCI (CCI > 1) groups, mainly consider-
ing the distribution and clinical practice (Fig S1).

3.2  Genome‑Wide Association Analysis of Severe 
COVID‑19

We performed GWAS of severe COVID-19 using 1,287 
participants with severe COVID-19 and 19,033 partici-
pants with non-severe COVID-19 in the dataset of the 
UK Biobank study. Only one lead SNP, rs73064425 was 
found to be associated with COVID-19 severity at a sig-
nificance level of P < 5 ×  10–8 (Fig. 2A). Genomic infla-
tion factor (λGC) was estimated as 1.01, suggesting the 
well control of GWAS quality and no substantial impact 
of systematic inflation (Fig. 2B) [38]. We additionally 
added CCI into a logistic model for the lead SNPs to 
adjust the potential confounding of critical illness and the 
results remained robust. The most significant signal was 
rs73064425 T/C (OR = 1.55, 95%CI 1.36–1.78) at locus 
3p21.31. Then, independent significant SNP was annotated 
with resided or nearby functional genes in upstream and 

Table 1  Demographic 
characteristics and 
comorbidities of patients with 
COVID-19

SD standard deviation, CI confidence interval, IQR interquartile range, BMI Body mass index, CCI Charl-
son Comorbidity Index
*Logistic regression model was used to estimate the effect and P value of each factor

Characteristics Non-severe COVID-19 Severe COVID-19 Odds Ratio (95%CI)* P  Value*

(N = 19,033) (N = 1,287)

Gender (n, %)
 Female 10,212 (43.7) 450 (35.0) Reference
 Male 8,821 (46.3) 837 (65.0) 2.15 (1.91,2.42)  < 0.001

Age (mean ± SD) 65.13 ± 8.26 73.24 ± 6.97 1.14 (1.13,1.15)  < 0.001
Age group (n, %)
 50 ~ 60 5,997 (31.5) 87 (6.8) Reference
 60 ~ 70 6,618 (34.8) 224 (17.4) 2.33 (1.82,3.00)  < 0.001
 70 ~ 80 5,715 (30.0) 754 (58.6) 9.09 (7.26,11.4)  < 0.001
 Over 80 703 (3.7) 222 (17.2) 21.8 (16.8,28.2)  < 0.001

BMI (mean ± SD) 27.81 ± 4.77 30.12 ± 5.83 1.08 (1.07,1.10)  < 0.001
Income
  < 18,000 2,986 (15.7) 437 (34.3) Reference
  ~ 30,999 4,001 (21.0) 291 (22.6) 0.50 (0.42,0.58)  < 0.001
  ~ 51,999 7,222 (37.9) 426 (33.1) 0.40 (0.35,0.46)  < 0.001
  ~ 100,000 3,887 (20.4) 110 (8.5) 0.19 (0.16,0.24)  < 0.001
  > 100,000 937 (4.7) 23 (1.8) 0.17 (0.11,0.25)  < 0.001

CCI group (n, %)
 Low 16,723 (87.9) 772 (60.0) Reference
 High 2,310 (12.1) 515 (40.0) 4.83 (4.28,5.44)  < 0.001
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downstream ± 500 Kb regions. The most significant SNP 
rs73064425 was found located at a region comprising six 
genes, SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6, and 
XCR1 (Fig. 3). Further, the association between lead SNP 
(rs73064425) with age and comorbidities were assessed in 
the multivariate logistic regression model. No significant 
association was observed between all comorbidities in CCI 
and rs73064425, except cerebrovascular disease (P = 0.03, 
Table 3). We performed stratified analysis according to 
rs73064425 to assess the association between CCI and 
COVID-19 severity among different strata, finding that 

the associations were consistent with the wild (Genotype 
CC) and mutant (Genotype CT/TT) group (Table S2).

Matched GWAS in the low CCI group found only one 
lead SNP rs71325088 at locus 3p21.31, in high LD with 
rs73064425 (P = 2.61 ×  10–8, r2 = 0.99), reached a genome-
association significant level of P < 5 ×  10–8 (Fig. 4).

Table 2  The association of CCI components and severe COVID-19 in a multivariate logistic regression model

Abbr Abbreviation, OR odds ratio, CI confidence interval
*P value and OR were estimated in the logistic regression model, adjusted for age, sex, income, and BMI

Diseases (Abbr. %) All COVID-19 
cases (N = 20,320)

Non-severe COVID-
19 (N = 19,033)

Severe COVID-
19 (N = 1,287)

OR (95% CI)* P-Value*

Myocardial infarction (MI, %) 663 (3.3%) 523 (2.7%) 140 (10.9%) 4.32 (3.55, 5.25)  < 0.001
Congestive heart-failure (CHF, %) 309 (1.5%) 208 (1.1%) 101 (7.8%) 7.71 (6.03, 9.85)  < 0.001
Peripheral vascular disease (PVD, %) 418 (2.1%) 303 (1.6%) 115 (8.9%) 6.07 (4.85, 7.58)  < 0.001
Cerebrovascular disease (CVD, %) 585 (2.9%) 434 (2.3%) 151 (11.7%) 5.70 (4.69, 6.92)  < 0.001
Dementia (%) 120 (0.6%) 79 (0.4%) 41 (3.2%) 7.85 (5.39, 11.56)  < 0.001
Chronic pulmonary disease (CPD, %) 2,040 (10.0%) 1,755 (9.2%) 285 (22.1%) 2.80 (2.43, 3.22)  < 0.001
Rheumatic diseases (Rh, %) 356 (1.8%) 289 (1.5%) 67 (5.2%) 3.56 (2.71, 4.68)  < 0.001
Peptic ulcer disease (PUD, %) 423 (2.1%) 361 (1.9%) 62 (4.8%) 2.62 (1.99, 3.45)  < 0.001
Mild liver disease (MLD, %) 326 (1.6%) 257 (1.4%) 69 (5.4%) 4.14 (3.15, 5.43)  < 0.001
Diabetes (DM, %) 1,149 (5.7%) 895 (4.7%) 254 (19.7%) 4.98 (4.28, 5.81)  < 0.001
Hemiplegia/Paraplegia 144 (0.7%) 103 (0.5%) 41 (3.2%) 6.05 (4.19, 8.72)  < 0.001
Moderate or severe renal disease (SRD, %) 356 (1.8%) 242 (1.3%) 114 (8.9%) 7.55 (5.99, 9.50)  < 0.001
Diabetes with end-organ damage (DMD, %) 115 (0.6%) 73 (0.4%) 42 (3.3%) 8.76 (5.97, 12.86)  < 0.001
Any malignant tumor (MT, %) 1,387 (6.8%) 1,214 (6.4%) 173 (13.4%) 2.28 (1.92, 2.70)  < 0.001
Moderate or severe liver disease (SLD, %) 46 (0.2%) 29 (0.2%) 17 (1.3%) 8.77 (4.81, 16.01)  < 0.001
Metastatic solid tumor (ST, %) 206 (1.0%) 175 (0.9%) 31 (2.4%) 2.66 (1.81, 3.91)  < 0.001
AIDS/HIV 11 (0.1%) 9 (0.0%) 2 (0.2%) 3.29 (0.71, 15.24) 0.128

Fig. 2  Result of Genome-wide association study on COVID-19 severity in UK Biobank cohort. A: Manhattan plot of severe COVID-19 GWAS 
highlighting susceptibility locus; B: Q-Q plot for severe COVID-19 GWAS
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3.3  Colocalization of cis‑eQTL and COVID‑19 GWAS 
Signals

Then, colocalization analysis was performed between 
cis-eQTL signals of each gene in 49 tissues in the GTEx 
database and COVID-19 GWAS summary data to explore 
the association of gene expression and the variants using 
Coloc. rs73064425, associated with COVID-19 sever-
ity, was found to be colocalized with eQTLs for two 
genes, SLC6A20 and LZTFL1, with a posterior probabil-
ity > 0.75. The eQTL signals of rs73064425 presented in 
four different tissues, including breast, esophagus mus-
cularis, skeletal muscle, tibial nerve, for gene SLC6A20 
(Fig.  5), and present in testis only for gene LZTFL1 
(Table S3). The posterior probability of each SNP was 
calculated to determine the causal variant assuming one 
causal variant per trait in Coloc. The variant with the high-
est likelihood of causality was rs73064425, and all other 
SNPs with posterior probability over 0.75 were in high LD 
(r2 > 0.8) with rs73064425. Full results could be found in 
Supplement Fig S2.

3.4  Polygenetic Risk Score and Predictive Model 
Construction

Considering the R2 and number of SNPs, we select P value 
threshold 5 ×  10–7 to construct PRS including 86 independ-
ent SNPs (Table S4, Table S5). We divided the individuals 
into two groups by the low (bottom 50%) and high (top 50%) 
PRS risk group (Fig S3) and predicted the prognosis in a 
multivariable logistic regression model. The result shows 
that individuals with high genetic risk had a higher risk 
(OR = 1.57, 95%CI 1.32–1.87) of developing severe COVID-
19 than the low genetic risk group (Table S6) adjusted for 
age, gender, income, BMI, CCI, and first 10 PCs.

Then, we constructed a predictive model for COVID-19 
severity by involving demographic characteristics, comor-
bidities and PRS as predictors in the training set using 
four machine learning methods (Logistic regression, ran-
dom forest, bagging FDA, and PLS). AUROC were close 
between different algorithms, ranging from 76.6 to 82.4% 
for the full model in the training set (Table S7). In the 
validation set, the logistic regression model was selected 

Fig. 3  Locus zoom plot of rs733064425 locus (3p21.31) with 500-kb flanking region surrounding the lead SNP (rs733064425)
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to report considering its simplicity and high performance. 
AUROC of the basic model including sex, age, and income 
reached 78.9% (Fig. 6, Table 4). The PRS could improve 

the AUROC by 0.3%, while the largest improvement to the 
model was the inclusion of CCI (AUROC = 80.7%, 95%CI 
79.0–82.3%). The full model achieved the highest predic-
tive power (AUROC = 82.1%, 95%CI 80.6–83.7%). We also 
calculated the population attributable fraction (PAF) [39], 
an estimate of the proportion of events that theoretically 
would not have occurred if all individuals would have been 
in the low-PRS and low-CCI group. Genetic was estimated 
to explain 18.2% (95% CI 13.3–23.2%) of the population’s 
risk of developing severe COVID-19, suggesting nearly 20% 
of events would have been prevented if all individuals were 
at low genetic risk. The contribution of comorbidities to the 
risk of severe COVID-19 was comparable to genetics, with 
the PAF estimated as 21.4% (95% CI 18.1–24.7%). And 
39.7% (95% CI 34.0–45.5%) severe cases would not have 
occurred if all infected people were free of comorbidities 
and in low genetic risk.

4  Discussion

In this study, we assessed the effect of different factors on 
the risk of severe COVID-19 by comparing the difference 
in demographic characteristics and comorbidities between 
the severe case and non-severe case groups. Similar to pre-
vious studies [4, 11, 40–42], we found that elder, male, 
low economic status, high BMI, and comorbidities were 
risk factors for COVID-19 severity. In the GWAS analysis, 
we find one independent genetic association (rs73064425) 
with severe COVID-19. Furthermore, rs73064425 located 
at 3p21.31 was found to affect the cis-regulation expression 

Table 3  Association between rs73064425 with age and comorbidities 
included in CCI

* Odds ratio and P value were estimated in the logistic regression 
model, adjusted for age, gender, income, BMI, and genotype batch

Outcome OR* 95%CI P  Value*

Age 0.98 0.71–1.35 0.90
Myocardial infarction (MI, %) 0.98 0.79–1.22 0.86
Congestive heart-failure (CHF, %) 1.11 0.82–1.50 0.48
Peripheral vascular disease (PVD, %) 1.12 0.87–1.45 0.38
Cerebrovascular disease (CVD, %) 0.75 0.58–0.97 0.03
Dementia (%) 1.09 0.68–1.78 0.71
Chronic pulmonary disease (CPD, %) 1.06 0.93–1.20 0.36
Rheumatic diseases (Rh, %) 0.97 0.72–1.31 0.86
Peptic ulcer disease (PUD, %) 0.90 0.68–1.19 0.47
Mild liver disease (MLD, %) 0.90 0.66–1.24 0.53
Diabetes (DM, %) 0.91 0.77–1.08 0.29
Hemiplegia / Paraplegia 1.12 0.72–1.73 0.61
Moderate or severe renal disease (SRD, 

%)
1.16 0.88–1.52 0.30

Diabetes with end-organ damage 
(DMD, %)

0.81 0.46–1.41 0.45

Any malignant tumor (MT, %) 0.95 0.82–1.11 0.54
Moderate or severe liver disease (SLD, 

%)
1.29 0.62–2.67 0.49

Metastatic solid tumor (ST, %) 0.95 0.64–1.41 0.79
AIDS/HIV 2.15 0.63–7.31 0.22

Fig. 4  Result of Genome-wide association study in low CCI group matched by gender and age. (Lead SNP rs71325088 was in high LD with 
rs73064425, r.2 = 0.99)
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of two genes (LZTFL1 and SLC6A20) in the colocalization 
analysis. Additionally, we performed a GWAS in low-CCI 
participants matched by gender and age and found consistent 
results as above.

The main difference between the present study and previ-
ous COVID-19-related GWAS studies is the selection of the 
control, where we chose the non-severe COVID-19 cases 
as the control, while most previous studies used the SARS-
CoV-2 negative or unknown population as the controls 
[14, 16, 18, 19]. Thus, the loci found in this study actually 
reflected the risk of severe illness after infection, while by 
contrasting to generally SARS-CoV-2 negatives, the results 
were a mixture of susceptible loci for both infection and 
prognosis. This also partly explains that the previously pub-
lished locus using UKB data was not fully replicated in our 
study.

Age played an important role in developing severe 
COVID-19 in our analysis, with the highest odds ratio 
in over 80 years group compared to the 50 ~ 60 group. A 

large-scale study found that the median age of patients who 
died from COVID-19 was 79 years old [43]. Male patients 
had 1.15-fold more risk progressed to severe disease than 
female, which may mainly due to gender-special behaviors, 
genetic and hormonal factors as Tu et al. [44] reported. Simi-
lar to the results 7 of other studies, comorbidities such as 
diabetes, liver disease and malignancy predispose to poor 
prognosis in patients with COVID-19 [7–11]. To assess the 
interaction between a genetic variant with age and comor-
bidities on COVID-19 severity, we performed association 
and stratification analysis, finding no significant interaction 
between them.

Downes et al. [45] found that leucine zipper transcription 
factors 1 (LZTFL1) can regulate epithelial-mesenchymal 
transition (EMT) related signaling and they identified lung 
epithelial cells undergoing EMT in lung tissue as a possible 
cause of susceptibility to severe COVID-19 associated with 
3p21.31. Another potentially causal gene is SLC6A20 that 
may be responsible for the increased risk of poor prognosis. 

Fig. 5  Colocalization of SLC6A20 gene expression and GWAS result in Esophagus Muscularis tissue. A: Scatterplot of GWAS P-Value and 
eQTL P-Value for shared variants; B, C: variants in LD with the lead SNP rs73064425
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It encodes the sodium–imino acid (proline) transporter 1 
(SIT1), which functions as a proline transporter expressed 
in the kidney and small intestine [46]. Raphael et al. [47] 
found that SIT1functionally interacts with angiotensin-con-
verting enzyme 2 (ACE2), which has been demonstrated 
in many studies to be a receptor on the surface of SARS-
CoV-2 invading cells [14, 48–51]. SLC6A20 was found to 
be affected by rs73064425 in esophagus tissue, where the 

ACE2 was expressed [52]. Other tissues such as skeletal 
muscle and tibial nerve were associated with symptoms sub-
sequent to SARS-Cov-2 infection [53, 54], which may be the 
mechanism responsible for severe COVID-19.

Meanwhile, we can assume that rs73064425 and its 
related gene (LZTFL1, SLC6A20) are playing an important 
role in both susceptibility and severe disease since this is a 
common locus in both types of studies that utilizing different 
sources of controls.

In the present study, we constructed a polygenic risk score 
representing an individual genetic risk for severe COVID-19 
based on GWAS summary data from a prior study. In line 
with previous studies [14], our study suggested that higher 
genetic risk increases the risk of adverse outcomes. The PRS 
would help stratifying the population into subgroups with 
different risk levels to alert clinical and individual decision-
making in advance.

Furthermore, we developed predictive models based on 
multiple risk factors of both genetic and non-genetic iden-
tified in our study to assess the risk of developing critical 
illness after being infected with SARS-CoV-2 and validated 
it in the internal validation set. Four different algorithms 

Fig. 6  Prediction of risk of severe disease among cases with COVID-19 in the UK Biobank cohort based on demographic characteristics, 
comorbidities, and host genetic factors

Table 4  The performance of predictive models in validation set

*Basic model were constructed with age, gender, and income as pre-
dictors

Models Variables AUROC Sensitivity Specificity

Logistic regres-
sion

Basic  model* 0.789 0.779 0.665

 + BMI 0.805 0.779 0.679
 + CCI 0.807 0.710 0.756
 + PRS 0.792 0.776 0.679
All except PRS 0.818 0.737 0.747
Full Model 0.821 0.768 0.722
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were applied to develop the predictive models. The final 
model (logistic regression) is simple with easily assessable 
variables and highly interpretable. The results showed that 
the predictive model including demographic characteris-
tics (age, gender, BMI, and income), comorbidities (CCI) 
and genetic risk (PRS) could well identify people at high 
risk of severe COVID-19 with an AUROC of 82.1%, which 
was comparable with previous models [14, 55]. Genetic 
and comorbidities contributed 18.2% and 21.4% to severe 
COVID-19 risk, emphasizing that COVID-19 patients with 
high genetic risk and underlying disease should be taken 
more care of in clinical practice to deal with disease progres-
sion in advance.

4.1  Strength and Limitation

The main strengths of our present study compared with prior 
studies are that we focus on the influence of host genetic 
factors on COVID-19 severity rather than incidence because 
as a communicable disease, pathogenic infections are one of 
the key factors in disease progression. And we further ana-
lyse the potential interaction of genetic variant and comor-
bidities on COVID-19 severity. In addition, we develop a 
predictive model with AUROC as high as 80% using only six 
easily assessable variables, which could be used in clinical 
practice. Our study also has a few limitations though. First, 
all COVID-19 patients in our study were over 50, which may 
limit the generalization of the study conclusions in young 
patients. Second, although the known potential confounders 
were adjusted in our analysis, it is possible that unmeasured 
confounders and bias remained, such as vaccination and 
virus strains. Third, most participants in the UK Biobank 
cohort were unknown of the SARS-CoV-2 test, which may 
influence the prevalence of severe COVID-19 and underes-
timate the effect of risk factors.

5  Conclusion

In this study, rs73064425 and its two colocalized genes, 
LZTFL1 and SLC6A20 were found to be associated with 
COVID-19 severity. The logistic regression model was 
developed to predict prognosis of COVID-19 patients early 
and could be used in clinical practice. Our findings demon-
strate the need for clinical care of patients with comorbidities 
and high genetic risks. From the public health perspective, 
prevention should be enhanced in the elderly and in people 
with underlying diseases and high genetic risks, who often 
suffer critical conditions after infection. More researches are 
needed to explore the mechanism of comorbidities on the 
risk of severe COVID-19 in the future, especially in people 
with high genetic risk.
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