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Abstract
Eswatini is on the brink of malaria elimination and had however, had to shift its target year to eliminate malaria on several 
occasions since 2015 as the country struggled to achieve its zero malaria goal. We conducted a Bayesian geostatistical 
modeling study using malaria case data. A Bayesian distributed lags model (DLM) was implemented to assess the effects 
of seasonality on cases. A second Bayesian model based on polynomial distributed lags was implemented on the dataset to 
improve understanding of the lag effect of environmental factors on cases. Results showed that malaria increased during the 
dry season with proportion 0.051 compared to the rainy season with proportion 0.047 while rainfall of the preceding month 
(Lag2) had negative effect on malaria as it decreased by proportion − 0.25 (BCI: − 0.46, − 0.05). Night temperatures of the 
preceding first and second month were significantly associated with increased malaria in the following proportions: at Lag1 
0.53 (BCI: 0.23, 0.84) and at Lag2 0.26 (BCI: 0.01, 0.51). Seasonality was an important predictor of malaria with proportion 
0.72 (BCI: 0.40, 0.98). High malaria rates were identified for the months of July to October, moderate rates in the months of 
November to February and low rates in the months of March to June. The maps produced support-targeted malaria control 
interventions. The Bayesian geostatistical models could be extended for short-term and long-term forecasting of malaria 
supporting-targeted response both in space and time for effective elimination.

Keywords  Malaria · Bayesian modeling · Geostatistics · Distributed lag model · Eswatini

Abbreviations
ADDS	� Africa data dissemination service
ASTER	� Advanced spaceborne thermal emission and 

reflection radiometer
BCI	� Bayesian credible interval
DEM	� Digital elevation model
DLM	� Distributed lag model
EA	� Enumeration area
FEWS	� Famine early warning systems
LST	� Land surface temperature
MCMC	� Markov chain Monte Carlo
MODIS	� Moderate resolution imaging spectroradiometer
NDVI	� Normalized difference vegetation index
NMP	� National malaria programme
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1  Introduction

Malaria transmission has until recently continued to decline 
in Southern Africa thus encouraging national control pro-
grams in the region to focus on elimination [1, 2]. However 
due to disruptions during the COVID-19 pandemic, the 
World Health Organization (WHO) globally reported 241 
million cases in 2020, a slight increase from those reported 
in 2019 which stood at 227 million. A total of 627 000 
deaths were attributed to malaria in 2020 compared to about 
558 000 in 2019 [3]. About 93% of these cases and deaths 
occur in sub-Saharan Africa. Interestingly, in the same year 
2020, about 26 countries reported fewer than 100 indigenous 
cases of the disease, an increase from 6 countries in 2000. To 
be eligible for WHO certification as malaria free, countries 
must achieve at least 3 consecutive years of zero indigenous 
cases. Since 2015, about 9 countries have been certified by 
the WHO Director-General as malaria-free and they include 
Maldives (2015), Sri Lanka (2016), Kyrgyzstan (2016), Par-
aguay (2018), Uzbekistan (2018), Argentina (2019), Algeria 
(2019), China (2021) and El Salvador (2021) [4].
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Eswatini (formerly known by its English name as Swazi-
land), is a country on the brink of elimination and had how-
ever had to shift its target year on several occasions since 
2015 due to persistent cases that continued to be reported 
albeit sporadic in some parts of the country. Ever since 
2015, the country had been setting new targets each year 
as it struggled to maintain zero cases. Recently, in 2019, 
Eswatini launched a domestic malaria fund to strengthen 
efforts towards its elimination initiative (Eswatini Gov-
ernment, 2019). Reaching and maintaining zero cases had 
been a challenge for most countries including Eswatini [5]. 
Eswatini with a population of 1.16 million had seen a fluc-
tuation in malaria cases with a high degree of uncertainty 
as there were 460 cases in 2012 and rising to a peak of 1198 
cases in 2017 while 693 were reported in 2019 [6].

Indeed, with recent domestic funding initiatives the coun-
try has demonstrated its political will to unrelentingly push 
towards malaria elimination. Such political will requires 
scientific evidence to guide the path towards elimination in 
terms of both the necessary strategies and tools [7]. Con-
sequently, strong surveillance and sustained control inter-
vention strategies are needed in the critical phase prior to 
elimination [8, 9]. Bayesian geostatistical models using envi-
ronmental covariates had been applied in malaria mapping 
in various endemic settings and countries [10–13]. In addi-
tion, distributed lag models (DLMs) are ideal for estimating 
epidemic build-up whereby certain weather conditions and 
elapsed time before onset of epidemics could be estimated 
[14, 15]. The application of DLMs has a potential to sup-
port control programmes in timely deployment of control 
interventions, thereby effectively aid malaria surveillance 
and control efforts [16–18].

Eswatini had not only rebranded itself from a National 
Malaria Control Programme (NMCP) to a National Malaria 
Programme (NMP) but according to [19] has already halted 
endemic transmission and is currently relentlessly pursu-
ing elimination [20]. Nonetheless, recent malaria cases 
trend showed that the country would likely continue to 
struggle with bringing cases to zero especially due to the 
ever-present threat of importation from neighboring regions 
adding to seasonal case load uncertainties. For instance, a 
study by [21] showed that importation from Mozambique 
accounted for over 90% of malaria transmission in Eswatini, 
thus retarding ongoing control efforts. Furthermore, data 
from the Eswatini Malaria Programme continued to show 
unpredictable seasonal fluctuations in cases. Such seasonal 
fluctuations and upsurges in cases reemphasize the need for 
stronger surveillance systems and watchfulness even when 
endemic transmission had been halted [19, 21].

Eswatini has its historic malaria transmission occurring 
in the eastern part of the country where until recently low 
unstable transmission characterizes the malaria situation in 
the area [22]. Its seasonal peaks had been associated with 

episodes of high rainfall during the summer season which 
occurs between November and May each year [23]. We 
applied Bayesian geostatistical modeling [24] to predict 
heightened transmission seasons by quantifying the elapsed 
time prior to onset of cases. The elapsed time refers to the 
amount of time that passes from the start of an event to its 
finish and in this case it refers to the cumulative environ-
mental conditions that result to reported local cases. Geo-
statistical models link the disease data with potential envi-
ronmental predictors and quantify spatial dependence via the 
covariance matrix of Gaussian process facilitated by adding 
random effects at the observed locations [25]. Knowledge 
of the elapsed time and space location of cases could aid 
the Malaria Programme to accurately deploy malaria pre-
vention measures in advance. Furthermore, these models 
could be used as tools to guide both primary and secondary 
response measures i.e. prior to onset of cases by estimat-
ing the elapsed time and after onset by predicting malaria 
risk thus assisting malaria programmes to prevent onward 
transmission.

Spatially explicit model-based maps on micro epidemio-
logical heterogeneities are important for malaria elimination 
as endemic transmission declines to residual foci [26]. These 
maps aid surveillance and vector control efforts in better 
targeting and in deployment of planned interventions [27, 
28]. In this study, Eswatini malaria incidence data were fit-
ted into a Bayesian geostatistical negative binomial model 
using a polynomial distributed lag function. We chose DLMs 
because they are useful when the outcome of interest is a 
result of a cumulative effect from previous time periods [29]. 
The DLM function can be used to assess if the effect of risk 
factors on the outcome is either immediate or rather slowly 
as a result of a build up from previous climatic conditions. 
We then produced smoothed maps of incidence risk during 
rainy and dry season as well as monthly risk maps for the 
entire country.

2 � Methods

2.1 � Study area

Eswatini is a country located in southern Africa, specifically 
in the north eastern part of South Africa and close to the 
southern part of the Mozambican border by about 90 km. 
The country is 100% landlocked, whereby over 90% of its 
borders are shared with South Africa while the north-eastern 
side is bordered by Mozambique [30]. Eswatini is a develop-
ing country and is about 70% rural and a majority of its rural 
folks derive their livelihoods from substance agriculture. 
Those that reside in urban centers and towns are mostly sus-
tained by formal employment and small to medium formal 
and informal businesses. In Eswatini, malaria transmission is 
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seasonal and dependent on the prevailing weather conditions 
especially with regards to temperature and rainfall [31]. The 
local malaria epidemiology also shows that malaria trans-
mission is highly affected by variations in altitude [32]. The 
country is comprised of four agro-ecological zones which 
vary by altitude, climate, soil type and vegetation. The vari-
ations in the agro-ecological zones have also influenced 
population distribution and settlement within the country.

2.2 � Malaria Incidence Data

Georeferenced malaria incidence data for a 5 year period 
(2012–2017) were obtained from the National Malaria Pro-
gramme (NMP) of Eswatini. The data comprised of reac-
tively investigated symptomatic cases that have presented 
at health facility. Cases were already classified into either 
imported or local based on travel history of patients by 
investigating officers from the NMP. Local cases with valid 
geographic coordinates were aggregated by enumeration 
area (EA) which is the lowest census unit ranging from an 
area of about 0.013 km2 to about 194 km2. The country is 
made up of a total of 2326 EAs and only those EAs with 
reported cases were used during analysis (Fig. 1). In addi-
tion, cases identified via active case detection in the neigh-
boring households of an index case were also included in the 
analysis. The population in each of the EAs was used as an 
offset in the negative binomial model to implement weight-
ing by number of people. The data were organized according 
to the malaria transmission season which is July to June each 
year. A total of 1230 georeferenced malaria cases, both local 
and imported were used in the analysis. Local malaria cases 
were reported in 529 household locations which were aggre-
gated into 145 EAs taking into account the time resolution. 
Reported georeferenced cases were analysed using ArcGIS 
software version 10.8.1 and STATA statistical software ver-
sion 13 [33]. Bayesian modeling was done using OpenBUGS 
software, copyright (C) 2007 Free Software Foundation, Inc. 
(http://​fsf.​org/).

2.3 � Environmental Data

Remotely sensed climatic data covariates were downloaded 
from NASA earth data website (https://​search.​earth​data.​
nasa.​gov/). These data included a 250 m resolution nor-
malized difference vegetation indices (NDVI) available 
biweekly and 250 m day and night land surface temperature 
(LST) emissivity indices both available weekly. The LST 
was added as LST day and LST night in the modeling to 
capture the effect of day and night temperatures on malaria 
cases. The data were products of the Moderate Resolution 
Imaging Spectroradiometer (MODIS). Eight km resolution 
dekadal rainfall was obtained from the Africa Data Dissemi-
nation Service (ADDS), a data portal for the Famine Early 

Warning Systems (FEWS) network. In addition, a 30 m 
resolution Digital Elevation Model (DEM) from ASTER 
(Advanced Spaceborne Thermal Emission and Reflection 
Radiometer) was obtained for Eswatini. Water bodies were 
digitized from a 2016 Google Earth Image. The environmen-
tal data used are presented in Table 1 below.

2.4 � Fitting a Distributed Lag Model

We formulated and implemented a Bayesian distributed lag 
model (DLM) to better understand the association between 
certain environmental conditions favourable to malaria 
transmission (i.e. precipitation, temperature and vegetation) 
and an increased number of malaria reported cases at lag of 
0, 1 or 2 months to account for previous conditions prior 
to malaria incidence as well as quantify the elapsed time 
(lag) prior to onset of malaria reported cases. Other factors 
included consisted of fixed terms (i.e. altitude and distance 
to water bodies) in the following fashion:

Let Yit be the number of malaria cases reported at loca-
tion i during month t , modelled using a Negative Binomial 
distribution to take into account the overdispersion of the 
counts as cases in the country were already diminishing:

w h e r e  T = 60monthsforthe5yearperiod  a n d 
pit = ri∕(ri + �it) . The parameter �it represents the mean 
counts and ri is the overdispersion parameter. The regression 
equation that links the mean counts to the space and time 
variables takes the form of a log-linear equation:

where Seasont is a binary variable indicating whether 
the case was reported during rainy season (November to 
April) or dry season (May to October) and Importedit is a 
a binary variable representing the presence of at least one 
case classified as imported in the same EA in the preced-
ing 2 months. It is important to note that here we assume 
the seasonal pattern that characterize malaria transmission 
not to change through the years. To take into account the 
spatial correlation between locations, we add a Gaussian 

(1)Yit ∼ NBin
(

pit, ri
)

∀i = 1, ....., n ∀t = 1, ...., T

(2)

log
(

�it

)

= log
(

popit
)

+

L
∑

l=0

�lRainfalli,t−l

+

L
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l=0

�lDayLSTi,t−l +

L
∑

l=0

�lNightLSTi,t−l

+

L
∑

l=0

�lNDVIi,t−l + � Altitudei

+ � Distance_Wateri

+ � Seasont + � Importedit + �ea(i)
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spatial process �ea(i) ∼ N(0,Σ) where the element (ij) of the 
variance–covariance matrix for two locations at distance 
dij is of the formΣij = �2exp

(

−�dij
)

 . We indicate with �2 
the spatial variance and with � the correlation decay. We 

need to specify prior distributions for the parameters we 
want to estimate, since we are specifying the model under 
a Bayesian framework. We assign uninformative priors on 
the coefficients�, �,�, � such as N(0, 0.01) . The coefficients 

Fig. 1   Study area showing enumeration areas with reported cases
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identifying the lagged effect need to be constrained 
�l ∼ N

(

0, �Rainfall
)

, �l ∼ N
(

0, �DayLST
)

, �l ∼ N
(

0, �NightLST
)

, 
�l ∼ N

(

0, �NDVI
)

∀l = 0,… ,L . Inverse-gamma priors were 
assumed for the variances.

2.5 � Fitting a Polynomial Distributed Lag Model

A second Bayesian model based on polynomial distributed 
lags was again formulated and implemented on the same 
dataset to improve understanding of the lag effect of environ-
mental factors on the number of malaria cases at distributed 
lags of up to two months (0,1 and 2 months). Data were 
aggregated bi-weekly (using full calendar weeks for each 
month which generated16 days per lag) up to two months. 
This was done to determine the best combination of lags that 
predicted malaria incidence risk. The data was then fitted 
into the Negative Binomial model with a polynomial func-
tion constrained to power x4 in the following fashion:

Let Yit be the mean number of malaria cases at a given 
location s = i,….n at time t with likelihood Yit ~ NBin ( Pi , r ) 
where Pit is the proportion of malaria cases in a defined 
location in time and r is the overdispersion parameter and 
�it = r

1−p

p
 while �2

it
= r(1 − p)p−2 . The model then takes a 

log-linear equation as:

where �it is the number of malaria cases in each location 
i at bi-week time t  and � are the regression coefficients, X 
are the model covariates, � and � are temporal (bi-week) and 
spatial random effects (EA). The individual β coefficients 
of the distributed lag model were restricted to a polynomial 
function of x4 which was specified as:

where k is the categorical variable for the covariate cor-
responding to �i coefficient and a is the intercept for loca-
tions 1… .n . The model describes the association between 
an independent value of Xi and the corresponding dependent 
mean Yi . This is summarized asE(y|x ) . The model gives the 

(3)
Logit

(

�it

)

= log it
(

Popui
)

+ �0 + �1Xit … ..�12Xit + �it+�ea(i)

(4)�i =

4
∑

k=0

aki
k

expected �i of malaria cases given the corresponding value 
of each categorical variable at location s.

2.6 � Determining Important Lags Using Bayesian 
Variable Selection

We applied Bayesian variable selection to determine the 
most important lag time between environmental factors and 
the onset of malaria cases. We used a 95% Bayesian credible 
interval to find those independent variables that were signifi-
cantly associated with the outcome variable of interest thus 
allowing us to fit the model only for those variables that were 
significant in the final model. The set of �i predictors were 
fixed into a polynomial function describing the distribu-
tion of each set of predictors where the third power (x4) was 
selected following first stage testing of the different polyno-
mials (i.e. from x1 to x7). The model was then restricted to x4 
for all the predictors comprising of LST, NDVI and Rainfall.

For each of the polynomial functions xi we introduced a 
binary indicator with 50% chance of inclusion into the final 
model by restricting the variable selection to a Bernoulli 
distribution [34] with probability of inclusion whereby the 
best set of covariates was indicated by the model with the 
highest posterior probability ranging from 0 to 1. Any vari-
able with coefficient above 50% was selected to the final 
model. To enable prediction, we used an inverse gamma 
prior and thenwe ran the model using Markov Chain Monte 
Carlo (MCMC) [35]. Uninformative prior distributions were 
also assigned to the parameters to complete the model for-
mulation. We then applied Bayesian kriging [36] to predict 
the malaria incidence risk at unsampled locations and pro-
duced monthly malaria incidence risk maps of the entire 
country. The input point count in the kriging for the fixed 
count search was set at 10 points while the search radius was 
50 m to identify clusters associated with local malaria cases 
as mosquitoes are believed to fly a minimum of 50 m [37]. 
This way we were able to identify months with low, moder-
ate and high transmission periods. To validate the model, 
we used a randomly selected sample of 150 locations as a 
training set for fitting the final prediction model.

Table 1   Environmental data 
analysed

Factors Spatial resolution Temporal resolution Period Source

NDVI 250 m 16 days 2012–2016 MODIS
LST 250 m 8 days 2012–2016 MODIS
Rainfall 8 km Dekadal 2012–2016 ADDS
Water bodies 30 m Yearly 2016 Google earth
Altitude 30 m Yearly  −  ASTER
Population  −   −  2017 Eswatini census
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3 � Results

3.1 � Estimated Parameters Of The Fitted DLM Model

Results showed that rainfall of the preceding month 
(Lag2) had negative effect on malaria incidence rate as it 
decreased by proportion − 0.25 (BCI: − 0.46, − 0.05). This 
was also shown in the accompanying maps (Fig. 2) which 
showed that malaria incidence increased during the dry 
season by proportion 0.051 (5.1%) compared to the wet 
season where it was 0.047 (4.7%) (Fig. 3). Interestingly 
the night temperatures of the preceding first and second 
month were also significantly associated with increased 
malaria incidence rate at proportions: Lag1 0.53 (BCI: 

0.23, 0.84) and at Lag2 0.26 (BCI: 0.01, 0.51). In addi-
tion, seasonality was also important predictor of malaria 
incidence rate with proportion 0.72 (BCI: 0.40, 0.98). 
Other predictors such as NDVI, LSTday, Distance to 
Water bodies, Altitude as well as Imported cases were not 
significant. However, it is important to note that except 
for NDVI and LSTday which were fitted into the distrib-
uted lag model the rest were fixed parameters. Table 2 
presents the results of the model predictors adjusted for 
seasonality and the effects of importation on malaria inci-
dence rate.

Fig. 2   Malaria incidence during dry season
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Fig. 3   Malaria incidence during rainy season

Table 2   Results of fitted distributed lag model

Covariates Lag0 Median (95% CI) Lag1 Median (95% CI) Lag2 Median (95% CI) Median (95% CI)

Rainfall  − 0.14 (− 0.35, 0.06)  − 0.21 (− 0.42, 0.00)  − 0.25 (− 0.46, − 0.05) –
LSTday  − 0.21 (− 0.53, 0.09)  − 0.03 (− 0.35, 0.28)  − 0.12 (− 0.40, 0.14) –
LSTnight 0.24 (− 0.08, 0.57) 0.53 (0.23, 0.84) 0.26 (0.01, 0.51) –
NDVI  − 0.14 ( -0.49, 0.20)  − 0.11 (− 0.59, 0.37) 0.13 (− 0.19, 0.46) –
Altitude – – – 0.04 (− 0.13, 0.21)
Distance to Water 

bodies
– – – 0.02 (− 0.12, 0.16)

Season – – – 0.72 (0.40, 0.98)
Imported – – –  − 0.11 (− 0.63, 

0.41)
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3.2 � Estimated Parameters Of The Fitted Polynomial 
DLM Model

Spatial heterogeneities of malaria incidence due to cli-
matic and environmental factors were identified for each 

full transmission season in Eswatini. Monthly variations 
in malaria incidence made it possible to visualize months 
of low, moderate and high incidence rates in the country. 
High incidence rates were identified for the months of July 
to October (Figs. 4, 5, 6 and 7), moderate incidence rates 

Fig. 4   Malaria incidence during the month of July
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in the months of November to February (Figs. 8, 9, 10 
and 11) and low incidence rates in the months of March 
to June (Figs. 12, 13, 14 and 15). There was a positive 
association between temperature, rainfall and NDVI and 

an increase in malaria cases at polynomial lags of up to 
two months (8 weeks). For instance the current bi-week 
of (LST day[1]) was positively associated with malaria 
incidence [2.18 (BCI: 0.98–3.19)] while, the first lag or 

Fig. 5   Malaria incidence during the month of August
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power x 1 (LST day[2]) was negatively associated with 
malaria as cases decreased by − 2.63 (BCI: − 2.89– − 2.34).

Interestingly, third bi-week or power x 2 (LST day[3]) and 
fourth bi-week or power x 3 (LST day[4]) were positively 

associated with malaria cases with proportion 0.1 (BCI: 
0.05–0.17) and proportion 0.22 (BCI: 0.22–0.2357) respec-
tively. The increase in malaria cases changes in the fifth 
bi-week or power x 4 (LST day[5]) where the proportion of 

Fig. 6   Malaria incidence during the month of September
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Fig. 7   Malaria incidence during the month of October
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cases begin to decrease. For night temperatures (LST night), 
the effects of the polynomial distributed lags was different in 
the sense that the current bi-week and the first lag were not 
associated with malaria incidence until the second bi-week 

or power x2 (LST night [3]) which was negatively associated 
with malaria at proportion − 0.12 (BCI: − 0.13– − 0.10). The 
third bi-week or power x4 was positively associated with 
malaria which changed in bi-week of power x4 where there 

Fig. 8   Malaria incidence during the month of November
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was a negative association. On the other hand NDVI had less 
effect on malaria for the first two lags until power x3 (NDVI 
[4]) which showed increase in malaria cases with proportion 
0.06359 (BCI: 0.05515–0.06808). Similarly to the first DLM 

model, malaria cases decreased with increasing rainfall as 
shown in power x1 (Rain[2]) and power x3 (Rain [4] with 
proportion -0.78 (BCI: − 0.95– − 0.19) and proportion − 0.01 
(BCI: − 0.017– − 0.005) respectively. Interestingly rainfall 

Fig. 9   Malaria incidence during the month of December
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was positively associated with malaria in power x2 (Rain [3]) 
with proportion 0.23 (BCI: 0.22–0.25). The results are sum-
marized in Table 3 which shows the posterior probabilities 
of the polynomial DLM.

4 � Discussion and Conclusions

The influence of climatic and environmental factors on 
malaria risk had been well investigated however, this study 

Fig. 10   Malaria incidence during the month of January
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is the first to produce monthly predictions of malaria inci-
dence risk distribution using DLM in Eswatini. The maps 
produced in the current work depict a considerable month to 
month fluctuation in malaria incidence rates in the country 

and the best predictors in the DLM model included rainfall 
of the preceding month (Lag2), night temperature of the first 
and second preceding months. A similar result was found in 
a study by [38] where the best predictors including NDVI, 

Fig. 11   Malaria incidence during the month of February
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mean maximum temperature and rainfall of the preceding 
month increased the number of malaria cases.

The current study provides useful information for tim-
ing and guiding deployment of malaria control measures 

as the country continues to fight sporadic cases. The dry 
season was associated with an increased number of malaria 
reported cases and this was not surprising as similar studies 
had already shown that persistent rainfall associated with 

Fig. 12   Malaria incidence during the month of March



356	 Journal of Epidemiology and Global Health (2022) 12:340–361

1 3

the wet season have a tendency to wash out mosquito larvae 
thus hindering reproduction. For instance, a study by [39] 
found that increasing rainfall reduced malaria incidence in 
Nigeria. This then calls for intensification of surveillance 

efforts during the dry season or ideally immediately at the 
end of the wet season.

The results also showed that decrease in the amount 
of rainfall for over a two-month period was a precursor 

Fig. 13   Malaria incidence during the month of April
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for cases in the next coming days. A study by [40] found 
strong positive correlations for malaria time series lag-
ging zero to three months behind rainfall, and negative 

correlations were found for malaria time series lagging 
four to nine months behind rainfall. This study has also 
clearly demonstrated that polynomial distributed rainfall 

Fig. 14   Malaria incidence during the month of May
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lags at least beyond two months were negatively corre-
lated with malaria reported cases. Knowing this could 
enable the malaria control programme to be on alert and 
anticipate epidemics and astutely deploy the necessary 

prevention strategies. It was noted that the location of 
nearby imported cases was an important determinant of 
secondary infections and subsequently local transmission.

Fig. 15   Malaria incidence during the month of June
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The findings presented in this work provide more criti-
cal considerations as well as an opportunity for the malaria 
programme to bolster its surveillance efforts and record 
the first elimination of the disease in its entire malaria 
history. While sporadic cases remain and importation 
continue to thwart and retard ongoing elimination efforts 
recent progress especially, the drastic reduction of malaria 
cases had shown that elimination was very much achiev-
able and possible for the country.

The monthly incidence risk maps produced in this work 
could be useful for the control programme as they provided 
an explicit guide for resource optimization by showing the 
areas that need to be targeted with malaria intervention to 
achieve high impact. The maps could be used as a guide 
for timely monthly effective targeting and optimal deploy-
ment of resources for malaria prevention and response [41]. 
While high incidence risk was predominantly on the eastern 
lowlands of the country, its magnitude varied from month 
to month and this would be key to understanding the inter-
annual variations and distributions of the disease. Previous 
analyses efforts were limited to seasonality in terms of wet 
and dry (summer and winter), our work had shown how 
malaria cases are distributed by month further unpacking 

the conventionally known seasonality thus, bringing more 
clarity and elucidating uncertainties in seasonality modeling 
[42]. Malaria transmission in Eswatini had been known to 
occur in the wet season of November to May with very fewer 
cases occurring in the dry season of June to October. This 
study has for the first time produced a new monthly pattern 
of malaria incidence rates comprising of three transmission 
seasons which were: July to October (high), November to 
February (moderate) and March to June (low). These identi-
fied seasons could be used to guide ongoing malaria surveil-
lance efforts as the country pushes towards elimination. High 
malaria incidence rates were identified in the eastern part of 
the country especially in the Lowveld ecological zone which 
has higher average temperatures compared to the western 
part of the country which has higher elevation and lower 
average temperatures. This was followed by the Middleveld 
and the Lubombo Plateau ecological zones which have lower 
average temperatures and higher altitude compared to the 
Lowveld. The western part of the country which comprises 
of the Highveld zone had the lowest malaria incidence rates 
mainly due to high altitude and lower average temperatures. 
The high transmission season may be attributed to the fact 
that this is usually the period after the rainy season when 
mosquitoes may be able to lay eggs and breed compared to 
the rainy season when the eggs and larvae may be washed 
away [43]. The November month which marks the begin-
ning of the moderate transmission season coincide with the 
beginning of the rainy season in Eswatini as the country 
approaches summer. Also, the highest amount of summer 
rainfall in the country is mostly received around February 
to March which in our study was identified as the low trans-
mission season probably due to the excess runoff that flushes 
away mosquito larvae thus hindering breeding [44].

Day temperatures of the preceding first month were found 
to be important predictors for malaria incidence while the 
first monthly lag had a negative effect as it reduced malaria 
incidence. A study by [45] also found that monthly mean 
minimum temperature, mean maximum temperature, mean 
average temperature, were significantly and positively corre-
lated with monthly malaria cases. This means that increased 
surveillance and vigilance would be needed at least after 
four consecutive weeks of high day temperatures especially 
during the identified transmission seasons. Vegetation was 
positively associated with malaria incidence after a fourth 
bi-week lag indicating that malaria incidence only increased 
after at least two months as a result of vegetation cover. Sim-
ilarly, [46] also found that NDVI lagging by 1 and 2 months 
had a significant influence on malaria incidence. This is 
because thick shrubs and smaller plants can create or alter 
the surrounding microclimate in which mosquitoes can rest 
outdoor. Therefore, vegetation around a home is likely to 
be an important determinant of malaria breeding and even 
transmission [47].

Table 3   Posterior estimates of polynomial distributed lags

Sd standard deviation, BCI Bayesian credible interval

Variable(x 4) Mean Sd BCI: 2.5 Median BCI: 97.5

LST day [1] 2.1800 0.6570 0.9857 2.3260 3.1900
LST day [2]  − 2.6310 0.1884  − 2.8900  − 2.6620  − 2.3410
LST day [3] 0.1064 0.0339 0.0561 0.0987 0.1741
LST day[4] 0.2284 0.0046 0.2206 0.2295 0.2357
LST day [5]  − 0.0292 0.0004  − 0.0300  − 0.0292  − 0.0288
LST night 

[1]
0.0062 0.3635  − 0.5658 0.1021 0.5285

LST night 
[2]

0.2757 0.2006  − 0.0097 0.2314 0.5429

LST night 
[3]

 − 0.1240 0.0086  − 0.1372  − 0.1264  − 0.1077

LST night 
[4]

0.0287 0.0014 0.0266 0.0293 0.0308

LST night 
[5]

 − 0.0027 0.0003  − 0.0033  − 0.0026  − 0.0022

NDVI [1]  − 0.3156 0.3682  − 0.9960  − 0.2119 0.2182
NDVI [2]  − 0.2407 0.1474  − 0.4127  − 0.2853 0.0081
NDVI [3] 0.0012 0.0162  − 0.0197  − 0.0024 0.0428
NDVI [4] 0.0636 0.0034 0.0552 0.0644 0.0681
NDVI [5]  − 0.0088 0.0002  − 0.0092  − 0.0088  − 0.0085
Rain [1] 0.4434 0.4889  − 0.9898 0.6221 0.9489
Rain [2]  − 0.7833 0.1917  − 0.9561  − 0.8864  − 0.1917
Rain [3] 0.2381 0.0102 0.2200 0.2379 0.2587
Rain [4]  − 0.0104 0.0024  − 0.0175  − 0.0102  − 0.0058
Rain [5]  − 0.0013 0.0003  − 0.0020  − 0.0013  − 0.0008
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The Bayesian geostatistical models developed in this 
study could be extended and applied in the development 
of rapid short-term and long-term forecasting algorithms 
that could assist the country with targeted prevention and 
response to effectively eliminate local transmission. We 
developed a polynomial DLM model which showed monthly 
distributions of malaria incidence rates, an important step 
for very low malaria endemic settings like Eswatini. This 
could help the NMP to understand the micro epidemiology 
of the disease in space and time and thereby target and opti-
mally deploy malaria interventions in accordance with the 
severity of the observed malaria episodes. In order for the 
country to successfully eliminate malaria more scientifically 
based surveillance efforts need to be used. The current work 
provides a strategic guide for the ongoing malaria elimina-
tion efforts in Eswatini. The main limitation of this study 
was that the data used were not adequate in some months 
as cases drastically decreased at the height of the elimina-
tion efforts. This may have affected the temporal analyses 
in this study as some months had very few cases and made 
it difficult to accurately estimate the parameters. Also, the 
effects of climate change may alter the seasonal and monthly 
malaria incidence forecasts made in this study as the weather 
and environmental conditions changes.
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