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Abstract
Early detection of Alzheimer's disease (AD) is critical due to its rising prevalence. AI-aided AD diagnosis has grown for 
decades. Most of these systems use deep learning using CNN. However, a few concerns must be addressed to identify 
AD: a. there is a lack of attention paid to spatial features; b. there is a lack of scale-invariant feature modelling; and c. the 
convolutional spatial attention block (C-SAB) mechanism is available in the literature, but it exploits limited feature sets 
from its input features to obtain a spatial attention map, which needs to be enhanced. The suggested model addresses these 
issues in two ways: through a backbone of multilayers of depth-separable CNN. Firstly, we propose an improved spatial 
convolution attention block (I-SAB) to generate an enhanced spatial attention map for the multilayer features of the backbone. 
The I-SAB, a modified version of the C-SAB, generates a spatial attention map by combining multiple cues from input feature 
maps. Such a map is forwarded to a multilayer of depth-separable CNN for further feature extraction and employs a skip 
connection to produce an enhanced spatial attention map. Second, we combine multilayer spatial attention features to make 
scale-invariant spatial attention features that can fix scale issues in MRI images. We demonstrate extensive experimentation 
and ablation studies using two open-source datasets, OASIS and AD-Dataset. The recommended model outperforms existing 
best practices with 99.75% and 96.20% accuracy on OASIS and AD-Dataset. This paper also performed a domain adaptation 
test on the OASIS dataset, which obtained 83.25% accuracy.
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1  Introduction

Loss of brain tissue and nerve cells leads to Alzheimer's 
disease (AD), a terrible, non-transmittable neurological 
condition. Such death of cells is caused by pairs of TAU 
proteins that stabilise the microtubules, resulting in improper 
guidance or blockage of the molecules and essential 
nutrients to the axons and causing dementia. The impacts 
of dementia on a person's thinking, acting, and other 
social abilities. Basically, there are four different stages of 
dementia caused by AD: non, very mild, mild, and moderate. 
When AD mutates from very mild to moderate, it severely 
exacerbates its impact on heart muscles or the respiratory 
system, which can even lead to the death of the person. The 
incidences of AD have been increasing significantly over the 
past few decades all across the world. Recently, the WHO 
[1] reported that 60% to 70% of patients suffer from AD 
out of the 55 million identified dementia patients. Several 
studies have been carried out to diagnose AD using different 
biomarkers such as blood samples, MRI scans, CT, or PET 
reports. Although there is currently no cure for AD, early-
stage treatment with the right drug can lessen the disease's 
severity. Therefore, it is crucial to find AD early to improve 
patients' quality of life.

The vast majority of currently used techniques for 
diagnosing AD rely on time-consuming manual evaluation 
by medical professionals. Computer vision employing 
machine learning-based technologies is also being developed 
to assist doctors in the diagnosis process. Many new 
studies use machine learning methods, particularly deep 
learning strategies, to offer a variety of alternatives for AD 
identification using MRI scans. Most state-of-the-art models 
either utilise transfer-learning-based [2–7] or non-transfer-
learning-based approaches [8–18]. The VGG-16, Alex-Net, 
Res-Net, and GoogLE-Net are some of the frequently used 
models in transfer-learning techniques for AD detection. 
On the other hand, the authors created a number of 
models employing deep learning architectures like CNN, 
Autoencoder, GAN, RNN, and LSTM in non-transfer 
learning approaches. The main objective of all the existing 
techniques is to exploit high-level spatial features to improve 
the accuracy of AD detection. However, these techniques 
lack attention to the spatial features, indicating where the 
important features are available in each of the high-level 
spatial features extracted from the deep models. Although 
such drawbacks can be avoided by using Convolution 
Spatial Attention Block (C-SAB), this technique suffers 
from obtaining a better spatial attention map (SAM). The 
existing solution only relies on max and average pool values 
to obtain SAM, which can be improved by adding other 
features. In addition, there is also a lack of techniques that 

exploit scale-invariant features for AD detection from MRI 
scans. Thus, the shortcomings can be summarised as:

•	 Lack of attention to high or low-level spatial features.
•	 The existing spatial block attention mechanism suffers 

from limited representation as far as the generation of 
SAM is concerned.

•	 The literature also lacks scale-invariant feature extraction 
for the diagnosis of AD.

Therefore, this study presents a unique deep-learning 
solution for AD diagnosis to address the aforementioned 
shortcomings through multiscale feature modelling using 
improved spatial attention-guided depth-separable CNN. 
The proposed model improves the Convolution Spatial 
Attention Block (C-SAB) by introducing an Improved 
Spatial Attention Block (I-SAB). The I-SAB is designed 
to enhance the spatial attention map by extracting several 
features cues from the input and employing stack of depth 
separable CNN and skip connection. The proposed I-SAB is 
plugged into different layers of a multilayer depth-separable 
CNN to obtain multiscale enhanced spatial attention maps. 
Such maps are used to obtain spatially guided, multiscale 
features. All such features are fused and concatenated 
to obtain multiscale features forming scale-invariant 
features, which are inputted into a multilayer perceptron for 
classifying multiple classes of dementia caused by AD. The 
contributions could be summarised as follows:

•	 An I-SAB is designed to enhance the spatial attention 
map.

•	 Multilayers of depth separable CNN are designed to 
exploit multiscale features.

•	 The I-SABs are plugged into different layers of the 
backbone to extract enhanced spatial attention-guided 
multiscale features, which are used to predict AD using 
a multilayer neural network.

The remainder of the article is structured as follows: 
Sect. 2 discusses the literature review; Sect. 3 describes 
the proposed method and model; Sect. 4 illustrates dataset 
information and performance measures; Sect. 5 discusses 
experimental setup and results analysis; Sect. 6 illustrates 
the ablation study; and Sect. 7 presents the conclusion.

2 � Literature Study

There is an overwhelming use of machine learning 
approaches for AD detection. Nevertheless, the current 
research trends show the development of various models 
using deep learning techniques not only for AD detection 
but also in other research domains such as text classification 
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using NLP [19], Object detection [20], Breast cancer 
detection [21] and so on. These models can be broadly 
categorised into two groups: learning-based transfer models 
and non-transfer learning-based models. The taxonomy of 
AD detection is illustrated in Fig. 1 and discussed in the 
following subsection.

2.1 � Transfer Learning‑Based AD Detection

Many of the existing transfer learning-based techniques use 
the weights of pre-trained baseline models such as VGG16, 
ResNet, GoogLeNet, AlexNet, Inception, and so on. Noting 
a few, Shahwar et al. [5] extracted 512 feature vectors from 
ResNet34 and inputted them to a quantum variational circuit 
for AD detection. In a study proposed by Naz et al. [3], the 
authors used freeze features of 11 pretrained baseline models 
for the detection of AD. The authors [3] identified that the 
VGG-16 exhibits better performance than other models. 
Ghazal et al. [7] utilised AlexNet to exploit object-level 
features for determining the existence of AD. Deepa et al. 
[2] applied an arithmetic optimisation algorithm to a fully 
connected neural network for AD detection. The inputs to 
the neural network are the features of the pre-trained VGG 
16, which obtained better detection accuracy. But knowledge 
transfer from deep models trained in similar research 
domains can have similar feature maps and produce better 
results. However, the aforementioned approaches’ main 
objective is to extract features from MRI images, but they 
have used pre-trained models that are trained using samples 
other than medical images, which can result in producing 
vague results.

To overcome such limitations, finetuning these models 
is of the utmost importance. Chui et  al. [6] focused on 
extracting transfer learning-based features by finetuning the 
hyperparameters of a CNN-based network for AD detection. 
However, detection accuracy must be improved. Shamrat 
et al. [4] fine-tuned the baseline pretrained architectures 
such as ResNet50, MobileNetV2, VGG16, AlexNet, and 

Inception V3 and found that with an accuracy of 96.32%, 
Inception V3 performs better than other baseline models. 
However, enhanced attention-guided feature modelling 
and performance are some of the major setbacks of these 
baseline models.

2.2 � Non‑Transfer Learning‑Based AD Detection

These models have a variety of architectures that they have 
constructed utilising deep learning methods like generative 
models, LSTM (RNN), and CNN. Due to its astonishing 
ability to extract spatial semantic characteristics from MRI 
images, CNN-based architectures have been extensively 
researched. CNN topological structure with multiple layers 
was proposed by Murugan et  al. [9]. The authors were 
significantly more accurate for the balanced dataset. A 
unified model using three deep networks was proposed by 
Orouskhani et al. [18]. The integrated VGG-16 structure 
serves as the model's structural backbone. Houria et al. 
[14] designed a multilayer of convolution layers for AD 
prediction. Bandyopadhyay et al. [11] designed an artificial 
neural network model with multiple layers of perceptrons 
for AD detection. However, detection accuracy must be 
improved. Recently, Lahmiri et al. [16] proposed a hybrid 
model where the authors used a CNN model for feature 
extraction followed by a KNN with Bayesian optimisation 
for the classification of AD stages. However, the validation 
dataset is limited in sample size. On the contrary, Abbas 
et al. [8] fulfilled the requirement of locating discriminant 
landmark areas for AD diagnosis and improved the 
performance through a proposed Jacobian Domain CNN. 
Sequential models have also been designed for AD detection. 
On the other hand, Hajamohideen et al. [13] used a deep 
CNN with a Siamese foundation to detect AD. The deep 
network has been optimised by the authors using the triplet 
loss function. An LSTM-based two-stage deep learning 
algorithm was proposed by El-sappagh et  al. [15]. The 
authors have greatly improved the detection accuracy. Lee 

Fig. 1   Taxonomy of deep learning techniques for AD detection
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et al. [10], on the other hand, suggested a multi-modal deep 
learning architecture employing a recurrent neural network 
to predict AD from several biomarkers. Even though these 
sequential models were only intended to be used with time 
series or sequential data, the information sets that are offered 
are nonetheless static MRI brain pictures.

In the literature, autoencoders are established in addition 
to the multi-layer CNN structureto enhance accuracy 
through the utilisation of fine-grained abstract information. 
Ansingkar et al. [17] utilised a capsule encoder network 
and optimised it using a hybrid equilibrium method for the 
diagnosis of AD. Shi et al. [12] proposed a multiple loss-
based autoencoder that is constrained by GAN. Among the 
several aforementioned deep learning techniques, the CNN-
based approach has been widely used because of its capacity 
to exploit fine-grained contextual features. However, 
currently available CNN-based models perform poorly 
because they do not efficiently take advantage of enhanced 
spatial attention-guided multiscale features. The model that 
has been suggested fills this knowledge gap, which will be 
addressed in the part that precedes it.

3 � Proposed Method and Model

Multiscale feature modelling and feature attention 
mechanisms play an important role in solving very critical 
and non-linear classification problems by exploiting fine-
grained features. One way to extract multiscale features is 
to fuse multi-layer features of CNN architecture. Whereas 
the feature attention mechanism can be exhibited by using 
a spatial attention block. However, the following are some 
of the concerns:

•	 Exploiting multiscale features using CNN would result 
in more computation complexity due to the increase in 
convolution operations.

•	 Use of multiscale features without specifying "where 
the important features are", would result in performance 
degradation.

•	 The current spatial attention block mechanism needs to 
be changed to improve the quality of spatial attention 
feature maps.

The proposed model addresses the above concerns. The 
following are the contents that describe the proposed method 
and model very clearly.

•	 Network overview.
•	 Efficient feature modelling using multilayers of depth-

wise separable CNN.
•	 Backgrounds of spatial attention mechanisms.

•	 Improved spatial attention mechanism.
•	 Improved spatial attention guided multiscale feature 

modelling.
•	 Classification of AD stages and optimisation.

3.1 � Network Overview

Figure 2 presents a graphic illustration of the suggested 
model's design in detail. The entire proposed architecture 
is built on multilayers of depth-wise separable CNN 
(M-DSC). The M-DSC acts as the backbone of the 
model and takes MRI scans as input. The backbone has 
been built with 10 layers of depth separable convolution 
layers and 4 max-pooling 2D layers. All these pooling 
layers have the kernel shape of (2 × 2) . Each one of 
these pooling layers is placed after every couple of DSC 
layers. The kernel shapes of DSC layers starting from 
the first to the tenth position are as follows: (7 × 7) , 
(4 × 4), (3 × 3), (3 × 3), (3 × 3), (3 × 3), (3 × 3), (3 × 3), (2 × 2), and (2 × 2)   . 
The depth multipliers of the first and rest of the DSC 
layers are set to 3 and 2, respectively.

The feature maps of every even-numbered depth 
separable convolution layer are inputted to a proposed 
Improved Spatial Attention Block (I-SAB), as shown in 
Fig. 2. There are five I-SABs plugged into the backbone; 
each one takes feature maps of even-numbered, depth-wise 
separable convolution layers. The insights of I-SAB are 
illustrated in Fig. 4.

The I-SAB contains three parallel pooling layers, such 
as Max, Average, and Min Pooling. The features of these 
pooling layers are concatenated and then merged by a 
kernel-based Conv2D layer having sigmoidal activation. 
The activated feature map is then given to a Feature Map 
Enhancement Module (FMEM) to obtain an enhanced 
spatial attention map. The FMEM includes two DS-CNN 
layers that are Sigmoid triggered. These layers have kernel 
size of (2 × 2) with a depth multiplier of 2.

The input of the FMEM is elementwise multiplied with 
the sigmoidal output of the second DSC layer via a skip 
connection (as illustrated in Fig. 4), and then a merging 
layer (sigmoidal Conv2D with kernel (1 × 1) ) is applied. 
This merging layer's output is referred to as an "enhanced 
spatial attention map." The enhanced spatial attention map 
of each I-SAB is multiplied by the input of the I-SAB 
to get enhanced spatially attentive features, which are 
fused by a depth-wise separable CNN with kernel (1 × 1) , 
followed by a ReLU activation layer.

All the fused features corresponding to five I-SABs are 
flattened and concatenated to obtain improved multiscale 
features that are scale-invariant in nature. Such features 
are densely connected to 256 ReLU neurons, which are 
followed by an output layer containing 4 neurons each 
for very-mild demented (VMD (class-0)), mild-demented 
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(MD (class-1)), moderate-demented (MoD (class-2)), and 
non-demented (ND (class-3)).

3.2 � Efficient Feature Modelling Using Depth‑wise 
Separable CNN

A specific type of convolutional layer used in the 
development of Convolutional Neural Networks (CNNs) 
is the depth-wise separable convolution (DSC) layer. The 
primary goal of the creation of such a layer is to increase 
the effectiveness of the standard CNN while reducing the 
number of parameters necessary to perform convolution 
operations.

The traditional CNN architecture carried out the 
convolution operation by moving a kernel, also referred to 
as a filter, through the input volume and estimating a dot 
product between the kernel and its associated spatially 
aligned region in the input. Mathematically such convolution 
operation could be written as follows:

(1)Fi+1 = AF
(
Fi ⊗ ki

)
.

Here Fi is the input feature at ith layer of a convolution 
neural network which has [H ×W] and C as spatial and 
channel dimensions, respectively. It contains all real-valued 
numbers, thus Fi ∈ ℝ

H×W×C . In Eq. 1, the kernels at ith 
layer are represented as ki , having N number of kernels of 
size, [h × w] thus ki ∈ ℝ

h×w×N . The function AF(.) defines 
the activation function, and the symbol ⨂ represents the 
convolution operation. The Fi+1  represents the output of 
the convolution operation, which will be the input for the 
(i + 1)th layer, and Fi+1 ∈ ℝ

H×W×N.
A DSC layer, on the other hand, splits the ordinary 

convolution operation into depth-wise and point-wise 
convolutions. Here's how it works:

Depth-wise convolution: Here, the convolutional 
kernel is applied separately to each channel of the input 
volume. Instead of using a single kernel to compute the 
dot product across all channels, a separate kernel is 
used for each channel. This means that if the input 
volume (at ith layer) has C input channels, we will have 
C separate convolutional kernels such as ki1 , ki2 ,… .., kiC , 
where each kip ∈ ℝ

h×w×1 . As input volume or feature at 

Fig. 2   Details of proposed model
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ith layer i.e., Fi is composed of C channels, let us assume 
that each channel feature is represented by Fip

 where p 
ranges from 1 to C. Let the features obtained during 
depth-wise convolution is represented by DFi which can 
be represented mathematically as:

(2)DFi = Concate

[
Fi1

⊗ ki1
,Fi2

⊗ ki2
,… ,FiC

⊗ kiC

]
∈ ℝ

H×W×C

Here, Concate operation defines the concatenation of 
results of channel-wise convolution operation. Note that 
the concatenation is done at the channel dimension.

Point-wise convolution: After the depth-wise 
convolution, a 1 × 1 convolution (also known as point-
wise convolution) is applied to the output of the depth-

Fig. 3   Details of convolution 
spatial attention block (C-SAB)
[22, 23]

Fig. 4   Detail architecture of I-SAB
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wise convolution i.e., DFi . The 1 × 1 convolution 
operates on the output channels of the depth-wise 
convolution, combining information across channels. 
Let the point convolution be represented by the point 
kernel i.e., pkip ∈ ℝ

1×1×C where p ranges from 1 to M 
that means we have a M number of point convolutions. 
Thus, the final feature at ith layer can be obtained as:

The DSC effectively reduces the number of parameters 
and computations compared to standard convolution. It 
reduces the complexity from O(H ×W × C ×M) in the 
standard convolution to O(H ×W × C + C ×M) in the 
depth-wise separable convolution. Here, (H, W), C, 
and M represent spatial, channels and output channel 
dimensions, respectively. So, by taking advantages of 
such a variant of convolution, we have been motivated to 
designing a computationally efficient multilayer of such 
a depth-wise separable convolution as the backbone for 
our proposed network for fine-grained feature modelling. 
The details of the backbone network are illustrated in 
Sect. 3.1.

3.3 � Backgrounds of Spatial Attention Mechanism

The multiscale features can be extracted by fusing 
the multilayer features of any backbone network [24]. 
However, before fusing the multiscale features, it is 
better to highlight and identify where the important 
features are in several feature maps. This can be done by 
using Convolution Spatial Attention Block (C-SAB), as 
described by Woo et al. [22]. The architectural details of 
C-SAB are given in Fig. 3. The procedures to obtain a 
spatial attention map are as follows:

•	 Both average and max pooling are applied along the 
channel axes of depth-wise separable convolution 
features, Fi , let these features are represented by 
FM ∈ ℝ

H×W×1 and FA ∈ ℝ
H×W×1 respectively.

•	 These features are fused or concatenated to form a 
tensor [FM;FA].

•	 Then a standard convolution layer with sigmoid 
activation is applied to the fused features and producing 
an attention map of shape [H ×W] by computing the 
spatial attention as: Ms = δ

(
Conv7×7

([
FM;FA

]))
.Here, δ 

and Conv7×7 denoting the sigmoid function and 
convolution operation with the filter size of 7 × 7, 
respectively. The Ms ∈ ℝ

H×W.

(3)Fi+1 = Concate
[

DFi ⊗ pki1 , DFi ⊗ pki2 … , DFi ⊗ pkiM
]

∈ ℝH×W×M

Such an approach to getting feature maps has been 
applied to many research domains, but not as far as AD 
detection is concerned. In addition, the C-SAB can also 
be improved to obtain an improved spatial attention 
map by infusing more features into the map. Section 3.4 
describes the details of such an improved spatial attention 
mechanism.

3.4 � Improved Spatial Attention Mechanism 
for Multiscale Features

The basis behind proposing an improved spatial attention 
mechanism for multiscale features relies on two key 
observations from the basic C-SAB structure.

•	 First, the spatial attention map Ms solely depends on 
the maximum and average pool information from the 
input feature maps. However, minimum pool properties 
can also play an important role in providing better 
discriminant features. Thus, such features can’t be 
removed. So, three pooling features are obtained and 
concatenated from the input feature maps. Thus, the fused 
tensor would be[FM;FA;FMin] , where FM, FA, andFMin are 
the max, average, and min pool features.

•	 Second, the attention map obtained from basic C-SAB 
can also be improved further by processing and 
exploiting fine-grained features through multilayers of 
depth-wise separable convolution layers.

Thus, addressing the above points can enhance the 
model’s ability to exploit and focus relevant spatial 
features across different scales of features in the proposed 
backbone of the network by improving the spatial attention 
mechanism. Such objectives can be fulfilled by doing two 
important things:

•	 First, improve the spatial attention mechanism, and
•	 Plugging this mechanism across several layers of the 

backbone to focus on the relevant spatial features.

The following explains the former point, and the latter is 
explained in Sect. 3.5.

An improved spatial attention block (I-SAB) is designed 
that accumulate the aforementioned important features. 
The details of I-SAB are shown in Fig. 4. The input feature 
maps are utilised to extract the maximum, minimum, and 
average pooling features, which are then combined to create 
a fused tensor and applied to a sigmoidal conv2d layer. The 
sigmoidal conv2D layer contains one filter and produces a 
spatially attentive feature map ∈ ℝ

H×W . Such a feature map is 
again given to a Feature Map Enhancement Module (FMEM) 
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to obtain an improved spatial attention map. The FMEM 
contains two consecutive sigmoidal depth-wise separable 
convolution layers with depth multipliers of factor two. These 
two layers exploit and produce a fine-grained spatial attention 
map from their input. The input to FMEM is multiplied with 
the fine-grained features through a skip connection, which 
can be observed in Fig. 4. The enhanced features are then 
merged by using a sigmoidal Conv2D layer to obtain an 
improved spatial attention map (ISAM). Mathematically, we 
can represent all these operations as follows:

3.5 � Improved Spatial Attention Guided Multiscale 
Feature Modelling

Five I-SAB modules are plugged in parallelly in the network; 
each of these modules takes the feature maps of the 2nd, 4th, 
6th, 8th, and 10th depth-wise separable convolution layers. As 
shown in Fig. 2, through a skip connection, the feature maps 
of an evenly placed DSC layer are element-wise multiplied 
with the output of I-SAB to form improved spatially attentive 
feature maps (ISAF) of a particular layer of the backbone. 
The ISAFs are then merged through a depth-wise separable 
convolution with kernel shape and depth multiplier of 1 × 1 and 
1 respectively. All the merged enhanced multilayer features 
are flattened and fused to form attentive multiscale or scale-
invariant features. These features are given to a multilayer 
neural network (MNN) for AD stage classification. The 
MNN consists of one hidden layer of 256 ReLU neurons and 
one output layer of 4 neurons. The output layer of the MNN 
employs SoftMax activation. ReLU serves as the activation 
mechanism for the backbone layers.

3.6 � Classification of AD Stages and Optimization

The proposed model has four neurons in the output layer 
belonging to predict Non-Demented, Very-Mild-Demented, 
Mild-Demented, and Moderate-Demented. The activation 
function for the output layer is SoftMax. Let 
X =

[
x1, x2,…… , xN

]
 be a set that provides the expected 

output score for each of the N samples. Similarly, let another 
set S =

[
s1, s2,…… , sN

]
 represents the ground-truth labels of 

the samples. Let, each xi|i=1,2,3,4,5…Nand si|i=1,2,3,4,5…N is a 
one-hot vector containing predicted and ground-truth score for 
f o u r  c l a s s e s  a n d  a r e  d e f i n e d  a s 
x
i
=
[
x
i1
, x

i2
, x

i3
, x

i4

]
and s

i
=
[
s
i1
, s

i2
, s

i3
, s

i4

]
 respectively. Let 

∅ serve as the representation for each trainable parameter in 
the recommended network. The proposed model is trained by 
minimizing the categorical cross-entropy loss between 
predicted and ground - truth scores of mini batches of 

(4)

ISAM = �
⎛

⎜

⎜

⎝

Conv1×1
⎡

⎢

⎢

⎣

�
(

Conv1×1
(

Concate
[

FM ,FA ,FMin
]))

.

�
(

DConv
1×1(�

(

DConv
1×1(�

(

Conv1×1
(

Concate
[

FM ,FA ,FMin
]))))))

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

samples. We can calculate the categorical cross-entropy loss 
of tth batch of samples 

(
t = 1 to

⌈
N

b

⌉
where b is the batch size

)
 

by using the following equation:

For a given network parameter ∅ , we have minimised the 

loss for the tth batch 
(
i.e., argmin

∅

Losst

)
 using Adaptive 

Moment (Adam) optimizer [25].

4 � Dataset, Experimental Setup 
and Performance Measures

4.1 � Stats of Datasets

The Alzheimer's disease dataset that is published on Kaggle 
[26] and OASIS-1[27] are the two publicly accessible 
datasets that we used. The AD dataset [26] is made up of 
MRI scans from patients with four different classifications 
of dementia, such as very mild, mild, moderate, and non-
demented. The resolution of MRI scans is [176 × 208] . 
The description of such dataset is provided in Table 1. The 
splitting of the training and testing set for this dataset is 
adopted from the work of Murugan et al. [9] where 10% of 
randomly chosen dataset are used for testing.

The OASIS dataset contains samples of 436 subjects. But, 
only 399 samples can be downloaded as far as the current 
state of the OASIS-1 is concerned. The sample distribution 
of the OASIS Category 1 dataset is shown in Table 1. As 
the samples of such a dataset are very limited, we have used 
two-fold cross-validation for training and testing by adopting 
the work of Chui et al. [6]. Figure 5 shows some of the 
samples of both AD [26] and OASIS datasets.

4.2 � Experimental Setup

Keras layers with TensorFlow as a backend are used to code 
the proposed model in Python. The code is executed on 
the CoLAB platform. The hyperparameters such as kernel 

(5)Losst =
1

b

b∑

i=1

[
−

4∑

j=1

sij logxij

]

Table 1   Distributions of data samples across several categories

Stages/Classes Total samples of 
Kaggle Dataset

Total samples 
of OASIS 
dataset

Non-demented (ND) 2400 306
Very-mild-demented (VMD) 2240 65
Mild-demented (MD) 896 26
Moderate-demented (MoD) 64 2
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regularised parameter, learning rate, and batch size were set 
to 0.01, 0.01, and 32, respectively. To prevent overfitting, 
the model adopts early stopping and L2 regularisation. The 
patience parameter of early-stopping was set to 10 epochs, 
and the maximum training epochs are 1000.

4.3 � Performance Measures

Accuracy, precision, recall, and F1-Score are the 
performance metrics utilised in this article. The following 
are the detailed descriptions of these metrics.

(6)Accuracy =
TP + TN

TP + TN + FP + FN

(7)Precision =
TP

TP + FP

(8)Recall =
TP

TP + FN

Here, the terms TP, TN, FP, and FN, respectively, 
stand for true positive, true negative, false positive, and 
false negative. These measures can be obtained from the 
confusion matrix which is given below in Fig. 6.

5 � Analysis of Results

The results analysis of the proposed model for two datasets 
are given below.

5.1 � For AD Dataset

On the AD dataset, the suggested framework achieves an 
accuracy of 96.25%. The proposed model's recall, precision, 
and F1-score are 96.36%, 96.71%, and 96.52%, respectively. 
The confusion matrix heat map of the predicted result on this 
dataset is given in Fig. 7. The performance of the proposed 
model is best for diagnosing MoD samples, whereas it is 

(9)F1 − Score =
2 × Precision × Recall

Precision + Recall

Fig. 5   Examples of MRI scans 
for patients with a. very mild 
dementia, b. mild dementia, c. 
moderate dementia, and d. no 
dementia

Fig. 6   Confusion matrix
Fig. 7   The proposed model's confusion matrix for the AD Dataset
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least effective for detecting MD samples. The AUC of the 
proposed model is 99.29. Additionally, Table 2 illustrates 
the comparison of the proposed model's performance with 
current state-of-the-art methods. Recent deep models such 
as Deep ConvNet [28], DCNN-VGG19 [29], Inception-V4 
[30], ADDTLA [7], DEMNET [9], and Landmark Feature 
Modelling [31] are included in this comparison study. All 
these models exploit spatial features without providing any 

type of attention mechanism for the spatial features. With 
an accuracy of 91.70%, the ADDTLA gains second position 
in Table 2 by adopting a transfer learning approach. On the 
other hand, models like Deep ConvNet [28], DEMNET [9], 
Landmark Feature Modelling [31], DCNN-VGG19 [29], and 
Inception-V4 [30] acquired accuracies of 90.4%, 85.00%, 
79.02%, 77.66%, and 73.75% respectively on the concerned 
dataset. However, the proposed model with improved spatial 
attention mechanism and enhanced multiscale feature 
mechanism obtained an accuracy of 96.25% which tops 
Table 2 among others. The proposed models outperform the 
most recent ones in terms of recall, precision, and F1-score. 
Hence, the proposed model addresses the identified 
challenges very well and exhibits well on the AD dataset 
available on Kaggle.

5.2 � For the OASIS Dataset

The proposed model's accuracy on the OASIS dataset 
is 99.75%. The model has a 0.25% error rate, 99.63% 
precision, 99.91% recall,  and 99.77% F1-score, 
respectively. Figure 8 depicts the predictive diagnosis 
labels' confusion matrix and the ROC curves are also 
obtained and illustrated in Fig. 9. The proposed model 
performs well in predicting all the test labels. Only 
one label for the non demented (ND) is not classified 

Table 2   Comparative 
quantitative analysis of results 
for the dataset available on 
Kaggle

Models Accuracy (%) Error rate (%) Precision (%) Recall (%) F1-score (%) AUC (%)

Inception-V4 [30] 73.75 26.25 NA NA NA
DCNN-VGG19 [29] 77.66 22.34 58.48 36.67 45.05
Landmark feature 

modelling [31]
79.02 20.98 NA NA NA

DEMNET [9] 85.00 15.00 80.00 88.00 83.00
DeepConvNet [28] 90.40 9.06 90.50 90.40 90.40
ADDTLA [7] 91.70 8.30 91.50 93.70 92.50
Proposed model 96.25 3.75 96.71 96.36 96.52 99.29

Fig. 8   On the OASIS dataset, the proposed model's confusion matrix

Table 3   Quantitative-based comparative results analysis on the OASIS dataset

* NA means value of corresponding performance matric is not available

Models Accuracy (%) Error rate (%) Precision (%) Recall (%) F1-Score (%) AUC (%)

CNN + Optimal KNN [16] 94.96 5.04 NA NA NA NA
ANN [11] 92.00 8.00 96.20 87.70 91.70 NA
Conv-TL [6] 93.80 6.20 91.00 94.6 NA NA
Ensamble-hybrid deep net [33] 95.23 4.77 NA NA NA NA
Ensamble-Deep CNN [34] 93.18 6.82 93.00 92.00 92.00 NA
DeepNet [32] 99.68 0.32 NA NA NA 99.99
Gupta et al. [35] 74.90 25.10 NA NA NA NA
GBM-ResNet-50 [36] 98.99 1.01 NA NA NA 96.02
Proposed model 99.75 0.25 99.63 99.91 99.77 99.99



International Journal of Computational Intelligence Systems          (2024) 17:113 	 Page 11 of 17    113 

to it. In addition, the ROC of the proposed model on 
this dataset is also obtained and mentioned in Fig. 10 in 
which the AUC score of 99.99%. The suggested model's 
performance is also contrasted with a few current state-
of-the-art methods that used the OASIS dataset to develop 
their models, which can be seen in Table 3. These models 
include Deep Net [32], Ensemble Hybrid Deep Net [33], 
CNN + Optimal KNN with BO [16], Ensemble-Deep 
CNN [34], Conv-TL [6], and ANN [11]. The DeepNet 
placed in second place in Table 3 with an accuracy of 
99.68% by exploiting deep spatial features from its input. 
Whereas the GBM-ResNet-50 got an accuracy of 98.99% 
and placed in third place. Ensemble approaches using 
deep learning have shown promising results, for example, 
Ensemble-Hybrid Deep Net [33] and Ensemble-Deep 
CNN [34] have got an accuracy of 95.23% and 93.18% 
respectively. The multilayer perceptron-based model such 
as ANN[11] has got 92.00% accuracy on this dataset. The 
transfer learning-based approaches like CNN + Optimal 
KNN [16] and Conv-TL [6] have got accuracies of 94.96% 
and 93.80% respectively. Gupta et al. [35] have achieved 
74.90% accuracy on the OASIS dataset, which is the 
lowest performance as far as Table 3 is concerned. All 
these methods exploited spatial features without placing 
emphasize on the important spatial features for AD 
detection. However, the proposed model with improved 
spatial attention mechanism tops in Table  3 with an 
accuracy of 99.75%. Thus, the proposed model fulfils the 
obtained research gaps by obtaining better performance 
as compared with other methods.

6 � Ablation Study and Generalisation Test

The analysis of the ablation research and the generalisation 
test on the model are both covered in this part.

6.1 � Ablation Study

Apart from the results analysis, this paper also conducted 
an ablation study on the various (or combination of) 
components of the proposed model. The main aim is 
to show the behaviour of each of the components of the 
proposed model. For this, the whole model is divided into 
the following modules:

•	 Model-1: Proposed model with SAB instead of I-SAB. 
In this model, the proposed I-SAB is replaced by the 
conventional SAB [22] and the rest of the model remains 
same. The purpose is to understand and analyse the 
behaviour of conventional SAB.

•	 Model-2: Proposed model with Four scale only. This 
model does not contain the first I-SAB.

•	 Model-3: Proposed Model with Three Scale. It does not 
contain initial two I-SABs.

•	 Model-4: Proposed Model with Two Scale. It does not 
contain initial three I-SABs.

•	 Model-5: Proposed Model with One Scale. It only 
contains the last I-SAB.

•	 Model-6: Proposed model without I-SAB and multilayer 
feature modelling. It contains only the backbone of the 
proposed model.

Fig. 9   ROC curves for the AD dataset
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Fig. 10   ROC curves for the OASIS dataset

Table 4   Ablation investigation 
using the AD dataset available 
on Kaggle

Models Accuracy (%) Error Rate (%) Precision (%) Recall (%) F1-Score (%)

Model-1 94.06 5.94 95.82 93.56 94.58
Model-2 95.15 4.85 95.80 95.11 95.43
Model-3 93.28 6.72 94.35 89.75 91.85
Model-4 91.25 8.75 91.38 79.72 83.46
Model-5 90.31 9.69 93.42 69.85 73.94
Model-6 92.03 7.97 92.98 93.21 93.08
Proposed model 96.25 3.75 96.71 96.36 96.52

Fig. 11   Model-1's confusion matrix on the AD dataset Fig. 12   Model-2's confusion matrix on the AD dataset
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6.1.1 � Ablation Study on the AD Dataset

Table 4 presents quantitative findings from an investigation 
of the six models stated above in the AD dataset. 
Performance measures such as accuracy, error rate, 
precision, recall, and f1-score are used for performance 
comparison. The confusion matrixes of these models are also 
obtained and shown in Figs, 11, 12, 13, 14, 15 and 16. The 
impact of SAB (Model-1) is analysed, and it has an accuracy 
of 94.06%, which is less than the proposed model. Similarly, 
it is necessary to observe the performance of multiple scale 
features for AD detection. This has been addressed through 
Models 2 to 5, whose accuracies are mentioned in Table 4. 
There is a gradual decrease in performance if we minimise 
the inclusion of multiscale features. In addition, the impact 
of the backbone for AD detection has to be observed. This 
is done through Model 6, which has an accuracy of 92.03%. 
Thus, it is very important to accumulate all these models to 
achieve better performance.

6.1.2 � Study of Ablation on the OASIS Dataset

The results of the ablation study and quantitative comparison 
of six models on the OASIS dataset are mentioned in 
Table 5. The backbone of the proposed model (i.e., Model-
6) has an accuracy of 94.25% which is far more less than the 
proposed model. The model with SAB (Model-1) achieved 
an accuracy of 97.75% on the OASIS dataset whereas the 
proposed model got 99.75%. This shows that the improved 
spatial attention block significantly improves the detection 
accuracy. The multiscale models such as 4-Scale (Model-
2), 3-Scale (Model-3), 2-Scale (Model-4), and 1-Scale 
(Model-5) have got accuracies of 99.00%, 97.25%, 96.00%, 
95.25%, and 94.25% respectively. This demonstrates that as 
the number of scales is reduced, the model's performance 

Fig. 13   Model-3's confusion matrix on the AD dataset

Fig. 14   Model-4's confusion matrix on the AD dataset

Fig. 15   Model-5's confusion matrix on the AD dataset

Fig. 16   Model-6’'s confusion matrix on the AD dataset
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declines. The confusion matrix of all six models is shown 
in Figs. 17, 18, 19, 20, 21 and 22. Finally, we can conclude 
from this study is that the proposed model performance well 
in all aspects by using multiscale improved spatial attention 
features for AD detection on the OASIS dataset.

6.2 � Generalisation Test

A dataset generalisation test is also conducted to show the 
behaviour of the model during domain adaptability. In this 
test, the proposed model is trained on the AD dataset and 
tested on the OASIS dataset. It has been recorded that the 
proposed model obtained an accuracy of 83.95% during this 
test. The confusion matrix of this test is shown in Fig. 23.

Table 5   Study of ablations 
using the OASIS dataset

Models Accuracy (%) Error rate (%) Precision (%) Recall (%) F1-score (%)

Model-1 97.75 2.25 97.93 96.86 97.33
Model-2 99.00 1.00 98.87 99.35 99.50
Model-3 97.25 2.75 96.94 98.20 97.54
Model-4 96.00 4.00 93.73 97.21 95.18
Model-5 95.25 4.75 93.87 96.35 94.96
Model-6 94.25 5.75 91.66 98.08 94.39
Proposed model 99.75 0.25 99.63 99.91 99.77

Fig. 17   Model-1's confusion matrix on the OASIS dataset

Fig. 18   Model-2's confusion matrix on the OASIS dataset

Fig. 19   Model-3's confusion matrix on the OASIS dataset

Fig. 20   Model-4's confusion matrix on the OASIS dataset
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The confusion matrix shows that the proposed model 
does not classify the moderately demented class. The 
prediction accuracy of VMD and MD samples is nearly 
the same, which is 71.20% and 69.20%, respectively. The 

performance on ND samples is high, at 88.20%. The main 
reason could be the unavailability of MoD, MD, and VMD 
samples. Nevertheless, the proposed model exhibits better 
accuracy (83.95% accuracy) during such a generalisation 
test. The future work will focus on improving such results 
by proposing an advanced domain generalisation model.

7 � Conclusion

An innovative deep learning-based technique for the 
diagnosis of AD has been provided in this article. The 
suggested model's framework is built utilising multiple 
depth-wise separable convolution layers. The depth-wise 
separable CNN is preferred over conventional CNN to 
take the advantages of less computational cost. The model 
exploited improved spatial attention guided multiscale 
spatial features for AD detection. The conventional 
spatial attention mechanism is limited in exploiting a 
better attention map which is addressed by the proposed 
improved spatial attention block (I-SAB). The details of 
I-SAB have been illustrated under Sect. 3. Multiple I-SABs 
are plugged in multiple layers of the backbone (illustrated 
in Fig.  2) to provide improved spatially attentive 
multilayer features. These features are fused and given to 
a multilayer of perceptron for disease classification. The 
behaviour of the model is demonstrated by performing 
experiment on two publicly available AD datasets such 
as the AD dataset available in Kaggle and the OASIS 
dataset. The proposed model achieves 99.75% and 96.25% 
of accuracy on the OASIS and Kaggle dataset. Such 
results outperform the existing models. On the proposed 
model, ablation research is also carried out. Six different 
sub models are generated from the proposed model and 
their quantitative results analysis is illustrated in Table 4. 
It is clear from this research that the suggested model 
outperforms the model with the traditional SAB. Also, the 
fusion of multiscale features is also important to obtain 
better accuracy. Additionally, a generalisation test was 
carried out in this paper using the OASIS dataset after 
the model had been evaluated on the Kaggle dataset. Such 
test results in 83.95% of accuracy. Thus, in all aspects the 
proposed model performs well but there is still a need to 
improve the generalization accuracy which will be our 
future research scope.
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Fig. 21   Model-5's confusion matrix on the OASIS dataset
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Fig. 23   Confusion matrix of generalizability test



	 International Journal of Computational Intelligence Systems          (2024) 17:113   113   Page 16 of 17

Data Availability  The dataset used in this paper derived from earlier 
published works and referred in the text i.e., OASIS and AD Kaggle.

Declarations 

Conflict of Interest  The authors declare that there is no conflict of 
interest regarding the publication of this paper.

Ethical approval  Not applicable' as the study did not require ethical 
approval.

Open Access   This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article's Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article's Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​
org/​licen​ses/​by/4.​0/.

References

	 1.	 Global action plan on the public health response to dementia
	 2.	 Deepa, N., Chokkalingam, S.P.: Optimization of VGG16 

utilizing the Arithmetic Optimization Algorithm for early 
detection of Alzheimer’s disease. Biomed. Signal Process. 
Control (2022). https://​doi.​org/​10.​1016/j.​bspc.​2021.​103455

	 3.	 Naz, S., Ashraf, A., Zaib, A.: Transfer learning using freeze 
features for Alzheimer neurological disorder detection using 
ADNI dataset. Multimed. Syst. 28, 85–94 (2022). https://​doi.​
org/​10.​1007/​s00530-​021-​00797-3

	 4.	 Shamrat, F.M.J.M., Akter, S., Azam, S., et al.: AlzheimerNet: 
an effective deep learning based proposition for Alzheimer’s 
disease stages classification from functional brain changes in 
magnetic resonance images. IEEE Access 11, 16376–16395 
(2023). https://​doi.​org/​10.​1109/​ACCESS.​2023.​32449​52

	 5.	 Shahwar, T., Zafar, J., Almogren, A., et al.: Automated detection 
of Alzheimer’s via hybrid classical quantum neural networks. 
Electronics (Switzerland) (2022). https://​doi.​org/​10.​3390/​elect​
ronic​s1105​0721

	 6.	 Chui, K.T., Gupta, B.B., Alhalabi, W., Alzahrani, F.S.: An MRI 
scans-based Alzheimer’s disease detection via convolutional 
neural network and transfer learning. Diagnostics 12(7), 1531 
(2022)

	 7.	 Ghazal, T.M., Abbas, S., Munir, S., et al.: Alzheimer disease 
detection empowered with transfer learning. Comput. Mater. 
Contin. 70, 5005–5019 (2022). https://​doi.​org/​10.​32604/​cmc.​
2022.​020866

	 8.	 Qasim Abbas, S., Chi, L., Chen, Y.-P.P.: Transformed domain 
convolutional neural network for Alzheimer’s disease diagnosis 
using structural MRI. Pattern Recogn. 133, 109031 (2023). 
https://​doi.​org/​10.​1016/j.​patcog.​2022.​109031

	 9.	 Murugan, S., Venkatesan, C., Sumithra, M.G., et al.: DEMNET: 
a deep learning model for early diagnosis of Alzheimer diseases 
and dementia from MR images. IEEE Access 9, 90319–90329 
(2021). https://​doi.​org/​10.​1109/​ACCESS.​2021.​30904​74

	10.	 Lee, G., Nho, K., Kang, B., et  al.: Predicting Alzheimer’s 
disease progression using multi-modal deep learning approach. 
Sci. Rep. (2019). https://​doi.​org/​10.​1038/​s41598-​018-​37769-z

	11.	 Bandyopadhyay, A., Ghosh, S., Bose, M., Singh, A., Othmani, 
A., Santosh, K.C.: In: Santosh, K.C., Goyal, A. (eds.) Recent 
trends in image processing and pattern recognition, pp. 12–21. 
Springer Nature Switzerland, Cham (2023)

	12.	 Shi, R., Sheng, C., Jin, S., et al.: Generative adversarial network 
constrained multiple loss autoencoder: a deep learning-based 
individual atrophy detection for Alzheimer’s disease and mild 
cognitive impairment. Hum. Brain Mapp. 44, 1129–1146 
(2023). https://​doi.​org/​10.​1002/​hbm.​26146

	13.	 Hajamohideen, F., Shaffi, N., Mahmud, M., et al.: Four-way 
classification of Alzheimer’s disease using deep Siamese 
convolutional neural network with triplet-loss function. Brain 
Inform. (2023). https://​doi.​org/​10.​1186/​s40708-​023-​00184-w

	14.	 Houria, L., Belkhamsa, N., Cherfa, A., Cherfa, Y.: Multi-
modality MRI for Alzheimer’s disease detection using deep 
learning. Phys. Eng. Sci. Med. 45, 1043–1053 (2022). https://​
doi.​org/​10.​1007/​s13246-​022-​01165-9

	15.	 El-Sappagh, S., Saleh, H., Ali, F., et al.: Two-stage deep learning 
model for Alzheimer’s disease detection and prediction of the mild 
cognitive impairment time. Neural Comput. Appl. 34, 14487–
14509 (2022). https://​doi.​org/​10.​1007/​s00521-​022-​07263-9

	16.	 Lahmiri, S.: Integrating convolutional neural networks, kNN, 
and Bayesian optimization for efficient diagnosis of Alzheimer’s 
disease in magnetic resonance images. Biomed. Signal Process. 
Control 80, 104375 (2023). https://​doi.​org/​10.​1016/j.​bspc.​2022.​
104375

	17.	 Ansingkar, N.P., Patil, R.B., Deshmukh, P.D.: An efficient multi 
class Alzheimer detection using hybrid equilibrium optimizer 
with capsule auto encoder. Multimed. Tools Appl. 81, 6539–6570 
(2022). https://​doi.​org/​10.​1007/​s11042-​021-​11786-z

	18.	 Orouskhani, M., Zhu, C., Rostamian, S., et  al.: Alzheimer’s 
disease detection from structural MRI using conditional deep 
triplet network. Neurosci. Inform. 2, 100066 (2022). https://​doi.​
org/​10.​1016/j.​neuri.​2022.​100066

	19.	 Liu, J., Jin, H., Xu, G., et al.: Aliasing black box adversarial attack 
with joint self-attention distribution and confidence probability. 
Expert Syst. Appl. (2023). https://​doi.​org/​10.​1016/j.​eswa.​2022.​
119110

	20.	 Chen Y, Lin M, He Z, et al (2023) Consistency- and dependence-
guided knowledge distillation for object detection in remote 
sensing images. Expert Syst Appl 229:. https://​doi.​org/​10.​1016/j.​
eswa.​2023.​120519

	21.	 He, Z., Lin, M., Xu, Z., et al.: Deconv-transformer (DecT): A 
histopathological image classification model for breast cancer 
based on color deconvolution and transformer architecture. Inf 
Sci (N Y) 608, 1093–1112 (2022). https://​doi.​org/​10.​1016/j.​ins.​
2022.​06.​091

	22.	 Woo, S., Park, J., Lee, J.-Y., Kweon, I.S. CBAM: Convolutional 
Block Attention Module

	23.	 Panigrahi, S.K., Tripathy, S.K., Bhowmick, A., et al.: Multi-
scale based approach for denoising real-world noisy image using 
curvelet thresholding: scope and beyond. IEEE Access 12, 25090–
25105 (2024). https://​doi.​org/​10.​1109/​ACCESS.​2024.​33643​97

	24.	 Zhang, Y., Zhou, C., Chang, F., Kot, A.C.: A scale adaptive 
network for crowd counting. Neurocomputing 362, 139–146 
(2019). https://​doi.​org/​10.​1016/j.​neucom.​2019.​07.​032

	25.	 Kingma, D.P., Ba, J.L. (2015) Adam: A method for stochastic 
optimization. 3rd International Conference on Learning 
REPRESENTATIONS, ICLR 2015 - Conference Track 
Proceedings 1–15

	26.	 Dubey, S., (2016) https://​www.​kaggle.​com/​touri​st55/​alzhe​imers-​
datas​et-4-​class-​of-​images.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.bspc.2021.103455
https://doi.org/10.1007/s00530-021-00797-3
https://doi.org/10.1007/s00530-021-00797-3
https://doi.org/10.1109/ACCESS.2023.3244952
https://doi.org/10.3390/electronics11050721
https://doi.org/10.3390/electronics11050721
https://doi.org/10.32604/cmc.2022.020866
https://doi.org/10.32604/cmc.2022.020866
https://doi.org/10.1016/j.patcog.2022.109031
https://doi.org/10.1109/ACCESS.2021.3090474
https://doi.org/10.1038/s41598-018-37769-z
https://doi.org/10.1002/hbm.26146
https://doi.org/10.1186/s40708-023-00184-w
https://doi.org/10.1007/s13246-022-01165-9
https://doi.org/10.1007/s13246-022-01165-9
https://doi.org/10.1007/s00521-022-07263-9
https://doi.org/10.1016/j.bspc.2022.104375
https://doi.org/10.1016/j.bspc.2022.104375
https://doi.org/10.1007/s11042-021-11786-z
https://doi.org/10.1016/j.neuri.2022.100066
https://doi.org/10.1016/j.neuri.2022.100066
https://doi.org/10.1016/j.eswa.2022.119110
https://doi.org/10.1016/j.eswa.2022.119110
https://doi.org/10.1016/j.eswa.2023.120519
https://doi.org/10.1016/j.eswa.2023.120519
https://doi.org/10.1016/j.ins.2022.06.091
https://doi.org/10.1016/j.ins.2022.06.091
https://doi.org/10.1109/ACCESS.2024.3364397
https://doi.org/10.1016/j.neucom.2019.07.032
https://www.kaggle.com/tourist55/alzheimers-dataset-4-class-of-images
https://www.kaggle.com/tourist55/alzheimers-dataset-4-class-of-images


International Journal of Computational Intelligence Systems          (2024) 17:113 	 Page 17 of 17    113 

	27.	 Marcus, D.S., Wang, T.H., Parker, J., et al.: Open access series 
of imaging studies (OASIS): cross-sectional MRI data in young, 
middle aged, nondemented, and demented older adults. J. Cogn. 
Neurosci. 19, 1498–1507 (2007). https://​doi.​org/​10.​1162/​jocn.​
2007.​19.9.​1498

	28.	 Sharma, S., Guleria, K., Tiwari, S., Kumar, S.: A deep learning 
based convolutional neural network model with VGG16 feature 
extractor for the detection of Alzheimer Disease using MRI scans. 
Measure. Sens. 24, 100506 (2022). https://​doi.​org/​10.​1016/j.​
measen.​2022.​100506

	29.	 Ajagbe, S.A., Amuda, K.A., Oladipupo, M.A., et  al.: Multi-
classification of alzheimer disease on magnetic resonance 
images (MRI) using deep convolutional neural network (DCNN) 
approaches. Int. J. Adv. Comput. Res. 11, 51–60 (2021). https://​
doi.​org/​10.​19101/​ijacr.​2021.​11520​01

	30.	 Islam, J., Zhang, Y.A.: Novel deep learning based multi-class 
classification method for alzheimer’s disease detection using brain 
MRI data (2017)

	31.	 Zhang, J., Liu, M., An, L., et al.: Alzheimer’s disease diagnosis 
using landmark-based features from longitudinal structural MR 
images. IEEE J. Biomed. Health Inform. 21, 1607–1616 (2017). 
https://​doi.​org/​10.​1109/​JBHI.​2017.​27046​14

	32.	 El-Geneedy, M., Moustafa, H.E.-D., Khalifa, F., et  al.: An 
MRI-based deep learning approach for accurate detection of 
Alzheimer’s disease. Alex. Eng. J. 63, 211–221 (2023). https://​
doi.​org/​10.​1016/j.​aej.​2022.​07.​062

	33.	 Jabason, E., Ahmad, M.O., Swamy, M.N.S.: Classification 
of Alzheimer’s disease from MRI data using an ensemble of 
hybrid deep convolutional neural networks. In: 2019 IEEE 62nd 
International Midwest Symposium on Circuits and Systems 
(MWSCAS). pp 481–484 (2019)

	34.	 Islam, J., Zhang, Y.: An ensemble of deep convolutional neural 
networks for alzheimer’s disease detection and classification 
(2017)

	35.	 Gupta, S., Saravanan, V., Choudhury, A., et  al.: Supervised 
computer-aided diagnosis (CAD) methods for classifying 
Alzheimer’s disease-based neurodegenerative disorders. Comput. 
Math. Methods Med. (2022). https://​doi.​org/​10.​1155/​2022/​90922​
89

	36.	 Fulton, L.V., Dolezel, D., Harrop, J., et al.: Classification of 
alzheimer’s disease with and without imagery using gradient 
boosted machines and resnet-50. Brain Sci. (2019). https://​doi.​
org/​10.​3390/​brain​sci90​90212

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1162/jocn.2007.19.9.1498
https://doi.org/10.1162/jocn.2007.19.9.1498
https://doi.org/10.1016/j.measen.2022.100506
https://doi.org/10.1016/j.measen.2022.100506
https://doi.org/10.19101/ijacr.2021.1152001
https://doi.org/10.19101/ijacr.2021.1152001
https://doi.org/10.1109/JBHI.2017.2704614
https://doi.org/10.1016/j.aej.2022.07.062
https://doi.org/10.1016/j.aej.2022.07.062
https://doi.org/10.1155/2022/9092289
https://doi.org/10.1155/2022/9092289
https://doi.org/10.3390/brainsci9090212
https://doi.org/10.3390/brainsci9090212

	Alzheimer’s Disease Detection via Multiscale Feature Modelling Using Improved Spatial Attention Guided Depth Separable CNN
	Abstract
	1 Introduction
	2 Literature Study
	2.1 Transfer Learning-Based AD Detection
	2.2 Non-Transfer Learning-Based AD Detection

	3 Proposed Method and Model
	3.1 Network Overview
	3.2 Efficient Feature Modelling Using Depth-wise Separable CNN
	3.3 Backgrounds of Spatial Attention Mechanism
	3.4 Improved Spatial Attention Mechanism for Multiscale Features
	3.5 Improved Spatial Attention Guided Multiscale Feature Modelling
	3.6 Classification of AD Stages and Optimization

	4 Dataset, Experimental Setup and Performance Measures
	4.1 Stats of Datasets
	4.2 Experimental Setup
	4.3 Performance Measures

	5 Analysis of Results
	5.1 For AD Dataset
	5.2 For the OASIS Dataset

	6 Ablation Study and Generalisation Test
	6.1 Ablation Study
	6.1.1 Ablation Study on the AD Dataset
	6.1.2 Study of Ablation on the OASIS Dataset

	6.2 Generalisation Test

	7 Conclusion
	References


