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Abstract
Due to the ignoring of rich spatio-temporal and global contextual information with convolutional neural networks in features 
extraction, the traditional method is prone to tracking drift or even failure in complex scenario, especially for the tiny targets in 
aerial photography scenario. In this work, it proposes a transformer feature integration network (TFITrack) to obtain diverse 
and comprehensive target feature for the robust object tracking. Based on the typical transformer architecture, it optimizes 
encoder and decoder structure for aggregating discriminative spatio-temporal information and global context-awareness fea-
ture. Furthermore, the encoder introduces the similarity calculation layer and dual-attention module; the aim is to deepen the 
similarity between features and make corrections for channel and spatial dimensions, and feature representation is improved. 
Finally, with the introduction of the temporal context filtering layer, unimportant feature information is ignored adaptively, 
obtaining a balance between the parameters number reduction and stable performance. Experimental results show that the 
proposed tracking algorithm exhibits excellent tracking performance on seven benchmark datasets, especially on the aerial 
dataset UAV123, UAV20L, and UAV123@10fps, which presents the advantages of the novel method in dealing with fast 
motion and external interference.
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1 Introduction

Object tracking is an important aspect of computer vision 
and is widely used in various domains including drones, 
robotics and security surveillance. The main purpose of 
object tracking is to recognize and track the target based on 
the initial frame of the video, achieving continuous tracking 
of the subsequent frames. Most current tracking algorithms 
use convolutional neural network for feature extraction, 
calculating the similarity between the template feature and 
the search feature to estimate the state of the target during 
the tracking process. However, methods based on convo-
lutional neural network mainly emphasize local modeling, 
often ignoring global contextual and spatio-temporal infor-
mation. As a result, these algorithms may suffer from track-
ing drift or failure when confronted with complex scenarios 
such as fast motion or tracking aerial object. Considering the 

widespread use of current trackers, it is essential to develop 
a tracker that ensures stability and robust performance while 
adapting effectively to diverse scenarios. This design will 
address the limitations of existing methods and improve 
tracking accuracy and reliability.

Most current trackers are based on the powerful match-
ing capabilities of Siamese networks. The first application 
of Siamese networks in tracking appeared in SiamFC [1]. It 
used a full convolutional Siamese network structure to match 
the similarity between the search image and the template 
image, thus successful tracking the target. Researchers intro-
duced RPNs from the domain of object detection into object 
tracking to enhance tracking accuracy further. This led to 
the development of the SiamRPN [2] tracking architecture, 
which utilized RPN to predict accurate anchor frames and 
enhance tracker precision. However, these trackers encounter 
difficulties when disturbed by similar semantic information 
or when the size of the tracked target changes significantly. 
In such situations, the tracking effect tends to be poor.

CNN networks with more convolutional layers can 
effectively capture features with semantic informa-
tion and fully represent the target features. Therefore, 
SiamRPN +  + [3] and SiamDW [4] enabled the tracking 
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algorithms to capture deep semantic information more 
deeply and comprehensively, and enhanced the robustness 
of the tracking algorithm. C-RPN [5] connected multiple 
RPNs. Each RPN is trained using the output of the previ-
ous RPN and performs better in distinguishing challeng-
ing backgrounds. However, it is worth noting that these 
trackers increase the number of network hyper-parameters 
and get a higher computational burden due to the RPN 
construction anchor frame strategy.

In order to reduce the computationally intensive problems 
associated with the use of anchor frames. Researchers have 
introduced attention mechanism in tracking algorithms. NT-
DPTC [6] developed a spatio-temporal dimension-preserv-
ing tensor complementary model that fully extracts intrin-
sic features. An effective strategy was designed to remove 
non-negative constraints during training. Meanwhile, tem-
poral constraints and the AdamW method were employed to 
achieve high accuracy and fast convergence. SiamAttn [7] 
proposed deformable Siamese attention networks to improve 
the feature learning capability of Siamese network track-
ers. SiamAPN +  + [8] utilized the attention mechanism to 
perform attention aggregation networks through Self-AAN 
and Cross-AAN. Eventually, features representation was 
improved. HiFT [9] proposed a lightweight tracker utilizing 
transformer and multilayer features to obtain spatial inter-
action fusion in shallow convolutional layers and seman-
tic information in deep convolutional layers. To balance 
model accuracy and computational efficiency, -DARTS [10] 
designed a lightweight Differentiable Architecture Search 
model. The proposed channel fusion compensation module 
eliminates inter-channel semantic information discrepan-
cies and mitigates potential accuracy degradation. In addi-
tion, the augmented regularization technique with margins 
improves the system's architectural stability. Although the 
above tracking algorithms have made breakthroughs in uti-
lizing attention mechanisms, most of them ignored spatio-
temporal or global contextual information.

To enhance feature characterization and improve track-
ing robustness for tiny targets in the aviation domain, in this 
paper, the deep and shallow feature information is maxi-
mally utilized based on the transformer structure. Mean-
while, rich spatio-temporal and global contextual informa-
tion is obtained by optimizing the encoder and decoder, 
which achieves the purpose of enhancing feature relevance 
and filtering unimportant feature information.

In general, the main contributions of this work can be 
summarized as follows.

(1) The transformer feature integration network frame aims 
to enhance feature representation. The frame focuses on 
combining local and global features using encoder and 
decoder to establish dependencies between features and 
within features.

(2) The new method reconstructs the similarity calcula-
tion layer and temporal context filtering layer to high-
light salient features. The former is used to improve the 
similarity between features, while the latter adaptively 
filters unimportant information, helping to find a bal-
ance between reducing the number of parameters and 
stabilizing performance.

(3) The dual-attention mechanism is introduced to excavate 
the spatial structure information ignored by CNN net-
works.

(4) The proposed tracking algorithm achieves state-of-the-
art tracking performance on several challenging bench-
marks.

The remaining contents of this paper are organized as 
follows. In Sect. 2, a brief review of related work in the field 
of object tracking is concluded. In Sect. 3, the implementa-
tion process of the object-tracking algorithm is described 
in detail. In Sect. 4, the tracking method is evaluated and 
analyzed on several challenging benchmarks. In Sect. 5, the 
whole paper is concluded briefly.

2  Related Work

2.1  Transformer Network

Transformer [11], originally from Attention is all your need, 
abandons the traditional CNN and RNN approach of using 
convolutional layers to build networks. The whole network 
structure consists of an attention mechanism and a FFN. 
Transformer has superb long time series modeling ability 
and capturing global information perception ability. It has 
been widely used in the field of object tracking in the last 
2 years based on this advantage.

TransT [12] proposed an attention mechanism for a 
feature fusion network, which can efficiently fuse search 
features and template features using attention. The issue 
of local linear matching in correlation operations losing 
semantic information and falling into local optimization has 
been resolved. DAPAT [13] introduced a novel training net-
work model, which combines the anchor-free concept with 
Transformer theory. Stack [14] introduced Transformer to 
single target-tracking task and provided a transformer-based 
intermediate module, which improved feature representa-
tion. HiFT [9] proposed a hierarchical feature transformer 
module for fusing similarity images from multiple layers. 
The module not only captures global dependencies, but 
also efficiently learns the dependencies between multilevel 
features. TCTrack [15] better achieved a balance of speed 
and precision by continuously integrating temporal infor-
mation in both the feature dimension and the similarity 
map dimension. E.T. Track [16] proposed a real-time visual 
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object-tracking network based on an Exemplar Transformer, 
which achieved up to 47 FPS on the CPU. LightVIT [17] 
proposed a convolution-free lightweight network, and used 
efficient strategies on self-attention and FFN, which led to 
significant progress in target detection and semantic seg-
mentation. The mentioned studies propose valuable research 
ideas for key feature extraction and lightweight model con-
struction for object tracking.

It can be seen that the introduction of a transformer in 
the tracking domain has achieved good results. However, 
some tracking algorithms ignore two drawbacks in FFN 
(feed forward network) when using the transformer struc-
ture. First, the channel dimension is drastically limited in 
order to reduce the computational cost, resulting in a lack of 
model representation. Second, the conventional FFN struc-
ture ignores the dependency modeling on the feature spatial 
level and fails to consider the spatio-temporal information. 
In addition, the multi-headed attention layer in transformer 
contains a large number of parameters, which can affect the 
performance of the tracker.

Therefore, this paper constructs a transformer feature 
integration network containing an encoder and a decoder 
inspired by the prevalent transformer structure [9, 15, 17]. 
In the encoder, a similarity calculation layer and a tempo-
ral context filtering layer are introduced, the self-attention 
mechanism to learn interdependencies between feature layers 
and the spatial information and integrate the global context 
and spatio-temporal information. In the decoder, Integrating 
template branch information with search branch informa-
tion to effectively propagate temporal context information. 
Meanwhile, the main role of Transformer is to construct the 
dependencies between the features and fewer corrections for 
the channel and spatial features, thus a dual-attention mecha-
nism is introduced in the FFN in the transformer network to 
further improve feature representation.

2.2  Attention Mechanism

Attention is a lightweight network that allows feature 
enhancement in different dimensions. It improves the accu-
racy of extracted features while having a small impact on the 
real-time performance of the tracker. Therefore, attention 
mechanism has been widely used in target detection, person 
re-identification, object tracking, etc.

RASNet [18] combined three attention mechanisms, 
channel, residual and general, to weight the spatial and chan-
nel of SiamFC features, this approach effectively decom-
pose the coupling of feature extraction and discriminative 
analysis, which is used to improve the discriminative ability. 
SASiam [19] is a dual Siamese network consisting of seman-
tic and appearance branches. The semantic branch with a 
channel attention mechanism filters out the background. 
Meanwhile, the appearance branch focuses on generalize 

indicator changes and enhances the judgment capabilities 
of the semantic Siamese network. SiamAttn [7] proposed a 
deformable Siamese attention network as a way to enhance 
the feature learning capability of Siamese network tracker. 
In addition, the attention mechanism provides a way for 
the tracker to update the features of the template feature 
adaptively. SiamAPN +  + [8] contained two parts, Self-
AAN and Cross-AAN. Self-AAN aggregates and models 
the self-semantic interdependencies of individual feature 
maps through spatial and channel dimensions. Cross-AAN 
aims to aggregate the interdependencies between different 
semantic features including anchor location information. 
This ultimately improves the feature representation. TDKD-
Net [20] proposed the resource-saving exact network with a 
dual-attention mechanism that enables the model to focus on 
salient features from small-scale targets, improving detec-
tion accuracy. CDKD [21] designed a spatial and channel-
oriented structural discriminative module to establish con-
sistency and dependency of features between the teacher and 
student models. The module extracts discriminative spatial 
locations and channels while eliminating noise effects.

Some of the tracking method mentioned above disregard 
spatio-temporal and contextual information, and their per-
formance is mostly tested on regular target datasets, which 
may not be representative of aerial datasets. Inspired by the 
above tracker, the influence of channel, spatial information 
and global contextual information on tracking robustness are 
considered. In this paper, we simultaneously use the multi-
head self-attention mechanism, channel attention and spatial 
attention in transformer to aggregate global context and spa-
tio-temporal information to enhance feature representation.

3  Transformer Feature Integration Network 
for Object Tracking

In order to obtain richer spatio-temporal and global context 
information and supplement the limitations of local opera-
tions in convolutional neural networks, the tracker can accu-
rately track targets in complex scenario or aerial scenario, 
this paper proposes a target-tracking algorithm based on the 
transformer feature integration network. Specifically, the fea-
ture extraction network uses AlexNet, and the features of the 
last three layers are fused by convolution to obtain the new 
three feature vectors F3 , F4 , and F5 , respectively. F3 and F4 
are dimensionally reshaped and are used as the inputs to the 
transformer encoder in order to construct global dependen-
cies between the feature layers.

The encoder introduces a similarity calculation layer 
and the temporal context filtering layer. They are used to 
improve the similarity between features and adaptively filter 
unimportant information, respectively. The FFN introduces 
a dual-attention mechanism to enhance critical channel and 
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spatial information to further improve the tracker perfor-
mance. The output of the encoder interacts with the dimen-
sionally reshaped F5 features in the transformer decoder to 
propagate temporal contextual information and improve 
feature representation to obtain the final feature vector for 
classification and regression networks. The network block 
diagram of the tracking algorithm proposed in this paper is 
shown in Fig. 1.

The proposed tracking algorithm consists of three main 
parts, the feature extraction network, the transformer fea-
ture integration network, and the classification regression 
network. Section 3.1 introduces the specific implementation 
of the feature extraction network, Sect. 3.2 introduces the 
design and implementation details of the transformer feature 
integration network, and Sect. 3.3 introduces the implemen-
tation of the whole algorithm. The classification regression 
networks use a traditional multilayer perceptron. The clas-
sification network is used to obtain the foreground score of 
the target in the image, and the regression network is used to 
obtain the predicted bounding box of the target. The specific 
location of the target in the video frame is determined by the 
foreground score of the classification network and the target 
bounding box is predicted by the regression network. In the 
subsequent subsections, the classification network and the 
regression network will not be presented again.

3.1  Feature Extraction Network

The Siamese network has the same upper and lower branch 
sub-networks and has two different inputs. Therefore, the 
architecture is widely used for the tracking task of computing 
the similarity between these inputs and estimating the posi-
tion of the target in subsequent frames based on the initial 

frame features. In this paper, we use Siamese networks as 
the feature extraction network architecture, the upper branch 
serves as the template branch, while the lower branch serves 
as the search branch. Importantly, both branches share the 
same weights.

This paper utilizes the AlexNet network as a feature 
extraction network, the template image (z) and the search 
image (x) as inputs and are sent to the Siamese network 
architecture. The shallow features capture important appear-
ance and color information that is crucial for accurate locali-
zation. The deep features capture semantic information that 
better describes the target. By utilizing shallow and deep 
features, the tracker can improve tracking accuracy and 
accurately localize the target even in complex scenarios. In 
this paper, a feature extraction network is used to extract 
the feature vectors of Layer3, Layer4, and Layer5. The tem-
plate features and search features from these three layers 
are individually convolved to complement the fused feature 
information. This process produces three fused feature vec-
tors, which are used as inputs for the proposed transformer 
feature fusion network. The multilayer feature extraction 
fusion network is shown in Fig. 2.

The feature vectors of the template and search image for 
Layer3, Layer4, and Layer5 layers are shown in Eqs. (1) 
and (2):

where z is the template image, x is the search image, 
Fzl3,Fzl4,Fzl5 are the feature vectors of Layer3, Layer4 
and Layer5 layers of the template branch, respectively, 

(1)Fzl3,Fzl4,Fzl5 = AlexNet(z)

(2)Fxl3,Fxl4,Fxl5 = AlexNet(x)

Fig. 1  Transformer feature integration network for object-tracking network block diagram
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Fxl3,Fxl4,Fxl5 are feature vectors of Layer3, Layer4 and 
Layer5 layers of the search branch, respectively. The feature 
vectors from the three layers are fused using convolutional 
layers individually. This fusion process aims to effectively 
combine shallow and deep feature information to enhance 
feature representation. The feature fusion process is shown 
in Eqs. (3)–(5):

where Conv(.,.) is the convolutional layer, F3,F4,F5 are the 
fused features of Layer3, Layer4, and Layer5 in the template 
branch and the search branch, respectively.

3.2  Transformer Feature Integration Network

The traditional transformer network consists of an encoder 
and a decoder, which are used by stacking the encoder and 
decoder to deepen the depth of the network. The encoder 
contains a multi-headed self-attention layer and a FFN layer. 
The multi-headed self-attention layer allows features to con-
duct self-attention learning, which effectively capture the 
internal relevance of target features. The decoder contains 
the same two layers as the encoder, and an interactive atten-
tion layer. The interactive attention layer enables the model 
to learn feature correlations between template features and 
search features, thus improving the overall performance of 
the network.

Self-attention is an important part of the transformer. 
The three feature matrices of Query (Q), Key (K) and 
Value (V) in self-attention are obtained from the embed-
ded feature vectors, and the similarity between features is 

(3)F3 = Conv(Fzl3,Fxl3)

(4)F4 = Conv(Fzl4,Fxl4)

(5)F5 = Conv(Fzl5,Fxl5)

calculated using Q and K. Meanwhile, in order to prevent 
the value from being too large, it is first divided by dimen-
sional constant and finally normalized using softmax and 
multiplied by V to get the self-attention feature vector. 
The formula for calculating the self-attention is shown in 
Eq. (6):

where Q, K and V are the linear transformations from the 
input features and dk is the number of columns of the Q, K 
matrix, i.e., the dimensions of the vectors.

The multi-headed self-attention layer in the transformer is 
mapped to Q, K and V by nth linear transformations. Finally, 
the different attention results are concatenated. The multi-
headed self-attention layer is computed in Eqs. (7) and (8):

where WQ

i
,WK

i
,WV

i
 denote the weight matrix vectors 

of Q, K, V, respectively, and the Q, K, V are used in the 
self-attention.

In order to make the transformer structure suitable for the 
tracking task, a transformer feature integration network is 
designed. This network includes an encoder and a decoder. 
The encoder consists of two multi-headed attention layers, 
a similarity calculation layer, a temporal context filtering 
layer, and a FFN. In order to reduce the computational effort, 
a temporal context filtering layer is introduced at the output 
of the encoder's second multi-headed self-attention layer 
to adaptively ignore the unimportant feature information. 
Meanwhile, the FFN introduces a dual-attention mechanism 
in the encoder and decoder. This mechanism consists of two 
branches: channel attention and spatial attention. The chan-
nel attention branch captures global information, while the 
spatial attention branch focuses on local information. The 
outputs of the two branches are concatenated together to 
further improve the robustness of the tracking model. The 
decoder in the transformer feature integration network fol-
lows the structure of the conventional transformer network, 
but introduces a dual-attention mechanism in the FFN. The 
principle structure of the transformer feature integration net-
work designed in this paper is shown in Fig. 3.

In the transformer feature integration network, the encoder 
can efficiently obtain global context and spatio-temporal infor-
mation between the features. The template and search images 
are obtained by AlexNet in the upper and lower branches of 
the feature extraction network to get the features of Layer3 and 
Layer4, and these feature images are fused using a convolution 

(6)Self_Att(Q,K,V) = softmax

�

QKT

√

dk

�

V

(7)Multi_Head(Q,K,V) = Concat
(

h1,… , hn
)

(8)hi = Self_Att(QW
Q

i
,KWK

i
,VWV

i
)

Fig. 2  Multilayer feature extraction fusion network
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operation to obtain the fused features F3 and F4 . F3 and F4 are 
reshaped to obtain encoder inputs F′

3
 and F′

4
.

3.2.1  Encoder with Temporal Context Filtering Layer 
and Similarity Calculation Layer

In order to model the feature global context information more 
effectively, F′

3
 and F′

4
 are first normalized and summed; it 

is possible to fully and effectively utilize the global context 
information after two multi-headed self-attention layers. The 
normalization of F′

3
 and F′

4
 is shown in Eq. (9):

where F1
E
 is the output of feature vectors F′

3
 and F′

4
 after 

summation and normalization, and F1
E
 serves as input to the 

Q and K in the first layer of the multi-headed self-attention 
mechanism. F′

3
 serves as the V, and Norm() is the normaliza-

tion operation. The input and output through the first multi-
headed self-attention mechanism layer is shown in Eq. (10):

where F2
E
 is the output of the first multi-headed self-attention 

mechanism in the first encoder. This output is used as the 
input of the second multi-headed self-attention mechanism 
to further enrich the global contextual information of the 
features. The input and output through the second multi-
headed self-attention mechanism layer is shown in Eq. (11):

(9)F1
E
= Norm(F

�

3
+ F

�

4
)

(10)F2
E
= Norm(F

�

3
+Multi_Head(F1

E
,F1

E
,F

�

3
))

(11)F3
E
= Norm(F2

E
+Multi_Head(F2

E
,F2

E
,F2

E
))

where F3
E
 is the output result of using the second multi-

headed self-attention mechanism. In order to highlight the 
correlation between the input features F′

3
 and F′

4
 and focus 

on the part with higher correlation between them, this paper 
introduces a similarity calculation layer, which includes a 
global average pooling and FFN, and the calculation process 
of the similarity calculation layer is shown in Eqs. (12)-(14):

where Sign
(

F′
4

)

 is the significant features obtained from the 
feature vector F′

4
 after global average pooling and FFN. FCs

E
 

is the output of the combination of the feature vector F′
4
 and 

the output F3
E
 after two layers of self-attention mechanism. 

FS
E
 is the output that highlights the significance of the cor-

relation between FCs
E

 and Sign
(

F′
4

)

.
In the tracking task, there is not a direct temporal contex-

tual link between all the features. Only the links between the 
tracking target features need to be highlighted in the tracking 
task, and the temporal contextual links between background 
and background do not need to be computed, this paper pro-
poses a temporal context filtering layer to prevent unneces-
sary parameter computation. This layer automatically filters 
and removes unimportant temporal context information. The 
computation process of the temporal context filtering layer 
is shown in Eqs. (15)–(17):

where Filter
(

F2
E

)

 is the output of feature F2
E
 after convo-

lution, global average pooling, and FFN. FCf

E
 is the output 

obtained from the interaction of feature information between 
feature F2

E
 and feature F3

E
.FF

E
 is the output of temporal con-

text filtering layer, which can effectively filter out the feature 
associations that do not need to be computed. The features 
FS
E
 and FF

E
 have gone through the similarity calculation layer 

and the temporal context filtering layer, which are fused 
with the output F3

E
 of the second multi-headed self-atten-

tion mechanism to obtain the final enhanced feature F4
E
 . The 

computation process is shown in Eq. (18):

(12)Sign
(

F
�

4

)

= FFN(GAP(F
�

4
))

(13)FCs
E

= Conv(Cat(F3
E
,F

�

4
))

(14)FS
E
= FCs

E
× Sign

(

F
�

4

)

(15)Filter
(

F2
E

)

= FFN(GAP(Conv(F2
E
)))

(16)F
Cf

E
= Conv(Cat(F2

E
,F3

E
))

(17)FF
E
= F

Cf

E
× Filter

(

F2
E

)

(18)F4
E
= F3

E
+ FF

E
+ FS

E

Fig. 3  Transformer feature integration network
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The transformer focuses on spatio-temporal and global 
context information. In order to make significant enhance-
ment of both channel and spatial dimensions, this paper 
introduces a dual-attention module to enhance the features 
in both spatial and channel dimensions. The feature vector 
F4
E
 inputs to two branches of the dual-attention module 

after the FFN. One branch is used to compute the chan-
nel attention, which highlights the features by increas-
ing the weights of the important features on the channel. 
Another branch is used to compute spatial attention, which 
serves the same way as channel attention. The features 
with global context information are further augmented on 
the channel and spatial to obtain the final output of the 
integrated feature FE . The schematic diagram of the dual-
attention module in FFN is shown in Fig. 4.

For the channel attention branch, a global average 
pooling operation is first used on the features to make the 
height (H) and width (W) become 1, and then the weights 
of different channels are obtained by two fully connected 
layers and sigmoid activation function. For the spatial 
attention branch, the fully connected layers are utilized to 
reduce the number of channels, and then in the middle of 
spatial attention, the local information is interacted with 
the global information using the cat function. Finally, the 
information from two branches is used to obtain the same 
features as the input feature layer using a broadcast-like 
mechanism. The dual-attention mechanism is realized in 
the formulas (19)–(22):

where F4
E
(c) is the output of global component, F4

E
(s) the out-

put of local component, F4
′

E
 is the output of the dual-attention 

module, and FE the output of the integrated features of the 
encoder.

It improves the representation ability of FFN and reduces 
the computational effort. GELU is an activation function that 
adjusts the output through a gating mechanism, applying 
the concept of stochastic regularity in nonlinear activation 
[22]. The GELU in both branches of Fig. 4 is adapt to the 
nonlinearity of network model, which can effectively avoid 
the gradient disappearing problem.

3.2.2  Decoder for Transformer Feature Integration Network

In the transformer feature integration network, a conven-
tional decoder is used, and the initial input is F′

5
 obtained 

from the deep feature F5 of the AlexNet network by dimen-
sional reshaping. The F′

5
 is passed through a multi-headed 

self-attention layer and then interacts with the output FE of 
the encoder to propagate useful temporal information and 
enhance feature representation. The input and output process 
of the first layer in the decoder is shown in Eq. (23):

where F1
D
 is the output of the first multi-headed self-attention 

layer, F1
D
 is used as the Q of the second multi-headed self-

attention layer and the output FE of the encoder as the K 
and V for the information interaction between the features, 
which is used to enrich the key information of the search 
features. The input and output process of the second layer 
in the decoder is shown in Eq. (24):

where F2
D

 is the output of the second multi-headed self-
attention layer, which is passed through the FFN to obtain 
the final feature vector Fout for the classification and regres-
sion network, the computation process is shown in Eq. (25):

where Fout is the final output of the decoder.

(19)F4
E
(c) = GELU(Conv

(

AVG
(

F4
E

))

)

(20)F4
E
(s) = GELU(Conv

(

F4
E

)

)

(21)
F4

�

E
= Sigmoid(Conv

(

F4
E
(c)

)

⋅ Sigmoid
(

Conv
(

Cat
(

F4
E
(c),F4

E
(s)

)))

(22)FE = Norm(F4
E
+ F

4

E
⋅ F4

�

E
)

(23)F1
D
= Norm(F

�

5
+Multi_Head(F

�

5
,F

�

5
,F

�

5
))

(24)F2
D
= Norm(F1

D
+Multi_Head(F1

D
,FE,FE))

(25)Fout = Norm(F2
D
+ FFN(F2

D
))

Fig. 4  Module diagram of the dual-attention module
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3.3  The Overall Algorithm Implementation

Throughout the implementation of the tracking algorithm, 
the final tracking algorithm model is obtained by offline 
training using the publicly available datasets VID [23], 
LaSOT [24], GOT-10k [25], and COCO [26]. The target 
state of the tracked target is first determined in the ini-
tial template frame, and then the trained model is used to 
predict the state of the target in the subsequent frames. 
The specific process is to pass the template image and 
the search image through the feature extraction network 
to obtain the input of the transformer feature integration 
network encoder and decoder. In the encoder, the temporal 
context filtering layer adaptively filters out unimportant 
feature information, while the similarity calculation layer 
highlights relevant feature. The FFN employs a dual-atten-
tion mechanism to enhance features in the channel and 
spatial dimensions. This produces feature vectors that inte-
grate spatio-temporal and global contextual information. 
The final output features are obtained by interacting the 
template information with the information of the search 
branch through a decoder and propagating the temporal 
context information. The output features are sent to the 
classification regression network to complete the target 
localization and tracking. During the target-tracking pro-
cess, the video frames are read sequentially. After com-
pleting the image normalization operation, the feature 
extraction process is carried out, and then the tracking is 
realized.

The specific implementation process is as follows.
Input: Selecting an image pair in the video sequence, the 

template image is preprocessed to size 127 × 127, and the 
search image size is 287 × 287.

Output: the target state of the tracking target in the sub-
sequent frames.

Training network models:

(1) The designed object-tracking network is trained offline 
on four publicly available datasets, VID [23], LaSOT 
[24], GOT-10k [25], and COCO [26].

(2) The AlexNet network is used as a feature extraction net-
work for extracting the feature vectors of the template 
images and search images.

(3) Classification loss using cross-entropy loss and binary 
cross-entropy loss and regression loss using IOU loss.

(4) The SGD optimizer is used to optimize the network 
model, and the initial learning rate is set to 5 × 10−4 
and the weight decay is set to 10−4.

Object tracking:

(1) Image pairs are extracted from the test dataset as tem-
plate image z and search image x, respectively.

(2) Feature extraction of template images and search 
images using a feature extraction network to obtain 
features F3 , F4 , F5 by Eqs. (1)–(5).

(3) F3 , F4 are used as the input to the encoder in trans-
former feature integration network, and pass through 
two layers of multi-headed self-attention layer, tempo-
ral context filtering layer, similarity calculation layer, 
and FFN with dual-attention mechanism, respectively, 
then the output FE of the encoder is obtained by Eqs. 
(6)–(22).

(4) The F5 passes dimensional reshaping and interacts 
with FE for information interaction in the decoder of 
transformer feature integration network, and finally the 
feature vector Fout that integrates global context and 
spatio-temporal information.

(5) Fout is fed to the classification and regression network 
to get the target state of the tracking target in the sub-
sequent frames.

4  Experimental Results and Analysis

4.1  Experimental Details and Evaluation Criteria

In order to verify the effectiveness of the tracking algo-
rithm proposed in this paper, image pairs were extracted 
from four publicly available large datasets, VID [23], 
LaSOT [24], GOT-10K [25], and COCO [26], and the 
template image was set to 127 × 127 and the search image 
was set to 287 × 287, and the whole tracking algorithm 
was trained for 70 epochs. During the training process, the 
last three layers of AlexNet were fine-tuned in the last 60 
epochs, while the first two layers were frozen. In addition, 
the learning rate was initialized to 5 × 10−4 , the batch size 
was set to 220, the weight decay and momentum were 
set to 10−4 and 0.9, respectively, and optimized using the 
gradient descent method SGD optimizer.

In order to objectively evaluate the performance of 
the proposed tracking algorithm, this paper uses a One-
Pass Evaluation (OPE) to evaluate tracking performance, 
including precision and success rate. Specifically, preci-
sion is calculated by comparing the distance (in pixels) 
between the tracking results and the real bounding box, 
and different trackers are ranked according to a threshold 
(20 pixels) The obtained precision is normalized to reduce 
the sensitivity of the precision metric to the target size 
and image resolution. The tracking algorithms are ranked 
between 0 and 0.5 using the area under the curve (AUC) 
under the normalized precision metric. The success rate 
was calculated using the Intersection over Union (IOU).
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4.2  Comparison with Typical Trackers

In order to comprehensively analyze the overall performance 
of the proposed tracker under the interference of complex 
background and other factors, the tracking algorithm are 
evaluated on three public authoritative benchmark datasets 
OTB100 [27], LaSOT [24], GOT-10k [25], four well-known 
aerial tracking benchmark datasets DTB70 [28], UAV123 
[29], UAV@10fps [29], and UAV20L [29] are evaluated 
on typical tracking algorithms, and the performance of the 
tracking algorithms was analyzed from multiple perspec-
tives. A comprehensive evaluation and comparison are con-
ducted in 55 existing typical tracking algorithms and results 
of the compared algorithms are obtained from the top ses-
sion paper.

4.2.1  Comparative Analysis with Typical Tracking 
Algorithms on the OTB100 Dataset

The OTB100 dataset has a total of 98 videos and 100 test 
scenarios and contains a total of 11 tracking challenge fac-
tors, a fair and accurate evaluation of various tracking algo-
rithms can be compared. On the OTB100 dataset, this paper 
compares and analyzes the performance of typical trackers 
using two evaluation metrics, precision and success rate.

The trackers compared on the OTB100 dataset include 
SRDCF [30], Staple [31], MEEM [32], CFNet [33], MUS-
TER [34], SiamFC [1], DSST [35], and Struck [36], totaling 
8 types. Figure 5 shows the precision and success rate plots 
of the 9 typical trackers on the OTB100 dataset.

As can be seen from Fig. 5, the proposed tracking algo-
rithm significantly outperforms other typical tracking 

algorithms such as SiamFC in terms of precision and suc-
cess rate. This is due to the fact that SiamFC uses a simple 
similarity calculation to estimate the position of the target, 
making it difficult to accurately track the target in environ-
ments such as fast moving.

CFNet uses correlation filters as an update module and 
integrates it with CNN, and the performance is still lacking 
compared to typical tracking algorithms, because correlation 
filtering is difficult to deal with boundary effects. Thanks to 
the newly designed transformer feature integration network, 
the proposed tracking algorithm improves 7.7% in precision 
and 5.8% in success rate compared to the typical Siamese 
tracking algorithm SiamFC.

4.2.2  Comparative Analysis with Typical Tracking 
Algorithms on LaSOT Dataset

The LaSOT dataset contains 1400 video sequences totaling 
over 3.5 M frames. It provides not only visual bounding box 
annotations, but also rich natural language specifications, 
LaSOT dataset is more challenging than previous datasets 
and all training is long-term. It is a large-scale, high-quality 
dedicated benchmark dataset for object-tracking training and 
evaluation of tracking algorithms. Performance is evaluated 
using two evaluation metrics, the normalized precision plot 
and the success plot.

The tracker compared on the LaSOT dataset include 
SiamMask [37], C-RPN [5], SiamDW [4], VITAL [38], 
SPLT [39], MDNet [40], and D3S [41]. Figure 6 shows the 
result of normalized precision plot and success plot with 
other nine typical trackers on the LaSOT dataset.

Fig. 5  Precision and success plots of the tracking algorithm on the OTB100 dataset
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As can be seen in Fig. 6, the proposed tracking algo-
rithm achieves better tracking performance on the LaSOT 
dataset with the AUC score (49.1%) and the precision score 
(57.0%), which surpass the best results of the typical track-
ing algorithms.

The SiamMask method only considers the appearance 
features of the current frame and can hardly use global con-
text and spatio-temporal information. This makes it difficult 
to distinguish similar interference. Meanwhile, the Siam-
Mask tracking algorithm sacrifices precision for speed. 
Therefore, the tracking precision needs to be improved. 
C-RPN networks are prone to model drift because the link 
of key information between features is not considered in the 
tracking process.

The tracking algorithm proposed in this paper benefits 
from the designed transformer feature integration network, 
which can effectively construct long-term dependencies 
between features and global contextual information ignored 
by CNN. Therefore, the tracking algorithm proposed in this 
paper can obtain better robustness on the long-time dataset 
LaSOT.

4.2.3  Comparative Analysis with Typical Tracking 
Algorithms on the GOT‑10k Dataset

The GOT-10k dataset provides more than 10,000 video 
and 1.5 million manually labeled bounding boxes, which 
has the characteristics of rich scenario and difficult algo-
rithmic challenges, and realizes the uniform training and 
stable evaluation of deep trackers. Average overlap (AO) 

and success rate (SR) are two evaluation methods for the 
GOT-10k dataset. Success rate is the precision of suc-
cessful tracking at a certain AO threshold, and take two 
thresholds of 0.5 and 0.7. The tracking results obtained 
from the test are uploaded to the official website to get the 
performance results of the test, which reflects the fairness 
and effectiveness of the tracking algorithm in this paper.

The trackers compared on the GOT-10k dataset include 
SPM [42], GOTURN [43], CCOT [44], ECO [45], and 
others. Figure 7 shows the success rate plots of 9 typical 
trackers on the GOT-10k dataset.

As can be seen in Fig. 7, the proposed tracking algo-
rithm significantly outperforms other tracking algorithms 
on the GOT-10k dataset. To better reflect the performance 
of the proposed tracking algorithm on the GOT-10k data-
set, Table 1 illustrates the average overlap rate and success 
rate thresholds of 0.5 and 0.75 for the tracking algorithm 
in detail.

Table 1 shows the performance analysis of the tracking 
algorithm proposed in this paper compared with typical 
tracking algorithms on the GOT-10K test dataset, includ-
ing specific data for AO, SR0.5, and SR0.75. The com-
parative tracking algorithms include: SiamRPN +  + and 
SiamRPN tracking algorithms, which introduce RPN net-
works in the detection domain, SPM tracking algorithm 
combines coarse matching and fine matching, THOR and 
ECO tracking algorithms are with update mechanism. 
GOTURN tracking algorithm is for offline learning neu-
ral networks, and MDNet tracking algorithm is for multi-
domain learning model.

Fig. 6  Normalized precision and success plots of the tracking algorithm on the LaSOT dataset
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As can be seen from Table 1, the tracking algorithm pro-
posed in this paper achieves better tracking performance on 
the AO, SR (0.5), and SR (0.75) evaluation metrics on the 
GOT-10k dataset. Compared with SiamFC, AO, SR (0.5), 
and SR (0.75) are improved by 17.8%, 29.6%, and 20.6%, 
respectively. Compared with SiamRPN, AO, SR (0.5), and 
SR (0.75) improved by 6.3%, 7.3%, and 5.1%, respectively.

SiamFC considers tracking as a matching problem, where 
similarity is computed on the outputs of the upper and lower 
branches of the Siamese network and the location of the tar-
get is estimated. This method is simple and straightforward, 
it is difficult to accurately localize the tracking target due 
to insufficient representation of the extracted features, and 
the similarity calculation is simple. Therefore, the perfor-
mance needs to be improved compared with other tracking. 

SiamRPN and SiamRPN +  + use the traditional anchor gen-
eration mechanism, which has predefined anchor frames and 
cannot adapt to the fast motion and motion blur tracking 
scenario. Tracking drift is likely to occur and even tracking 
target failure when tracking target with fast motion.

Due to the design of transformer feature integration net-
work, the tracking algorithm proposed in this paper consid-
ers both the global contextual information and spatio-tem-
poral information and the long-term dependencies between 
the features using encoder. Therefore, the tracking algorithm 
proposed in this paper has better performance on the GOT-
10k dataset compared with other typical tracking algorithms.

4.2.4  Comparative Analysis with Typical Tracking 
Algorithms on the DTB70 Dataset

The DTB70 dataset is a high-diversity benchmark video 
dataset containing a total of 70 video sequences of short-
term and long-term aerial targets in a variety of challenging 
scenarios, which can be used to study motion modeling in 
the field of visual tracking. The robustness of the tracking 
algorithm proposed in this paper can effectively evaluate 
when dealing with motion.

The trackers compared on the DTB70 dataset include 
27 typical trackers such as HiFT, SiamRPN +  + , Sia-
mAPN +  + , SiamAPN, CCOT, DeepSTRCF, MCCT, DaSi-
amRPN, and others. Table 2 shows the precision and success 
rate of these typical trackers on the DTB70 dataset.

The precision and success rate of the proposed track-
ing algorithm on the DTB70 dataset are improved by 1.1% 
compared to the HiFT tracking algorithm. Compared with 

Fig. 7  Comparison results of 
GOT-10k dataset

Table 1  Performance comparison of typical trackers on the GOT-10k 
dataset

Methods AO SR0.5 SR0.75

TFITrack 0.526 0.622 0.304
SiamRPN +  + [3] 0.517 0.616 0.325
SPM [42] 0.513 0.593 0.359
SiamRPN [2] 0.463 0.549 0.253
THOR [46] 0.447 0.538 0.204
SiamFCv2 [1] 0.374 0.404 0.144
SiamFC [1] 0.348 0.353 0.098
GOTURN [43] 0.347 0.375 0.124
ECO [45] 0.316 0.309 0.111
MDNet [40] 0.299 0.303 0.099
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SiamAPN +  + and SiamRPN +  + , the precision is improved 
by 2.4% and 1.8%, and the success rate is improved by 1.9% 
and 1.6%, respectively.

HiFT and SiamAPN +  + are tracking algorithms proposed 
for the UAV domain. HiFT combines shallow and deep 
semantic information by extracting features from a bench-
mark network to make full use of the valuable feature infor-
mation. At the same time, the transformer network is used 
to enhance the feature representation. SiamAPN +  + uses 
similar self-attention and cross-attention in transformer net-
work to enhance feature representation.

Different from these two approaches, this paper uses two 
multi-headed self-attention layers in transformer encoder 
to enhance the key information dependencies between fea-
tures. Meanwhile, a dual-attention mechanism is introduced 
in FFN for enhancing the channel and spatial information 
ignored by FFN, and it further obtains feature vectors with 
higher representation.

SiamRPN +  + , CCOT, and DASiamRPN are conven-
tional target trackers, and it can be seen from Table 2 that 
the proposed method shows superior tracking performance 
both to conventional trackers and trackers designed for UAV. 
This also proves that the tracker proposed in this paper can 
be used not only for conventional object tracking, but also 
for UAV object tracking in the aerial domain.

4.2.5  Comparative Analysis with Typical Tracking 
Algorithms on UAV Dataset

UAV123 contains 123 fully labeled high definition video 
datasets and benchmarks captured from low-altitude aerial 
views, it consists 91 UAV videos with several longer video 
sequences that are split into three or four shorter videos, so 
there are 123 ground truth. UAV20L is a long-term track-
ing benchmark in the UAV123 dataset, which contains 20 

long-time video sequences with an average length of more 
than 2900 frames, and has high authority in the performance 
evaluation dataset.

The trackers compared on the UAV dataset include typical 
trackers such as HiFT [9], SiamRPN [2], and DaSiamRPN 
[53]. Figures 8 and 9 show the results of the precision and 
success rate of the tracking algorithm proposed in this paper 
compared with 8 and 9 typical trackers on the UAV123 and 
UAV20L datasets, respectively.

As can be seen from Fig. 8, the tracking algorithm in 
this paper has the same precision as HiFT on the UAV123 
dataset, but the success rate is improved by 0.5% compared 
to HiFT, which reflects that the tracking algorithm in this 
paper frames the target more accurately. Compared with 
DASiamRPN and SiamRPN of multi-scale action, the pre-
cision is improved by 0.6% and 1.5%, and the success rate 
is improved by 2.5% and 1.2%, respectively.

As can be seen from Fig. 9, the tracking algorithm in this 
paper is compared to the tracking algorithms HiFT and Sia-
mAPN +  + designed for UAV on the UAV20L dataset, the 
precision is improved by 4.3% and 7%, and the success rate 
is improved by 4.6% and 5.2%, respectively. UAV20L is a 
long-time tracking dataset, the results from Fig. 9 show the 
performance of the proposed tracking algorithm on the long-
time dataset. The proposed tracking algorithm still maintains 
a good tracking performance on the long-time dataset.

Figure 10a–l shows the precision and success rate results 
of this tracker compared to a typical tracker on 12 challenge 
attributes for the UAV123 dataset. 12 attributes include 
scale variation (SV), aspect ratio change (ARC), low reso-
lution (LR), fast motion (FM), full occlusion (FOC), par-
tial occlusion (POC), out-of-view (OV), background clut-
ter (BC), low resolution (LR), illumination variation (IV), 
viewpoint change (VC), camera motion (CM), and similar 
object (SOB).

Table 2  Precision and success 
rates of typical trackers on the 
DTB70 dataset

Methods Precision Success Methods Precision Success

TFITrack 0.813 0.605 IBCCF[55] 0.669 0.460
HiFT [9] 0.802 0.594 MCPF [56] 0.664 0.433
SiamRPN +  + [3] 0.795 0.589 UDT + [57] 0.658 0.462
SiamAPN +  + [8] 0.789 0.594 STRCF [58] 0.649 0.437
SiamAPN [8] 0.784 0.586 ECO-HC [45] 0.643 0.453
CCOT [44] 0.769 0.517 CF2 [49] 0.616 0.415
DeepSTRCF [58] 0.734 0.506 UDT [57] 0.602 0.422
MCCT [50] 0.725 0.484 CoKCF [59] 0.599 0.378
ECO [45] 0.722 0.502 BACF [47] 0.590 0.402
SiamFC [1] 0.719 0.483 fDSST [48] 0.534 0.357
AutoTrack [51] 0.716 0.478 SRDCF [30] 0.512 0.363
ARCF [52] 0.694 0.472 DSiam [60] 0.495 0.337
DaSiamRPN [53] 0.694 0.472 DSST [35] 0.463 0.276
TADT [54] 0.693 0.464 Staple [31] 0.365 0.265
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As can be seen from Fig. 10a–j, the tracking algorithm 
proposed in this paper improves the localization precision 
of features due to make full use of both shallow and deep 
information. Meanwhile, similarity calculation layer and 
dual-attention mechanism are introduced in the encoder 
of the transformer feature integration network. It enables 
the tracking algorithm to achieve better performance on the 
UAV123 dataset with scale variation, aspect ratio change, 
low resolution, fast motion, full occlusion, partial occlusion, 
out-of-view, illumination variation, viewpoint change, and 
camera motion.

As can be seen from Fig. 10k and l, DaSiamRPN con-
structs semantically negative samples that enrich the dif-
ficult negative sample data and allow the network to learn 
discriminative abilities. Therefore, it has better tracking 
performance under the challenging factors of similarity and 
background clutter. However, the performance is slightly 
lower than the tracking algorithm proposed in this paper 
under full occlusion, partial occlusion, and fast motion due 
to ignore the dependencies between features.

UAV123@10fps was created by downsampling from 
the original 30FPS recording. Therefore, the strong motion 

Fig. 8  Precision and success plots of the tracking algorithm on the UAV123 dataset

Fig. 9  Precision and success plots of the tracking algorithm on the UAV20L dataset
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Fig. 10  Performance evaluation 
results for different attributes of 
the UAV123 dataset
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problem is more severe in UAV123@10fps compared to 
UAV123, which greatly improves the difficulty of tracking. 
It is clear that the proposed tracking algorithm maintains 
superior robustness from the comparison with other typical 
trackers. Figure 11 shows the results of the precision and 

success rate of the proposed tracking algorithm compared 
with 18 typical trackers on the UAV123@10fps dataset.

UAV123@10fps is a dataset for the strong motion prob-
lem, testing on this dataset and improving the tracking diffi-
culty. As can be seen from Fig. 11, the precision and success 

Fig. 10  (continued)

Fig. 11  Precision and success plots of the tracking algorithm on the UAV123@10fps dataset
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rate of the tracking algorithm proposed in this paper reach 
76.6 and 58.1 on the UAV123@10fps dataset. Compared 
with HiFT and SiamAPN +  + , the precision has improved 
by 1.7% and 0.2%, respectively, while the success rate has 
improved by 1.2% and 0.1%, respectively. It shows the high 
robustness of the tracker when it encounters strong motion 
scenario.

When combined with the DTB70 data results, it is further 
demonstrated that the tracking algorithm proposed in this 
paper improves the localization precision of features due 
to make full use of shallow and deep information. Mean-
while, in the encoder of transformer feature integration net-
work, the correlation between features is further highlighted 
using the similarity calculation layer, and the dual-attention 
mechanism is introduced in the FFN to correct the channel 
and spatial features, which enriches the channel and spatial 
feature information ignored by transformer. The newly pro-
posed tracking method can adapt conventional object track-
ing and domain-specific object tracking.

4.3  Qualitative Analysis of the Tracking Algorithm

To further validate the performance of the newly proposed 
tracking algorithm, it displays the qualitative evaluation 
results with 7 typical tracking method including HiFT [9], 
DaSiamRPN [53], SiamDW [4], SiamRPN [2], MEEM [32], 
MUSTER [34], and SRDCF [30].The comparison results of 

3 video sequences are selected for analysis on the UAV123 
dataset, namely bike1_1, boat9_1, and group1_2_1. The vis-
ualization tracking results can be seen from Figs. 12, 13, 14.

Figure 12 shows that the trackers for all comparisons 
frame the target accurately at frame 11. However, the 
SiamRPN and SRDCF tracker undergoes tracking drift 
and gradually moves away from the target in frame 268. At 
frames 858, the tracking algorithms SiamDW and MUSTER 
failed to track. On the contrary, thanks to the constructed 
transformer feature integration network, the newly designed 
tracking method exhibits much better tracking results.

The videos in Fig. 13 have less information about the 
tracked target, and the whole image is background informa-
tion. It is challenging for the tracking algorithm, which can 
easily lead to tracking failure if the foreground and back-
ground are not correctly determined. As the target continues 
to move into the distance, the HiFT tracker frames out too 
much background information at frame 163 and definitely 
fails to track at frame 720. The tracking scheme designed 
in the paper is due to the combination of Transformer's rich 
spatio-temporal context, which is used to construct long-
time dependencies between the features. It enables the algo-
rithm in this paper to still find the location of the target and 
contain little contextual information.

As can be seen from Fig. 14, at the beginning, the track-
ers compared can track the target more accurately. At frame 
1759 and 2407, the SiamDW and SRDCF tracker tracks 

Fig. 12  Visualization of bike1_1 tracking results in UAV123 dataset

Fig. 13  Visualization of boat9_1 tracking results in UAV123 dataset
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other objects due to the interference of similar objects. The 
proposed new method can show better robustness when the 
tracker encounters similar object interference due to the ben-
efit of spatio-temporal and contextual information.

5  Conclusion

In this paper, a tracking algorithm based on transformer fea-
ture integration network is proposed. First, AlexNet is used 
as the feature extraction network to pre-extract features from 
the template image and the search image to get the input of 
transformer feature integration network. Transformer feature 
integration network contains an encoder and a decoder, this 
paper introduces temporal context filtering layer, similarity 
calculation layer and dual-attention module in the encoder. 
The temporal context filtering layer is used for adaptively 
filtering the unimportant feature information, reducing the 
amount of parameter calculations and improving the effi-
ciency of the tracker. The similarity calculation layer is 
used to enhance the correlation between different layers 
and enhance the feature representation. The dual-attention 
module can enhance the channel and spatial information 
ignored in FFN to obtain feature vectors with stronger fea-
ture representation ability. It is combined with transformer 
for constructing dependencies within and between features, 
which enhances the global attention of features, enriches the 
global context and spatio-temporal information, and obtains 
integrated feature vectors with stronger representational abil-
ity, it can be used for subsequent localization tracking with 
classification regression networks. The proposed tracking 
algorithm shows a significant improvement in precision 
and success rate compared to the state-of-the-art trackers 
on seven authoritative test datasets, which demonstrates the 
feasibility of the algorithm in conventional tracking targets 
and aerial scenarios. Although current research methods 
have produced positive evaluation results for testing typi-
cal public datasets, there are still numerous challenges to 
overcome in the future. Given the practical complexities of 
the application requirements, and the limitations of existing 

methods due to the lack of labeled data and model generali-
zation ability, future research will focus on model training 
dataset labeling augmentation and model lightweight design.
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