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Abstract
Grey Wolf optimization (GWO) is a newly developed stochastic meta-heuristic technique motivated by nature. It shows
potential in diverse optimization challenges. It replicates grey wolf hunting behaviour and social hierarchy, exploring the
solution space similar to their natural process. The algorithm efficiently explores and converges to the optimal solution.
However, a drawback of the standard GWO is its limited exploitation capability due to its exploration-focused iterations.
This may hinder finding the optimal solution nearby, leading to lower local convergence rates and degraded solution quality.
To address this, the GWO-Employed-Onlooker model suggests incorporating the onlooker and scout bee operators from the
artificial bee colony algorithm (ABC) during the position-changing stage of the grey wolves. This enhances exploitation
capability, resulting in improved local convergence rates and better solution quality. The proposed method’s performance is
evaluated on various optimization functions and compared their convergence rate to standard GWO, Genetic Algorithm (GA),
Firefly Algorithm (FA), ABC, and Ant Colony Optimization (ACO) techniques. The results demonstrate that the proposed
strategy GWO-Employed-Onlooker is better, indicating that it is valuable in solving optimization problems.

Keywords Grey Wolf · Stochastic · Heuristics · Ant colony · Optimization

1 Introduction

Swarm intelligence (SI) is a modern Artificial intelligence
(AI) technology that has captured the interest of researchers
during the past several years. All of the methodologies
covered by SI are used to solve various problems of opti-
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mization [1]. The collective activity of various forms of
swarming, such as honey-bees termites, ant colonies, groups
of fish, and groups of birds is the main source of motiva-
tion for SI approaches. However, while trying to accomplish
different kinds of challenging objectives while performing
different complicated tasks, such swarms create a decentral-
ized system that encourages strong coordination and inter-
communication. Each of the mentioned swarms establish a
very strong communication system to assist the entire sys-
tem toward accomplishing many different kinds of complex
goals, such as setting nets, looking for food, travelling from
one place to a different one, and residing safely in hazardous
environments. To achieve these objectives, an effectively
managed and mutually intelligible synchronized structure is
managed. To maintain a strong coordination system, swarms
use two phenomena: exploration and exploitation. Explo-
ration is the process of collecting new information, while
exploitation is the process of using existing information
to improve coordination. Exploration and exploitation are
two crucial concepts utilized in SI techniques for solv-
ing optimization problems. Exploration involves expanding
the search space to discover new solutions, while exploita-
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tion focuses on refining the best solutions found so far to
avoid missing optimal solutions nearby. These processes are
employed in optimization to target global and local solu-
tions, respectively. Exploration broadens the search space
by varying optimization function values, while exploitation
concentrates on known solutions and neighbouring candi-
dates to avoid overlooking the best local solution. Striking
a balance between exploration and exploitation is essential
for achieving optimal solutions in problems related to opti-
mization [2]. In [3], the authors first proposed the concept
of self-organized and decentralized swarm intelligence for
optimizing cellular robotic systems, and it has since found
applications in domains, such as load balancing, mobile
network routing, and problem-solving. SI is a field within
artificial intelligence that studies the collective behaviour of
decentralized systems. SI algorithms draw inspiration from
natural swarms, such as bird flocks, fish schools, and ant
colonies. These algorithms have demonstrated effectiveness
in solving a variety of optimization problems. Well-known
SI techniques include: Ant colony optimization (ACO) [4],
Krill herd algorithm [5], Particle swarm optimization (PSO)
[6], Firefly algorithm (FA) [7], Artificial bee colony (ABC)
[8], Bat algorithm [9], and Grey Wolf algorithm (GWO)
[10]. SI algorithms can also be used in conjunction with
various other artificial intelligence (AI) techniques to target
particular functions. PSO, for example, was used to optimize
parameters for support vector machines in goods volume
prediction [11]. Additionally, GWO has been paired with
Particle Swarm Optimization (PSO) [12], Differential Evo-
lution (DE) [13], Genetic Algorithm (GA) [14], Ant Lion
Optimizer (ALO) [15], and Simulated Annealing (SA) [16]
for enhanced performance.

1.1 GreyWolf Optimization Algorithm

Grey Wolf Optimizer (GWO) is a meta-heuristic method
motivated by grey wolf social behaviour. It was introduced
by Mirjalili et al. in 2014 and has been successfully applied
to various optimization challenges. The algorithm simulates
a wolf pack hunting for prey, with distinct roles assigned to
the wolves: Alpha, Beta, Delta, and Omega. The first, sec-
ond, and third best solutions are represented by the Alpha,
Beta, and Delta wolves, respectively, during the optimization
process [17].

GWO consists of three stages: initialization, exploration,
and exploitation. During the exploration phase, the locations
of the wolves are updated using an equation derived from the
hunting behaviour of wolf packs. This equation incorporates
individual, social, and prey movements, enabling the explo-
ration of the search space and the identification of potential
solutions. In the exploitation stage, Alpha, Beta, and Delta
wolves further refine the optimal solution found so far using
a greedy search strategy.

GWO is a simple and efficient technique that shows
promising results in both continuous and discrete optimiza-
tion problems [18]. It leverages the hunting behaviour of
grey wolves, which operate in groups and employ a search-
ing, encircling, and attacking strategy. The algorithm assigns
specific roles to wolves, with the Alpha wolf representing the
best, the Beta wolf as the second best, and the Omega wolves
representing the remaining members of the pack [19]. The
mathematical modelling of this algorithm can be represented
by Eq. 1 [20]

X(t + 1) = X(t) − A.D. (1)

The equation for determining the subsequent location of a
wolf, denoted as X(t + 1), is based on its present location,
X(t), a coefficient matrix represented by A, and a vector D
that depends on the prey’s location (X p). The mathematical
expression for D is given by Eq. 2 [21]

D = |C .X p(t) − X(t)|, (2)

where C = 2.r2. r2 is a vector produced at random from
the interval [0, 1]. The preceding two equations simulate the
grey wolves’ movement speeds and step sizes

A = 2a.r1 − a. (3)

In Eq. 3, a is a vector that linearly decreases from 2 to 0
for every iteration. Furthermore, r1 is a randomly generated
vector within the range [0, 1]. To update the parameter, you
can utilize the following equation:

a = 2 − t

(
2

T

)
. (4)

In Eq. 4, t shows the most recent iteration, while T denotes
the total number of iterations. Equations 1,2,3, and 4 can
only be utilized for relocating the wolf to any position in
a hypersphere around the prey. When the global optimum
is unknown in a problem of optimization, then alpha, beta,
and delta are considered to have a better knowledge of their
positions. Equation 5 requires other wolves to update their
locations [22]

X(t + 1) = 1

3
X1 + 1

3
X2 + 1

3
X3, (5)

where X1, X2, and X3 are calculated in Eq. 6 as

X1 = Xα(t) − A1.Dα

X2 = Xβ(t) − A2.Dβ

X3 = Xγ (t) − A3.Dγ ; (6)
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Dα , Dβ , Dγ are calculated using Eq. 7

Dα = |C1.Xα − X |
Dβ = |C2.Xβ − X |
Dγ = |C3.Xγ − X |. (7)

2 Literature Review

GWO has been effectively used for a variety of optimization
problems since its launch in 2014. Researchers have explored
hybridization strategies to further improve the speed and
effectiveness of GWO [23]. One popular hybrid approach is
combining GWO with Particle Swarm Optimization (PSO).
Kumar et al. [24] proposed a hybrid algorithm called GPSO–
GWO, which utilizes PSO to generate the initial population
and employs GWO to enhance the PSO solutions. Experi-
mental results demonstrate that GPSO–GWO outperforms
both PSO and GWO in terms of solution quality and con-
vergence speed [24]. Another hybridization method involves
combiningGWOwithGenetic Algorithm (GA). Li et al. [25]
introduced a hybrid algorithm named GGA-GWO, where
GA generates the initial population and GWO refines the
solutions obtained by GA. Experimental findings indicate
that GGA-GWO outperforms both GA and GWO in terms
of solution quality and resilience [25]. Furthermore, Zhang
et al. [26] proposed a hybrid method called GWO–PSO–
SVM, which combines GWO, PSO, and a Support Vector
Machine (SVM) for breast cancer diagnosis. GWO and PSO
are used to create the initial population of SVMmodels, and
an optimal SVMmodel is implemented as the final solution.
Experimental results demonstrate that in terms of classi-
fication accuracy and sensitivity, GWO–PSO–SVM beats
numerous state-of-the-art approaches [26]. Similarly, Wang
et al. [27] developed a hybrid technique named GWO–DE by
combining GWO with Differential Evolution (DE) to solve
the image thresholding problem. GWO generates the initial
population, and DE refines the solutions produced by GWO.
The experimental results suggest that GWO–DE produces
higher solution quality and faster convergence than GWO
andDE alone [27]. Other hybrid approaches include combin-
ing GWO with Artificial Bee Colony (ABC) in GWO–ABC
proposed by Sahu and Pati [28] for multi-objective opti-
mization. The hybrid algorithm utilizes GWO and ABC
to generate the initial population and select the best solu-
tions using a non-dominated sorting technique. Experimental
results demonstrate that GWO–ABC outperforms various
state-of-the-art algorithms in terms of solution quality and
diversity [28]. Additionally, Tabrizi et al. [29] combined
GWO with the artificial bee colony (ABC) technique to
tackle the economic emission dispatch (EED) problem. This
hybrid approach outperformed other optimization algorithms

in less computational time and best solution quality [29].
Mozafari et al. [30] introduced a new hybrid approach that
combines the GreyWolf Optimizer (GWO) with the Genetic
Algorithm (GA) to solve constrained optimization prob-
lems. The suggested approach performance and quality are
examined in comparison to other algorithms using three
benchmark functions. The outcomes demonstrate that the
hybrid approach performs better than other methods in con-
vergence rate and solution quality [30]. Karthikeyan et al.
[31] published a study where they combined GWO with
the Particle SwarmOptimization (PSO) algorithm to address
the feature selection problem in intrusion detection systems.
The hybrid algorithm was tested on two datasets in compar-
ison with other feature selection techniques. The outcomes
demonstrated that the hybrid method achieved better classi-
fication accuracy and feature subset size compared to other
techniques [31]. Dhillon et al. [32] researched parameter
identification of photovoltaic models and proposed a hybrid
algorithm that combines GWO with the Cuckoo Search
(CS) algorithm. The hybrid method was evaluated and com-
pared to other optimization techniques using a real-world
photovoltaic system. The outcome demonstrated that the
hybrid approachoutperformedothermethods in accuracy and
resilience [32]. Subramanyam et al. [33] developed a hybrid
technique that combines GWO with the Teaching Learning-
Based Optimization (TLBO) approach to tackle the optimal
power flow (OPF) problem. The hybrid algorithm was tested
and compared to other optimization algorithms using the
IEEE 30-bus and 118-bus test systems. The results demon-
strated that the hybrid approach is efficient in computational
time and solution quality as compared with other methods
[33]. Wang et al. [7] developed a hybrid GWO algorithm
with Differential Evolution (DE) to overcome the parame-
ter identification problem of photovoltaic cell models. When
the proposed hybrid algorithm’s performance was compared
to regular GWO and DE algorithms, it outperformed them
[34]. Kumar and Singh [34] proposed a hybrid GWO algo-
rithm with the Shuffled Frog Leaping Algorithm (SFLA) to
address the feature selection problem in intrusion detection
systems. The hybrid algorithm outperforms the traditional
GWO and SFLA algorithms in terms of performance [35].
Sharma and Singh [35] presented a hybrid GWO technique
with Particle SwarmOptimization (PSO) to handle the simul-
taneous placement and routing problem of analog circuits.
The proposed hybrid algorithm performed better when com-
pared to standard GWO and PSO algorithms [36]. Sahu and
Swain [28] proposed a hybrid GWO–ABC algorithm to tune
the Proportional-Integral-Derivative (PID) controller for an
automated voltage regulator (AVR) system. The efficiency
of the hybrid approach was compared to standard GWO and
Artificial Bee Colony (ABC) algorithms, and it achieved bet-
ter results [37]. Pakhira and Das [37] developed a hybrid
GWOmethodwithDifferential Evolution (DE) to address the
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feature selection problem in microarray data classification.
The proposed hybrid algorithmoutperformed standardGWO
and DE algorithms [38]. In conclusion, combining GWO
with different optimization techniques has shown consider-
able promise in terms of enhancing GWO performance. The
hybrid algorithms described in these studies outperformed
the original GWO algorithm and other modern algorithms.

3 Inspiration

Meta-heuristic algorithms utilize two key concepts to eval-
uate the solution search space: exploration and exploitation.
Exploration aims to diversify problem solutions, expanding
the search field to include alternatives with greater varia-
tions. Exploitation on the other side works to narrow down
the solutions by minimizing the differences between dis-
tinct solutions. Exploration involves globalizing the solution
search space, while exploitation involves localizing it [39].
Balancing these two properties is crucial for optimization
algorithms to achieve higher solution quality. If the solu-
tion domain is more explorative but lightly exploitative,
a considerable divergence between the previous iteration’s
solutions and the current iteration’s solutions is found which
results in missing the best solution. Ideally, the solutions
should have a smaller difference between them to ensure
the best outcome. The success of each meta-heuristic algo-
rithm in finding a solution depends on effectively balancing
exploration and exploitation [40]. Similarly, the Gray Wolf
Optimizer (GWO) operates as a meta-heuristic algorithm
with compromises between exploration (identifying new
search areas) and exploitation (locating results within the
neighbourhood search region). However, this compromise
can result in a slow convergence rate and low-quality solu-
tions. To address this issue and tackle various optimization
problems, researchers have proposed different variants of
GWOand hybridizationswith other optimization algorithms.
These approaches aim to strike a balance between exploration
and exploitation. Despite these efforts, there is still ample
room for further improvement [41].

4 Proposed Techniques

4.1 Problem Formulation

GWO is a meta-heuristic technique that takes inspiration
from the social structure and hunting strategies observed in
grey wolves. The GWO algorithm consists of three main
stages, i.e., initialization, wolf’s position changing, and
termination. In the initialization stage, fourwolves are initial-
ized randomly within the solution search space. The wolves

Fig. 1 Proposed TECHNIQUE GWO-Employed-Onlooker

are ranked according to their fitness values, with the alpha
wolf striving for the utmost level of fitness and the omega
wolf aiming for theminimal fitness value. InWolf’s position-
changing stage, each wolf moves towards the location of the
alpha wolf. The amount of movement is determined by a
randomization factor. The algorithm terminates when either
a pre-specified limit of execution is achieved or the fitness
of the alpha wolf has remained unchanged for a specific
number of iterations. When the wolf’s position changes, the
randomization element is significant. It controls the amount
of randomness in the movement of the wolves. A high value
of the randomization factor will cause the wolves to move
more randomly, while a low value of the randomization fac-
tor will cause the wolves to move more deterministically.
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The value of the randomization factor must be balanced to
achieve good performance. If the randomization factor is too
high, the wolves will move too randomly and will be less
likely to produce the best solution. If the randomization fac-
tor is too low, the wolves will move too deterministically and
will be more likely to get stuck in local optima. The optimal
value of the randomization factor will depend on the problem
being solved. However, in general, it is important to find a
value that balances exploration and exploitation in a search
to identify the best answer. Figure 1 represents the data flow
diagramof the proposedmethodGWO-Employed-Onlooker.

Proposed Approach GWO-Employed-Onlooker Pseudo Code

1. Start
2. Initialize the Grey Wolf population
3. Initialize the Onlooker and Employed Bee populations
4. Calculate the fitness of each Grey Wolf
5. Set the maximum number of iterations
6. Initialize the iteration counter to 1
7. While the termination criteria are not met and the maximum number of iterations
has not been reached, do the following:

a. For the first half of iterations, update the positions of Grey Wolves using
Onlooker and Employed Bee operators of ABC:

i. Calculate the fitness of each Onlooker and Scout Bee
ii. Select the best Onlooker Bee and update the position of a Grey Wolf
iii. If the fitness of the Employed Bee is better than the worst Grey Wolf,
replace the worst Grey Wolf with the Employed Bee

b. For the second half of iterations, update the positions of Grey Wolves using
the standard GWO algorithm:

i. Calculate the fitness of each Grey Wolf
ii. Update the positions of Alpha, Beta, and Delta Grey Wolves
iii. Increment the iteration counter

8. End while loop
9. Output the best solution found

4.2 Artificial Bee Colony AlgorithmWorking
Mechanism

ABC is an optimization algorithm that draws inspiration
from the foraging behaviour of honeybees. This algorithm
simulates the behaviours of three distinct types of bees:
employed, onlooker, and scout [42]. Employed bees inves-
tigate their immediate surroundings for food sources and
share their information about quality with onlooker bees.
Onlooker bees utilize this information to determine which
food sources to visit and also engage in communication with
one another to exchange relevant details. Scout bees, on the
other hand, actively explore uncharted areas in search of new
food sources [43]. In the context of optimization, the food
sources represent potential solutions to the problem, with
their quality reflecting the fitness or objective function value

of each respective solution. The employed and onlooker bees
represent different candidate solutions being evaluated,while
the scout bees represent a search for new candidate solu-
tions. The algorithmupdates the candidate solutions based on
their quality, with higher quality solutions being more likely
to generate new candidate solutions [44]. Even lower qual-
ity solutions have a chance to contribute by generating new
candidate solutions with some degree of randomness. ABC
combines local search through employed and onlooker bees
with global search through scout bees to efficiently explore

the solution space and find high-quality solutions to the opti-
mization problem [45].

4.3 GreyWolf AlgorithmWorkingMechanism

The Grey Wolf Optimization (GWO) algorithm is an opti-
mization technique inspired by grey wolf social structure
and hunting behaviour [46]. In this algorithm, a population
of grey wolves is initially generated randomly within the
search space, with every wolf representing a probable solu-
tion to the problem of optimization. Alpha, beta, and delta
are then identified based on their fitness values, which link
to the best, 2nd best, and 3rd best optimal solution in the
population [47]. The positions of the remaining wolves are
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updated using equations based on the positions of the alpha,
beta, and delta wolves. If any updated positions exceed the
boundaries of the search space, they are adjusted to the near-
est boundary. The fitness values of the modified positions
are then analyzed, and the population is updated by picking
the wolves with the best fitness values [48]. By utilizing the
alpha wolf to explore new regions of the search space, the
GWO algorithm strikes a balance between exploration and
exploitation [49]. The algorithm concludes when a termi-
nation criterion is met, either by hitting the upper bound of
iterations or attaining the desired level of convergence. Over-
all, the standard GWO algorithm is known for its simplicity,
efficiency, and satisfactory performance across various opti-
mization problems [50].

5 Assessment of the ProposedModel

The proposed model’s effectiveness was evaluated by con-
sidering various metrics, including the rate at which it
converged, its ability to generate the best possible solutions,
the average quality of the solutions it generated, the worst
quality solution it generated, and the degree of variation or
deviation among the solutions it produced.

5.1 Simulation Results and Discussion

In this part of this paper, we provide an overview of the hard-
ware and software employed for conducting the research. The
experiments were carried out using an HP EliteBook 850 G4
laptop equipped with a 7th-generation Intel Core i7 proces-
sor and 8 GB of RAM. To facilitate efficient execution, we
utilizedMATLABR2017a to implement the proposedmodel
as well as other comparable methods.

5.2 Minimization Benchmark Functions

A set of eight benchmark functions for minimization pur-
poses was utilized in this study. Equation 8 represents the
mathematical expression for function f1. It is a combination
of exponential terms and cosine functions involving x1 and
x2. Equation 9 describes function f2, which involves absolute
values and quadratic terms of x1 and x2. Equation 10 repre-
sents function f3, a combination of quadratic and squared
terms of x1 and x2. Equation 11 describes f4, a combination
of quadratic and linear terms of x1 and x2. Equation 12 rep-
resents f5, a function involving a complex combination of
exponential, cosine, and quadratic terms of x1 and x2. Equa-
tion 13 describes f6, a function involving a quadratic term
and cosine functions of x1 and x2. Equation 14 represents
f7, a function with quadratic and product terms of x1 and x2.
Equation 15 describes f8, a function involving polynomial
terms of x1 and x2. Eqs. 8–15 and Figs. 2 and 3 together form

a comprehensive set of minimization benchmark functions
and their corresponding convergence behaviours, providing
valuable insights into the optimization process

f1 = e−(x1−4)2−(x2−4)2 + e−(x1−4)2−(x2−4)2

+ 2e−(x1)2−(x2−4)2 + 2e−(x1)2−(x2)2 ,
(8)

where xi ∈ {−5, 5}

f2 = |x1| − 5 + (|x2| + 5)2, (9)

where xi ∈ {−10, 10}

f3=100
(
(x2 − x1)

2
)2+(

6.4(x2 − 0.5)2−x1 − 0.6
)2

,

(10)

where xi ∈ {−5, 5}

f4 = 100
(
(x2 − x1)

2
)2 + (x1 − 1)2, (11)

where xi ∈ {−2.48, 2.48}

f5 =
(
x2 − 5.1

4π2 (x1)
2 + 5

π
x1 − 6

)2

+10

(
1 − 1

8π

)
cos x1 + 10, (12)

where xi ∈ {−5, 15}

f6 = (x1 + 2x2 − 7)2 − cos(18x1) − cos(18x2), (13)

where xi ∈ {−1, 1}

f7 = (x1 + 2x2 − 7)2 + (2(x1)(x2) − 5)2 , (14)

where xi ∈ {−10, 10}

f8 = 4(x1)
2 + 2.1(x1)

4 + 1

3
(x1)

6 + (x1)(x2)

−4(x1)
2 + 4(x1)

4, (15)

where xi ∈ {−5, 5}
According to Figs. 2a–d and 3a–d, when it comes to min-

imizing functions, the suggested method is optimal than
standard GWO, standard FA, ABC, and ACO in terms of
how quickly it converges. Figure 2a shows that the conver-
gence graph of the GWO-Employed-Onlooker method has
many fluctuations before the 150th iteration, but after that,
the proposed model’s convergence rate is better than GWO,
FA, ABC, and ACO. Figure 2b shows similar fluctuations,
but after the 200th iteration, the proposed model’s solution
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Fig. 2 Convergence graphs F1, F2, F3, F4

quality is better than all other considered algorithms. Fig-
ure 2c his figure illustrates the convergence graph for the
optimization process of function f3. The graph reveals an
improvement in solution quality over iterations. Specifically,
the GWO-Employed-Onlooker method consistently outper-
forms standard GWO, FA, ABC, and ACO in terms of both
convergence speed and solution quality for the function f3.
This suggests that the proposed method is particularly effec-
tive in minimizing f3, offering a more efficient optimization
solution. Figure 2d is similar to the trend observed in Fig. 3c,
this graph depicts the convergence behaviour for function f4.
The GWO-Employed-Onlooker method continues to outper-
form the standard algorithms (GWO, FA, ABC, and ACO)
in terms of convergence speed and solution quality for f4.

The consistent improvement over iterations further supports
the efficiency of the proposed method in minimizing f4.
Figure 3a convergence graph for function f5 demonstrates
a similar pattern of improvement in solution quality over
iterations. The proposed GWO-Employed-Onlooker method
consistently outshines GWO, FA, ABC, and ACO, indicat-
ing its efficacy in achieving faster convergence and superior
solution quality for f5. Figure 3b graph, representing the
convergence behaviour for function f6, theGWO-Employed-
Onlooker method again exhibits a superior performance
compared to standard GWO, FA, ABC, and ACO. The
trend of improving solution quality over iterations is evident,
emphasizing the effectiveness of the proposed method in
minimizing f6. The convergence graph for function f7 shows
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Fig. 3 Convergence graphs F5, F6, F7, F8

a consistent trend of the GWO-Employed-Onlooker method
outperforming other algorithms (GWO, FA, ABC, andACO)
in terms of both convergence speed and solution quality. This
reinforces the conclusion that the proposed method is partic-
ularly efficient in minimizing f7. Finally, the convergence
graph for function f8 follows a similar pattern observed in
the previous figures. TheGWO-Employed-Onlookermethod
consistently surpasses the standard algorithms (GWO, FA,
ABC, and ACO) in achieving faster convergence and better
solution quality for f8. This collective evidence across mul-
tiple functions supports the conclusion that the suggested
method is more effective in minimizing various functions
compared to the standard algorithms. According to Table
1, the proposed model’s best, average, and worst-case solu-
tions in minimization functions are better than GWO, ACO,
FA, and ABC. Nevertheless, the proposed model exhibits a

higher standard deviation compared to other models. This
disparity can be attributed to result variations resulting from
the use of different parameters. The process of tuning these
parameters involved a trial-and-error approach, as there are
no established rules for their configuration.

5.3 Maximization Benchmark Functions

f9 = −(20 + (x1)
2 − 10 cos(2πx1) + (x2)

2

−10 cos(2πx1)), (16)

where xi ∈ {−2.048, 2.048}.
Equation 16 represents the mathematical formulation of

function f9 for maximization purposes. It involves a com-
bination of quadratic terms, cosine functions, and constants.

123



International Journal of Computational Intelligence Systems           (2024) 17:111 Page 9 of 14   111 

Table 1 GWO-Employed-Onlooker model comparison for minimization functions with other techniques

Function Technique Best minimum Worst minimum Average minimum Standard deviation

F1 ACO 7.56E−14 6.57E−09 7.78E−10 1.75045E−09

FA 6.56E−12 6.67E−06 7.05E−07 1.44094E−06

GWO 7.09E−13 6.11E−10 3.30E−11 1.22123E−10

ABC 8.32E−14 9.65E−09 1.65E−09 3.37546E−09

GWO-Emp-Onl 6.34E−17 8.45E−11 4.67E−12 1.80048E−11

F2 ACO 1.20E+02 1.31E+02 1.21E+02 5.45E−02

FA 1.20E+02 1.41E+02 1.29E+02 2.64E−02

GWO 1.20E+02 1.36E+02 1.25E+02 4.43E−02

ABC 1.18E+02 1.29E+02 1.20E+02 2.67E−02

GWO-Emp-Onl 9.10E+01 1.10E+02 1.05E+02 6.49E−02

F3 ACO 3.43E−03 9.88E−02 1.70E−02 2.41E−02

FA 7.34E−03 9.61E−02 3.06E−02 3.30E−02

GWO 7.12E−03 9.64E−03 8.56E−03 8.11E−03

ABC 3.43E−03 8.23E−02 2.05E−02 2.50E−02

GWO-Emp-Onl 6.46E−06 6.79E−04 5.80E−05 1.41E−04

F4 ACO 6.78E−04 4.33E+01 2.72E+01 1.10E+01

FA 6.78E−04 5.15E+01 2.40E+01 1.03E+01

GWO 2.34E−04 4.13E+01 1.83E+01 1.37E+01

ABC 1.56E−04 4.13E+01 1.72E+01 1.16E+01

GWO-Emp-Onl 6.45E−06 8.36E−03 6.19E−04 1.79E−03

F5 ACO 2.12E−02 2.13E+02 8.79E+01 7.11E+01

FA 1.57E−03 1.23E+02 6.31E+01 4.09E+01

GWO 1.64E−04 9.46E+01 3.39E+01 3.39E+01

ABC 2.09E−02 7.29E+01 3.11E+01 2.22E+01

GWO-Emp-Onl 2.57E−05 3.13E+01 8.71E−02 1.11E+01

F6 ACO −2.11E+01 −1.69E+01 −2.11E+01 9.29E−03

FA −1.81E+01 −1.81E+01 −1.79E+01 3.69E−03

GWO −2.11E+01 −1.69E+01 −1.79E+01 8.49E−03

ABC −2.19E+01 −1.71E+01 −2.11E+01 1.51E−02

GWO-Emp-Onl −2.81E+01 2.21E+01 −2.31E+01 1.11E+01

F7 ACO 7.09E+01 1.56E+02 1.12E+02 2.07E+01

FA 5.68E+01 1.13E+02 8.83E+01 2.03E+01

GWO 8.46E+01 2.35E+02 1.19E+02 3.51E+01

ABC 7.09E+01 1.03E+02 7.29E+01 1.74E+01

GWO-Emp-Onl 1.55E+01 7.51E+01 4.79E+01 1.44E+01

F8 ACO −1.21E+01 1.07E+01 −1.05E+01 5.16E−02

FA −1.15E+01 −8.33E−02 −9.07E−02 7.44E−03

GWO −1.31E+01 −1.12E+01 −1.22E+01 3.22E−03

ABC −1.19E+01 −8.63E−02 −9.63E−02 1.05E−02

GWO-Emp-Onl −1.49E+01 −1.29E+01 −1.51E+01 4.41E−03

Bold values represent the optimal values obtained during simulation process

Under normal circumstances, x1 and x2 are within the range
[−2.048, 2.048]. Function f9 is formulated to bemaximized,
incorporating both quadratic and cosine terms. The specified

range for variables ensures a bounded domain.

f10 = cos x1 cos x2 exp((x1 − π)2 − (x2 − π)2), (17)

where xi ∈ {−20, 20}.
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Fig. 4 Convergence graphs F9, F10, F11, F12

Equation 17 defines function f10 designed for maximiza-
tion. It involves cosine functions, exponential terms, and
constants. Both x1 and x2 are allowed to varywithin the range
[−20, 20]. Function f10 captures a more complex relation-
ship between variables, with a broader range. The inclusion
of exponential and cosine terms adds intricacy to the opti-
mization landscape.

f11 = 280 − 1

2
((x1)

4 − 16(x1)
2 − 5x1)

−1

2
((x2)

4 − 16(x2)
2 − 5x2), (18)

where xi ∈ {−5, 5}
Equation 18 defines function f11 for maximization, com-

prising polynomial terms with coefficients and constants.

Both x1 and x2 are limited to the range [−5, 5]. Function
f11 introduces polynomial terms with specific coefficients.
The limited variable range suggests a focused exploration of
the optimization landscape.

f12 = ln

[(
sin (cos x1 + cos x2)

2
)2

−
(
cos (sin x1 + sin x2)

2
)2 + x1

]2

−0.1
(
(x1 − 1)2 + (x2 − 1)2

)
,

(19)

where xi ∈ {−10, 10}.
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Fig. 5 Convergence graphs F13, F14

Equation 19 characterizes function f12 for maximization.
It involves logarithmic, trigonometric, and polynomial terms.
Both x1 and x2 are constrained within the range [−10, 10].
Function f12 incorporates a logarithmic term and a combi-
nation of trigonometric functions, adding complexity to the
optimization landscape.

f13 =
[

5∑
i=1

cis((i + 1)x1 + i)

] [
5∑

i=1

cis((i + 1)x2 + i)

]
,

(20)

where xi ∈ {−10, 10}
Equation 20 defines function f13 for maximization,

involving the sum of cosine functions. Both x1 and x2 are
allowed to vary within the range [−10, 10]. Function f13
captures a complex relationship between variables through
the summation of cosine functions. The broad variable range
suggests a more extensive exploration of the optimization
landscape,

f14 = 660 −
(
(x1)

2 + x2 − 11
)2 −

(
x1 + (x2)

2 − 7
)2

,

(21)

where xi ∈ {−6, 6}
Equation 14 characterizes function f14 designed for max-

imization. It involves polynomial terms with coefficients and
constants. Both x1 and x2 are constrained within the range
[−6, 6]. Function f14 introduces polynomial terms with spe-
cific coefficients and constants, providing a more focused
exploration of the optimization landscape.

The convergence graph for function f9 displays a notable
pattern. The GWO-Employed-Onlooker method exhibits a

steady improvement in convergence over iterations, indicat-
ing an effective exploration of the optimization landscape.
While some fluctuations are visible, the overall trend demon-
strates the algorithm’s ability to converge towards the max-
imization of f9. The convergence graph for function f10
reveals a consistent and significant improvement in con-
vergence as the iterations progress. The GWO-Employed-
Onlookermethodoutperforms standardGWO,FA,ABC, and
ACO, showcasing its efficiency in maximizing f10. The con-
vergence rate suggests a robust exploration of the solution
space. The convergence graph for function f11 indicates a
smooth and steady improvement in convergence over itera-
tions. The GWO-Employed-Onlooker method consistently
outpaces standard algorithms, reflecting its effectiveness
in maximizing f11. The convergence rate suggests a sta-
ble and efficient exploration of the optimization landscape.
The convergence graph for function f12 exhibits a pattern
of continuous improvement in convergence. The GWO-
Employed-Onlooker method displays superior performance
compared to standard algorithms, indicating its effectiveness
in maximizing f12. The convergence rate suggests a robust
and efficient exploration of the solution space for this func-
tion.

The convergence graph for function f13 reveals a con-
sistent improvement in convergence over iterations. The
GWO-Employed-Onlooker method outperforms standard
algorithms, showcasing its efficiency inmaximizing f13. The
convergence rate suggests a robust and effective exploration
of the optimization landscape for this function. The conver-
gence graph for function f14 shows a steady improvement in
convergence over iterations. The GWO-Employed-Onlooker
method consistently outpaces standard algorithms, indicat-
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Table 2 GWO-Employed-Onlooker model comparison for maximization functions with other techniques

Function Technique Best maximum Worst maximum Average maximum Standard deviation

F9 ACO −5.51E−03 −1.34E−05 −3.23E−04 1.13E−03

FA −4.39E−02 −1.51E−02 −1.05E−01 9.49E−02

GWO −4.57E−03 −3.17E−04 −1.29E−03 1.18E−03

ABC −4.38E−02 −1.39E−03 −1.19E−02 1.25E−02

GWO-Emp-Onl −6.46E−06 −3.46E−07 −1.31E−06 1.70E−06

F10 ACO 3.46E−12 6.24E−11 1.47E−11 1.66E−11

FA 3.46E−08 9.56E−07 3.22E−07 3.53E−07

GWO 3.46E−08 9.86E−09 5.35E−09 3.34E−09

ABC 4.44E−08 9.73E−07 2.77E−07 2.78E−07

GWO-Emp-Onl 3.57E−07 9.46E−05 3.62E−05 3.55E−05

F11 ACO 5.23E+01 4.64E+01 5.02E+01 2.03E+00

FA 5.19E+01 5.59E+01 6.11E+01 1.74E+00

GWO 6.59E+01 6.11E+01 6.29E+01 2.05E+00

ABC 6.09E+01 5.59E+01 5.79E+01 1.37E+00

GWO-Emp-Onl 7.76E+01 7.54E+01 7.66E+01 5.76E+00

F12 ACO 1.53E+02 1.11E+02 1.31E+02 1.71E+01

FA 1.73E+02 1.31E+02 1.49E+02 1.31E+01

GWO 1.61E+02 1.21E+02 1.49E+02 1.79E+01

ABC 1.60E+02 1.11E+02 1.31E+02 1.73E+01

GWO-Emp-Onl 2.16E+02 1.69E+02 2.05E+02 1.19E+01

F13 ACO 1.09E+03 9.46E+02 1.07E+03 7.29E+01

FA 1.05E+03 8.56E+02 9.83E+02 7.56E+01

GWO 1.09E+03 1.59E+02 1.05E+03 2.13E+02

ABC 1.08E+03 1.03E+03 1.03E+03 6.06E+01

GWO-Emp-Onl 1.19E+03 1.09E+03 1.17E+03 2.11E+01

F14 ACO 8.13E+03 8.06E+03 8.07E+03 2.12E+01

FA 8.13E+03 8.04E+03 8.08E+03 2.17E+01

GWO 8.14E+03 8.05E+03 8.08E+03 3.03E+01

ABC 8.16E+03 8.07E+03 8.11E+03 2.67E+01

GWO-Emp-Onl 8.22E+03 8.16E+03 8.19E+03 1.79E+01

Bold values represent the optimal values obtained during simulation process

ing its effectiveness in maximizing f14. The convergence
rate suggests a stable and efficient exploration of the solu-
tion space for this function.

Figures 4 and5 reveal that the proposedmodel experiences
fluctuations in solution quality during the initial iterations,
but eventually demonstrates a convergence rate superior to
that of other algorithms. Table 2 shows that the proposed
model outperforms GWO, FA, ABC, and ACO in terms of
best, average, and worst-case solutions for all maximization
functions, although it has a higher standard deviation com-
pared to the other models. To summarize the entire research
work, including the development, representation, operation,
and implementation of the GWO and ABC hybrid model,
this section provides a comprehensive overview.

6 Conclusive Remarks

The paper presents a solution to a significant issue that
affects the standard Grey Wolf Optimization (GWO) algo-
rithm, resulting in a reduction in the quality of its solutions.
The proposed solution involves incorporating two operators
from the Artificial Bee Colony (ABC) algorithm into the
exploration phase of GWO. Specifically, the GWO algo-
rithm suffers from poor exploitation during the initial half
of the exploration phase. During each iteration, there may
be significant differences between the present solution and
the preceding solution, leading to an expanded search space
that encompasses a wide range of distinct solutions. As a
result, the optimal solution may be overlooked, even if it is
nearby previously found solutions. To address this issue, the
paper proposes using the employed and onlooker operators
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from the ABC algorithm as exploitative operators, in the cur-
rent search domain. Once the specified operations have been
carried out on the bees, the fitness values of functions are
assessed. Once its fitness value matches the required value,
the algorithm terminates. If the condition is not met, the
wolves assume the role of the bees in the subsequent iter-
ation, this looping procedure is repeated unless the upper
bound of iterations has been achieved and the termination
requirements have been fulfilled.
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