
International Journal of Computational Intelligence Systems (2024) 17:109
https://doi.org/10.1007/s44196-024-00488-7

RESEARCH ART ICLE

Extension of CMSA with a Learning Mechanism: Application to the Far
fromMost String Problem

Pedro Pinacho-Davidson1 · Christian Blum2 ·M. Angélica Pinninghoff1 · Ricardo Contreras3

Received: 5 December 2023 / Accepted: 26 March 2024
© The Author(s) 2024

Abstract
One of the problems with exact techniques for solving combinatorial optimization problems is that they tend to run into
problems with growing problem instance size. Nevertheless, they might still be very usefully employed, even in the context
of large problem instances, as a sub-ordinate method within so-called hybrid metaheuristics. “Construct, Merge, Solve and
Adapt” (Cmsa) is a hybrid metaheuristic technique that allows the application of exact methods to large-scale problem
instances through intelligent instance reduction. However, Cmsa does not make use of an explicit learning mechanism. In
this work, an algorithm called Learn_Cmsa is presented for the application to the far from most string problem (FFMSP),
which is an NP-hard combinatorial optimization problem from the field of string consensus problems. Learn_Cmsa results
from hybridization between Cmsa and a population-based algorithm. By means of this hybridization, explicit learning is
introduced to Cmsa. Even though the FFMSP is a well-studied problem, Learn_Cmsa achieves superior performance when
compared to current state-of-the-art solvers.

Keywords Hybrid metaheuristics · Population-based algorithm · Optimization · String consensus problems

Abbreviations
ILP – Integer linear programming;
CMSA – Construct, Merge, Solve & Adapt;
FFMSP – Far from most string problem;
ACO – Ant colony optimization;
BA – Bacteria algorithm;

B Christian Blum
christian.blum@iiia.csic.es

Pedro Pinacho-Davidson
ppinacho@udec.cl

M. Angélica Pinninghoff
mpinning@udec.cl

Ricardo Contreras
ricardo.contreras@edu.uai.cl

1 Department of Computer Science, Faculty of Engineering,
Universidad de Concepción, Edmundo Larenas 219,
Concepción 4070409, Chile

2 Artificial Intelligence Research Institute (IIIA-CSIC),
Campus of the UAB, Bellaterra 08193, Spain

3 Faculty of Sciences and Engineering, Universidad Adolfo
Ibáñez, Diagonal Las Torres 2640, Peñalolén, Santiago de
Chile 7910000, Chile

1 Introduction

In recent decades, different algorithmic approaches have
been introduced for solving combinatorial optimizationprob-
lems to find the best or satisfactory solutions. Generally, we
distinguish between exact approaches that derive an opti-
mal solution in bounded computation time, and heuristic
approaches that provide sub-optimal solutions within more
practical computation time limits. Especially in those cases in
which large-scale problem instances must be solved, heuris-
tic or metaheuristic search strategies are often used instead
of exact techniques. Metaheuristic algorithms include meth-
ods such as evolutionary algorithms, ant colony optimization
and tabu search, just to name a few. Depending on the type of
optimization problem, a whole range of different techniques
can be used in the process of finding a good enough solution.
Nowadays, many of these approaches take advantage of the
joint use of exact and heuristic techniques. Such approaches
are often called hybrid metaheuristics [1, 2] or matheuris-
tics [3].

The hybrid metaheuristic framework Cmsa (Construct,
Merge, Solve & Adapt) was introduced by [4] for solving
combinatorial optimization problems. The concept behind
Cmsa is to still profit from the power of exact solvers, even

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s44196-024-00488-7&domain=pdf
http://orcid.org/0000-0002-1736-3559

 109 Page 2 of 16 International Journal of Computational Intelligence Systems (2024) 17:109

for the application to large problem instances. In particular,
Cmsa solves—at each iteration—a sub-instance of the orig-
inal problem instance. All these sub-instances are generated
by merging different solutions constructed during the algo-
rithm run. Moreover, sub-instances are usually expressed in
terms of integer linear programming (ILP)models and solved
by black-box ILP solvers such as CPLEX or Gurobi. Appli-
cations of Cmsa have shown remarkably good results for
some interesting problems. Among these problems, we find,
for example, minimum common string partition [5], which
is a problem in the field of bioinformatics. Other examples
include project scheduling [6], the maximum happy vertices
problem [7], and the problem of test case generation for soft-
ware checking [8].

The present proposal focuses on the development of a
new variant of Cmsa based on the hybridization with a
population-based metaheuristic, with the goal of adding a
learning component to standard Cmsa. The usefulness of
this proposal will be shown by the application to the so-
called far from most string problem (FFMSP) [9], which is
an NP-hard combinatorial optimization problem. This opti-
mization problem forms part of a category of string-related
problems known as sequence consensus problems. In these
problems, a finite set of sequences is provided, and the goal
is to identify their consensus—namely, a novel sequence
that effectively encapsulates the essence of all the provided
sequences. Various objectives, some potentially conflicting,
can be contemplated within the realm of sequence consensus
problems. Examples of such objectives are outlined in the
following [10].

• Closest string problem (CSP): Find a sequence whose
total distance from all input sequences is minimal

• Farthest string problem (FSP): Find a sequence that
maximizes its overall distance from all input sequences.

• Far from most string problem (FFMSP): Find a
sequence far from most of the input sequences, where
"most" is defined by a fixed threshold.

As mentioned above, to solve the FFMSP problem, we
develop a new Cmsa variant that incorporates learning
into the solution construction process. In the case of this
hybrid approach, the learning component will result from
the hybridization with a bacterial algorithm (BA), which
is an evolutionary algorithm in which the crossover oper-
ator is inspired by processes observed in bacteria. Note that
any population-based approach could have been used to add
learning to Cmsa. Moreover, note that the BA algorithm will
be described in metaphor-free language in this work.

In general, BAs are inspired by the survival of a bacte-
rial population, and how a population of bacteria evolves
and develops a resistance to antibiotics. Note that when bac-

teria develop such resistance, they are no longer affected
by exposure to antibiotics. From the viewpoint of bacte-
ria, developing such a resistance is, of course, desirable.
From a medical point of view, however, this may result in
severe problems for humans. This is due to the fact that
infections triggered by resistant microorganisms frequently
do not respond to standard treatments, leading to prolonged
illness and an increased likelihood of mortality. In simpler
terms, antibiotic resistance refers to a form of drug resis-
tance wherein a microorganism can withstand exposure to an
antibiotic [11]. Recent research concerning the exploitation
of bacteria behavior has already resulted in the application to
a group formation problem in the context of designing stu-
dents’ activities. The core idea is that students collaborate in
a group to improve their academic performance [12].

1.1 Contribution and Paper Outline

In this work, we present an algorithmic proposal that belongs
to the category of hybrid algorithms based on problem
instance reduction [1]. In particular, we augment the Cmsa
algorithm with a learning mechanism by combining it with a
population-based metaheuristic. The proposed hybrid algo-
rithm, called Learn_Cmsa, is applied to the notoriously
difficult far from most string problem. In the section on the
experimental evaluation, we not only compareLearn_Cmsa
to its components (Cmsa and the bacterial algorithm), but we
also compare to the current state of the art for the far from
most string problem. Our results show that Learn_Cmsa
outperforms its algorithmic components and that it compares
very favorably with the current state of the art.

The remainder of this paper is organized as follows. Sec-
tion2 introduces the far from most string problem. Section3
first introduces the pure variants of both Cmsa and the bacte-
rial algorithm, before discussing the hybridization of Cmsa
with the bacterial algorithm. Section4 outlines the experi-
mental design and the obtained results, and finally, Sect. 5
offers conclusions derived from this research and an outlook
to future work.

2 The Far fromMost String Problem

A problem instance of the far from most string problem
(FFMSP) is represented as (�, t), where set � = s1, . . . , sn
contains n input strings over a finite alphabet �. Each input
string si in � has a length of m, i.e., |si | = m for all si ∈ �.
Additionally, a fixed threshold value 0 < t < m is provided.
In subsequent discussions, si [j] denotes the j th character
of a string si . The Hamming distance between two strings
si �= s j ∈ � of equal length, expressed as dH (si , s j), is
defined as the count of positions where corresponding char-

123

International Journal of Computational Intelligence Systems (2024) 17:109 Page 3 of 16 109

acters in the two strings differ. In other words:

dH (si , s j) = ∣
∣
{

k ∈ {1, . . . ,m} | si [k] �= s j [k]
}∣
∣ . (1)

Note that all possible strings of lengthm over alphabet� are
valid FFMSP solutions. Given such a string s, its objective
function value forig(s) is computed as follows:

forig(s) := |{si ∈ � | dH (s, si) ≥ t}|. (2)

This implies that the objective function value of a solution or
string s is determined by the count of input strings for which
the Hamming distance with s is greater than or equal to the
threshold value t .

In addition to the technical problem description, we pro-
vide an integer linear programming (ILP) model of the
FFMSP. This is because Cmsa and Learn_Cmsa internally
use an ILP solver for the purpose of solving sub-instances
of the considered problem instance. In particular, we provide
below the description of the ILPmodel from [10]. Thismodel
makes use of two sets of binary variables. The first one of
these sets comprises a variable x j,a for every combination of
a position j = 1, . . . ,m in a potential solution and a char-
acter a ∈ �. The second set encompasses binary variables
yi corresponding to each input string si ∈ � (i = 1, . . . , n).
The ILP model can be formulated as follows.

max
n

∑

i=1

yi (3)

subject to:
∑

a∈�

x j,a = 1 ∀ j ∈ {1, . . . ,m} (4)

m
∑

j=1

x j,si [j] ≤ m − t · yi ∀ i ∈ {1, . . . , n}

x j,a, yi ∈ {0, 1} (5)

Observe that constraints (4) guarantee each position j in
a solution string is occupied by exactly one letter from �.
Furthermore, constraints (5) force a variable yi to take the
value zero in case theHammingdistance of the solution string
(defined by the x-variables) to input string si ∈ � is below
threshold t .

2.1 ExistingWork on the FFMSP

TheFFMSPcan be regarded awell-studied problem. In 2003,
for example, [13] proved that approximating the FFMSP
within a polynomial factor is NP-hard for sequences over an
alphabet� with |�| ≥ 3. Given the computational complex-
ity of the problem, the research community has primarily
concentrated on heuristic and metaheuristic approaches.

The initial proposal consisted of a greedy heuristic with
the subsequent application of local search [14]. In fact,
approaches based on randomized solution construction—in
particular,metaheuristics knownas greedy randomized adap-
tive search procedures (GRASP)—have enjoyed popularity
for the application to the FFMSP problem; see [15–19]. The
newest one of these GRASP approaches [19] is, in fact, a
hybrid technique that combines GRASP both with variable
neighborhood search (VNS) and path relinking.

Apart from the GRASP proposals, the literature on the
FFMSP also offers evolutionary algorithms (EAs) such as
the one from [16]. This algorithm features a diversity preser-
vation mechanism to augment its exploration ability. The
second EA proposal from [20] is a memetic algorithm that
makes use of local search to improve the generated solu-
tions. This algorithm proposal takes profit from earlier work
using GRASP mechanisms for the construction of solutions.
Ant colony optimization (ACO) is another bioinspired meta-
heuristic that has been applied already twice to the FFMSP.
The first application from [10] hybridizes an ACO algorithm
with the application of the ILP solver CPLEX for a possi-
ble improvement of the output of ACO. In contrast, in [21]
the authors propose the application of a very recent ACO
variant, known as negative learning ACO, to the FFMSP.
Finally, for the sake of completeness, it is worth mentioning
the beam search approach from [9]. Currently, the negative
learningACOapproach from [21] and thememetic algorithm
from [20] can be regarded as the state-of-the-art approaches
for solving the FFMSP.

2.2 Augmented Objective Functions

The FFMSP poses a significant challenge not only for exact
techniques but also for metaheuristics, primarily due to
the limited range of possible objective function values. In
fact, for an instance with n input strings the set of possi-
ble objective function values is {0, . . . , n}. Because of this,
the search space of an FFMSP problem instance encom-
passes broad plateaus, leading to situations where similar
solutions frequently share identical objective function val-
ues. For a metaheuristic, this means that the search space
often offers little (or no) guidance regarding the question of
how to keep moving and exploring during the search pro-
cess. This results in the fact that metaheuristics often get
trapped on such plateaus. In light of the previously discussed
reasons, [21] tested four different augmented objective func-
tions in addition to the original objective function. In this
work, we will consider the most successful options. It is cru-
cial to note, though, that these alternative functions can solely
be employed for all solution evaluations/comparisons occur-
ring within the Cmsa variants and in the bacterial algorithm.
CPLEX, which is utilized in Cmsa and Learn_Cmsa for

123

 109 Page 4 of 16 International Journal of Computational Intelligence Systems (2024) 17:109

solving sub-instances at every iteration, continues to rely on
the original objective function.

[17] proposed the first alternative objective function,
which is denoted as fmou(). The purpose of this function
is to generate a search landscape with fewer plateaus and a
decreased number of local optima. It evaluates a solution by
considering the likelihood of it leading to improved solutions
through a relatively small number of local search moves.
It is important to note that if forig(s) > forig(s′) for two
valid solutions s and s′, then fmou(s) > fmou(s′) also holds.
Consequently, fmou() can function independently. Due to the
complexity of fmou() and the limited space available for its
description, we direct interested readers to the original publi-
cation [17] or to [20], where the authors implemented fmou()

in the context of their memetic algorithm.
[10] introduced a second alternative objective function,

which we will refer to as fblu(). This function is a lexico-
graphic objective function that primarily employs the original
objective function as its first criterion. The second criterion
utilizes the following function:

h(s) :=
∑

{si∈�|dH (s,si)≥t}
dH (s,s i)

+ max{si∈�|dH (s,si)<t}{dH (s, si)}. (6)

In more straightforward language, h(s) adds up the Ham-
ming distances between s and the input strings si ∈ � in
those cases inwhich theHamming distance is at least t . It also
takes into account the maximumHamming distance between
s and the input strings si ∈ � where the Hamming distance
is less than t . The original objective function and h() are then
integrated using a lexicographic approach:

fblu(s) > fblu(s′)iff forig(s) > forig(s′)or
(forig(s) = forig(s′)andh(s) > h(s′)).

(7)

For valid solutions s and s′ to the problem, the rationale
behind h() can be described as follows: a higher value of h(s)
corresponds to a lower likelihood that minor modifications in
s will result in a reduction of the original objective function.
In addition to the two functions mentioned earlier, we also
examine a simplified variant of fblu() that employs function
h′() rather than h():

h′(s) := max{si∈�|dH (s,si)<t}{dH (s, si)}. (8)

It is important to note that h′(s), unlike h(s), focuses solely
on the maximumHamming distance between s and the input
strings si ∈ � where the Hamming distance is less than t .

Algorithm 1 Cmsa for the FFMSP
1: input: problem instance (�, t), complete set C of solution compo-

nents
2: input: Cmsa parameter values for agemax, na, tsolver
3: Sbsf := ∅
4: C ′ := ∅
5: age[c j,a] := 0 for all c j,a ∈ C
6: while CPU time limit not reached do
7: for i = 1, . . . , na do
8: S := ConstructSolution()
9: for all c j,a ∈ S and c j,a /∈ C ′ do
10: age[c j,a] := 0
11: C ′ ← C ′ ∪ {c j,a}
12: end for
13: end for
14: S′

opt ← ApplyExactSolver(C ′, tsolver)
15: if f (S′

opt) > f (Sbsf) then Sbsf := S′
opt

16: Adapt(C ′, S′
opt, agemax)

17: end while
18: output: Sbsf

The resultant simplified lexicographic function is from now
on denoted as fsim().

Lastly, [21] also considered a combined objective function
involving three criteria of the ones already presented.

3 The Proposed Algorithms

In the following, we first describe the pure variants of Cmsa
and the population-basedmetaheuristic, before the developed
hybrid technique (Learn_Cmsa) is presented.

3.1 CMSA for the FFMSP

Cmsa algorithms assemble solutions from a finite set C of
so-called solution components. In the case of our Cmsa algo-
rithm for the FFMSP, each combination of a position j in the
solution string (where j = 1, . . . ,m) and a letter a ∈ �

is a solution component c j,a . That is, C := {c j,a | j =
1, . . . ,m and a ∈ �}. Any feasible solution S is a subset ofC
such that for each position j = 1, . . . ,m, S contains exactly
one of the solution components from C j := {c j,a | a ∈ �}.
Similarly, the sub-instance C ′ is always a subset of C . Note
that, in the following, forig(S) := forig(s), where s is the
solution string which is derived in a well-defined way from
the solution components in S. Moreover, let forig(∅) := 0.

At the start of the Cmsa algorithm, the best-so-far solu-
tion (Sbsf) and the sub-instance (C ′) are initialized to the
empty set; see lines 3 and 4. Moreover, the so-called age
value age[c j,a] of each solution component c j,a ∈ C is ini-
tialized to zero (see line 5). Then, at each iteration, na valid
solutions are probabilistically generated in the construct-step
of Cmsa; see line 8. This is done in function ConstrucSolu-
tion() which is described below.After constructing a solution

123

International Journal of Computational Intelligence Systems (2024) 17:109 Page 5 of 16 109

S, all those solution components from S that do not yet form
part of the sub-instance C ′ are added to C ′, and their age
values are set to zero; see lines 9–12. This step of Cmsa is
known as themerge-step. Next, in the solve-step of Cmsa, an
ILP solver (in our case, CPLEX) is applied to sub-instance
C ′ with a computation time limit of tsolver CPU seconds.
The ILP model corresponding to sub-instance C ′ is obtained
by adding the following constraints to the ILP model from
Sect. 2:

x j,a = 0 ∀c j,a ∈ C \ C ′. (9)

In other words, position-letter combinations that are not
found inC ′—that is, position-letter combinations whose cor-
responding solution component does not formpart ofC ′—are
not allowed in the ILP model. The best solution returned by
CPLEX in the given computation time limit is henceforth
called S′

opt. As a last step, the adapt-step of Cmsa is car-
ried out in function Adapt(C ′, S′

opt, agemax). This function
implements a mechanism to eliminate seemingly irrelevant
solution components from the sub-instance C ′ at each algo-
rithm iteration. Specifically, it involves three steps: first,
incrementing the age values of all vertices in C ′; second,
resetting the age values of all vertices in S′

opt to zero; and
third, removing the verticeswith agevalues exceeding agemax
fromC ′. The output of Cmsa, after reaching the overall com-
putation time limit, is solution Sbsf (respectively its string
variant).

3.2 Probabilistic Solution Construction for FFMSP

The Cmsa algorithm outlined above requires a way to
probabilistically generate valid solutions (in function Con-
structSolution() of Algorithm 1). For this purpose, we
implemented the following solution construction procedure
which is pseudo-coded in Algorithm 2. Note that this is a
variant of the heuristic proposed by [14]. The construction
of a solution starts by determining the first position j of the
solution string to whichwewill assign a letter. This is done in
function DetermineStartingPosition() of line 4 as follows.
Let occ(i, a) be the number of occurrences of letter a ∈ �

at position i of all input strings, that is:

occ(i, a) := |{sk ∈ � | sk[i] = a}| . (10)

Furthermore, let min_occ(i) be defined as the minimal num-
ber of occurrences of any letter at position i of all input
strings, that is:

min_occ(i) := min{occ(i, a) | a ∈ Sigma}. (11)

Then, j (the starting position for solution construction)
is determined in function DetermineStartingPosition() of

Algorithm 2 Randomized heuristic for the FFMSP
1: input: a problem instance (�, t)
2: input: parameter value for drate
3: S := ∅
4: j := DetermineStartingPosition()
5: k := 0
6: for k < m do
7: Draw r ∈ [0, 1] uniformly at random
8: if r ≤ drate then
9: if ∃ a ∈ � s.t. fpartial(S ∪ {c j,a}) > fpartial(S) then
10: S := S ∪ {c j,a}
11: else
12: Let b ∈ � s.t. occ(j, b) ≤ occ(j, t) for all t ∈ �

13: S := S ∪ {c j,b}
14: end if
15: else
16: Draw a letter a ∈ � uniformly at random
17: S := S ∪ {c j,a}
18: end if
19: j := j + 1
20: if j > m then j := 1 end if
21: k := k + 1
22: end for
23: output: S

line 4 as follows:

j := argmin{min_occ(i) | i = 1, . . . , n}. (12)

In the case of ties, we take—among all tied options—the
one with the lowest index. Starting from j , the randomized
heuristic from Algorithm 2 then assigns a letter to all posi-
tions in sequential order. When the end of the solution string
is reached, j is set to one; see lines 19 and 20. In this context,
note that a solution S is assembled as a set of solution compo-
nents. However, assigning a solution component c j,a to S is
exactly the same as assigning the letter a to position j of the
solution S in string form. The choice of a letter for the cur-
rent position j is done as follows. First, a random number r is
drawn uniformly at random from [0, 1]. In case r > drate—
where drate is an algorithm parameter called the determinism
rate—a letter from � is chosen uniformly at random and
assigned to j .Otherwise, it is first determined if a lettera ∈ �

exists such that the objective function value of the extended
partial solution S∪{c j,a}—that is, fpartial(S∪{c j,a})—is bet-
ter than the objective function value of the partial solution S;
see line 9. Hereby, function fpartial() is exactly the same as
the original objective function forig(), just that it only con-
siders those positions of the partial solution to be evaluated
that are already occupied with a letter. If such a letter a ∈ �

exists, it is deterministically chosen and assigned to position
j ; see line 10. Otherwise, we deterministically choose letter
b ∈ � such that occ(j, b) ≤ occ(j, z) for all z ∈ � and
assign it to position j of S; see line 13. The solution con-
struction procedure finishes once all positions of S have an
assigned letter.

123

 109 Page 6 of 16 International Journal of Computational Intelligence Systems (2024) 17:109

3.3 The Population-BasedMetaheuristic for the
FFMSP

With the aim of introducing learning into the solution con-
struction mechanism of Cmsa, in this paper, we present
a hybridization of Cmsa with a specific type of bacterial
algorithm (BA) inspired by mechanisms bacteria have devel-
oped to fight antibiotics. This type of algorithm was first
described in [12, 22]. In this work, we present an adaptation
of this algorithm for solving the FFMSP, before describing
its hybridization with Cmsa. Before we delve into the algo-
rithm description, the interested reader should note however
that we believe that nearly any population-based metaheuris-
tic can be used for the same purpose. Moreover, being aware
of the abuse that natural phenomena have suffered in recent
years in the context of so-called new nature-inspired opti-
mization algorithms, the BA algorithm will be described in
metaphor-free language.

Bacteria, classified as microorganisms, are tiny life forms
similar to viruses, algae, fungi, and protozoa. These unicel-
lular organisms, existing at a microscopic scale, have the
ability to thrive in diverse environments such as oceans, land,
space, and even the human intestine. The interaction between
humans and bacteria is intricate; at times, bacterial behav-
ior proves beneficial or even essential to human well-being,
while at other times, it can lead to harmful diseases and health
issues. Since penicillin was discovered in 1929 by Alexander
Fleming, antibiotics have been important in the treatment of
diseases caused by bacteria and other microorganisms. How-
ever, a serious problem is that, when frequently exposed
to the same type of antibiotics, bacteria develop defense
mechanisms to neutralize the action of antibiotics. This key
mechanism for bacteria survival is achieved through com-
munication with other members of the population and can
be understood as a collaborative mechanism based on trans-
ferring DNA among bacteria. In this way, stronger bacteria
may transfer their characteristics to weaker bacteria which
can acquire the capability to resist the common enemy: the
antibiotic.

A relevant difference between superior organisms and
bacteria is the mechanism for reproduction and recombi-
nation of genetic material. In fact, populations of superior
organisms vary genetically in a vertical process, that is, off-
spring is created as part of a new generation through sexual
interaction between parents. On the other side, genetic varia-
tion in bacteria populations may happen through a horizontal
process in which genetic material is transferred among indi-
viduals, without requiring the creation of a new individual.
Therefore, in the context of bacteria, it seems more natu-
ral to talk about donors and receptors instead of parents and
offspring. In fact, reproduction in bacteria is achieved by
means of a cell division, a replication, which implies a bac-
teria generation containing exactly the same geneticmaterial.

Algorithm 3 Bacteria Algorithm (BA) for the FFMSP
1: input: a problem instance (�, t)
2: input: parameter values for psize, prheur, drate, prmut, prreg
3: Sbsf := ∅
4: P := GenerateInitialPopulation(psize, prheur, drate)
5: while CPU time limit not reached do
6: Sib := argmin{ f (S) | S ∈ P}
7: if f (Sib) > f (Sbsf) then Sbsf := Sib

CONJUGATION PHASE
8: Slevel := DetermineSeparationLevel(P)
9: (Pdonor, Preceptor) := Classification(Slevel, P)
10: Preceptor :=Conjugation(Pdonor, Preceptor , prmut)
11: P := Pdonor ∪ Preceptor

REGENERATION PHASE
12: Slevel := DetermineSeparationLevel(P)
13: (Pdonor, Preceptor) := Classification(Slevel, P)
14: Preceptor := Regeneration(Pdonor, prreg)
15: P := Pdonor ∪ Preceptor
16: end while
17: output: Sbsf

Eventually, this process may be affected by a mistake in the
replication process or by the influence of an external agent,
a mutagen.

As previously indicated, the emergence of antibiotic resis-
tance poses a significant concern for humans. Nevertheless,
for bacteria, it signifies an evolutionary advantage that
enhances their ability to survive. Viewed in this light, this
particular bacterial behavior serves as a valuable source of
inspiration for optimization processes, as demonstrated in
[12, 22]. This is especially true for the horizontal transfer
of DNA material, referring to the sharing of genetic material
within the local community, i.e., among neighbors belonging
to the same generation. In the following, we show how these
principles were applied to solving the FFMSP.

The pseudo-code of the bacterial algorithm (BA) is pro-
vided in Algorithm 3. Apart from a problem instance (�, t),
the algorithm requires the following five parameters as input
(see lines 1 and 2):

1. Population size (psize)
2. Rate of initial solutions generated by the probabilistic

heuristic (prheur)
3. Determinism rate used by the probabilistic heuristic (drate)
4. Probability of mutation during the conjugation phase

(prmut)
5. Probability of mutation during the regeneration phase

(prreg)

At the start of the algorithm, the best-so-far solution (Sbsf) is
set to the empty set. Then, the initial population of solu-
tions of size psize (where each solution corresponds to a
bacterium) is generated in function GenerateInitialPopula-
tion(psize, prheur, drate). Hereby, with probability prheur, a
solution is generated by means of the randomized heuris-

123

International Journal of Computational Intelligence Systems (2024) 17:109 Page 7 of 16 109

tic from Algorithm 2. Otherwise, the solution is generated
uniformly at random. The first action of each iteration
consists of the determination of the iteration-best solution
Sib from the current population (see line 6) to update the
best-so-far solution if necessary (line 7). Then, the two
main procedures—conjugation and regeneration—of the BA
are executed. Both procedures start in the same way (see
lines 8 and 9, respectively lines 12 and 13). In particular,
the current population P is divided into two parts: donor
solutions (Pdonor) and receptor solutions (Preceptor). For this
purpose, first, a separator level (Slevel) is determined as fol-
lows in function DetermineSeparatorLevel(P). Two pairs
of solutions—say, (Si , S j) and (Sk, Sl)—are chosen uni-
formly at random from the current population P . Then,
the best solution from each pair is selected. Let S1 :=
argmax{ f (Si), f (S j)} and S2 := argmax{ f (Sk), f (Sl)}.
Furthermore, let Smin be the lower quality solution between
S1 and S2, that is, Smin := argmin{ f (S1), f (S2)}. Then Slevel
is defined as f (Smin). Thus, a low-cost procedure is used
to choose a solution with a fitness value close to the pop-
ulation’s median. Slevel is then used to divide the current
population into a sub-population Pdonor of donor solutions
and a sub-population Preceptor of recipient solutions. Hereby,
the solutions in Preceptor have an objective function value
below Slevel, and donor solutions have an objective function
value of at least Slevel.

In the conjugation step of BA, all receptor solutions from
Preceptor receive a random piece of genetic material from
some randomly chosen donor solution from Pdonor. This
piece of genetic material corresponds to a contiguous sec-
tion of arbitrary size extracted from the donor solution. As in
nature, this operation may suffer a corruption in the genetic
transcription (mutation). Thus, each letter of the transferred
sub-string may be changed to any other letter with a proba-
bility prmut.

In contrast, in the regeneration step of BA, after clas-
sifying the members of the current population into donors
Pdonor and receptors Preceptor, all solutions from Preceptor are
exchanged with clones of randomly chosen donor solutions
after applying mutation with probability prreg to each posi-
tion.

These steps are iterated until a computation time limit is
reached. After termination, the best-so-far solution Sbsf is
provided as output.

3.4 The LEARN_CMSA Algorithm

The pseudo-code of the hybridization between Cmsa and
BA is provided in Algorithm 4. In addition to the Cmsa and
BA parameters, as outlined before, it takes the following two
parameters, which regulate the interplay between Cmsa and
BA, as input:

Algorithm 4 Learn_Cmsa for the FFMSP
1: input: problem instance (�, t), complete set C of solution compo-

nents
2: input: values for Cmsa parameters agemax, na, tsolver
3: input: values for BA parameters psize, prheur, drate, prmut, prreg
4: input: values for Cmsa/BA interplay parameters biter , rinject
5: Sbsf := ∅
6: C ′ := ∅
7: age[c j,a] := 0 for all c j,a ∈ C
8: P := GenerateInitialPopulation(psize, prheur, drate)
9: while CPU time limit not reached do
10: P := Execute_BA_Algorithm(P , biter , psize, prheur, drate, prmut,

prreg)
11: T := Extract_From(P, na)
12: for all S ∈ T do
13: for all c j,a ∈ S and c j,a /∈ C ′ do
14: age[c j,a] := 0
15: C ′ ← C ′ ∪ {c j,a}
16: end for
17: end for
18: S′

opt ← ApplyExactSolver(C ′, tsolver)
19: if f (S′

opt) > f (Sbsf) then Sbsf := S′
opt

20: Adapt(C ′, S′
opt, agemax)

21: P := InjectSolverSolution(P, Sbsf , rinject)
22: end while
23: output: Sbsf

1. biter: number of BA iterations executed in function Exe-
cute_BA_Algorithm(P , biter, psize, prheur, drate, prmut,
prreg) at each Cmsa iteration; see line 10.

2. rinject: the rate of injection of the solution returned by
the ILP solver (Sbsf) into the current BA population in
function InjectSolverSolution(P , Sbsf , rinject); see line 21.

The differences to the pure Cmsa algorithm from Sect. 3.1
are as follows. First, in addition to the initialization of
Cmsa in lines 5–7, the initial population P of the BA algo-
rithm is generated in line 8 in the same way as explained
before in the context of the BA algorithm in Sect. 3.3.
Next, at the beginning of each Cmsa iteration function
Execute_BA_Algorithm(P , biter, psize, prheur, drate, prmut,
prreg) executes biter iterations of the BA algorithm exactly
in the same way as explained in Sect. 3.3. This function
returns the current BA population P as output. Then, func-
tion Extract_From(P, na) (see line 11) extracts exactly na
solutions from the current BA population P and stores them
in set T . In particular, T contains the best solution from P , in
addition to (na − 1) randomly selected donor solutions from
P . Note that, for this purpose, the separator level (Slevel) is
determined and the population P is divided into donors and
receptors, as outlined in Sect. 3.3. The solutions from T are
then added to the current sub-instanceC ′ of Cmsa, replacing
the randomized solution construction procedure of standard
Cmsa. Finally, at the end of each Learn_Cmsa iteration, the
solution Sbsf returned by the solver after being applied to the
current sub-instance C ′ is used to replace �rinject · |Preceptor|

123

 109 Page 8 of 16 International Journal of Computational Intelligence Systems (2024) 17:109

receptor solutions from P . This is done in function Inject-
SolverSolution(P , Sbsf , rinject); see line 21.

Note that in this way of hybridizing Cmsa and BA, both
memory mechanisms—the sub-instanceC ′ of Cmsa and the
population P of BA—influence each other. In particular, a set
of donor solutions from P is added to C ′ at each iteration,
while Cmsa influences BA by injecting Sbsf into the BA
population P .

4 Experimental Evaluation

Cmsa, BA, and Learn_Cmsa were implemented in C++
using GCC 11.3.0 for compiling the software. Experiments
were all performed on a cluster (Luthier) of the Engineering
Faculty of the University of Concepción, Chile, in single-
threaded mode. Luthier is composed of 30 computing nodes
(servers). All nodes have an Intel®CPU Xeon®E3-1270 v6
at 3.8 GHzwith 64GBRAM.Moreover, all ILPmodels were
solver with IBM ILOG CPLEX version 20.1.

In this section, we first provide an overview of the bench-
mark datasets used. Next, we detail the parameter tuning
procedure employed to optimize the configuration of BA,
Cmsa and Learn_Cmsa. Finally, we present the numerical
results.

4.1 Benchmark Sets

Various benchmark instance sets for the FFMSP have been
introduced by different authors, and for this study, we adopt
the following set. [19] employed a collection of instances
comprising 100 problem instances with randomly generated
input strings over alphabet� = {A,C,T,G} for each combi-
nation of n ∈ {100, 200, 300, 400} andm ∈ {200, 600, 800}.
This set, totaling 1200 problem instances, is referred to as
Ferone from hereon. It is worth noting that all instances
were previously solved in other studies with thresholds
t ∈ {0.75m, 0.8m, 0.85m}. A subset of these instances—
specifically those with n ∈ {100, 200}—was already utilized
in earlier publications [10, 18].

A set of problem instanceswith specifications akin to those
introduced by [19] was presented in [20]. However, in con-
trast to the 100 random instances per combination of n and
m in the former, the set by [20] comprises only five random
instances per combination. Furthermore, this set is limited
to n ∈ {100, 200}. The collection of random instances from
[20] is hereinafter referred to as Gallardo.

It is important to highlight that in this study, we address
all the outlined problem instances for t ∈ {0.8m, 0.85m}.
The threshold t = 0.75m was excluded from consideration
due to our observation (similar to findings in prior works)
that problems resulting from this threshold are easily solved
optimally.Also,weperformacomparisononly in the rangeof

n ∈ {100, 200} to maintain a complete comparison between
all algorithms from the state-of-the-art.

4.1.1 New Datasets

We further plan to investigate the performance of our algo-
rithms on problem instances of different alphabet sizes,
specifically focusing on sizes 12 and 20. Suitable threshold
values were determined based on an analysis of the optimal-
ity gaps produced by CPLEX after a computation time of
600s per instance. This served as an indicator of the prob-
lem’s computational complexity and ensured that the chosen
thresholdswere high enough to produce challenging problem
instances.

Thresholddeterminationwasperformed for� = {12, 20},
using thresholds t spanning from 0.80 to 1.0 in increments
of 0.01. Test instances were defined by combinations of n =
{100, 200, 300, 400} and m = {300, 600, 800}. For each
parameter combination (�, n,m), we randomly selected one
instance and solved it using CPLEX for every specified
threshold. The outcomes of these experiments (in terms of
the optimality gaps) can be found in Fig. 1. Note that, in the
legends, the first integer after the keyword ’cplex’ indicates
the value of n and the second one the value of m.

Based on the observed behavior, we have established
threshold values for the 12-character alphabet at t =
(0.95m, 0.97m, 1.0m). For the 20-character alphabet, the
thresholds are set at t = (0.98m, 0.99m, 1.0m). We chose
a higher starting value for the 20-character set, because
the figures clearly show that the larger alphabet presents a
simpler problem for CPLEX. Finally, the new dataset for
� = {12, 20} is composed of 100 problem instances for each
combinationof |�| ∈ {12, 20},n ∈ {100, 200, 300, 400} and
m ∈ {300, 600, 800}, which makes a total of 2400 problem
instances.

4.2 AlgorithmTuning

The adjustment of the parameter values of BA, Cmsa,
and Learn_Cmsa was performed with the tuning tool
irace [23]. During preliminary experiments, we noticed
changes concerning the parameter value requirements of
the tested algorithms for different threshold values. Another
important factor of a problem instance is n, the number of
input strings. Therefore, we decided to tune parameters sep-
arately for small problem instances (n = {100, 200}) and
large problem instances (n = {300, 400}). In this way, we
perform16 different tuning processes for each algorithm, one
for each combination of |�|, n (small vs. large), and t . As
tuning instances, we use the first (out of 100 instances) for
each case from the Ferone dataset (for |�| = 4), respectively
from our new datasets (for |�| ∈ {12, 20}).

123

International Journal of Computational Intelligence Systems (2024) 17:109 Page 9 of 16 109

Fig. 1 Study of the evolution of
the optimality gaps produced by
CPLEX for a range of different
threshold values (x-axis)

(a) |Σ| = 12, n = 100 (b) |Σ| = 20, n = 100

(c) |Σ| = 12, n = 200 (d) |Σ| = 20, n = 200

(e) |Σ| = 12, n = 300 (f) |Σ| = 20, n = 300

(g) |Σ| = 12, n = 400 (h) |Σ| = 20, n = 400

The algorithm parameters and the corresponding domains
are detailed in Tables 1a, b, and 2. Additionally, irace was
allocated a budget of 5000 runs, each run with a time limit
of 600s. The parameter configurations identified by irace
are presented in the respective tables.

Analysis of the Learn_Cmsa tuning results. In Table 2,
we can observe the tuning results obtained with irace for
Learn_Cmsa. Considering the case with |�| = 4, there is
a significant difference in behavior between t = 0.8m and
t = 0.85m. At t = 0.8m, a collaborative interaction between
BAandCPLEXcan be noticed. Such an interaction is charac-

terized by the allocation of shorter computation times to the
ILP solver (tsolver), a lower maximum age for solution com-
ponents (agemax), and a fewer number of extracted solutions
from BA for feeding the sub-instance of Learn_Cmsa (na).
This limits the introduction of new solution components per
iteration, therebymaintaining amore controlled sub-instance
size. Furthermore, BA seems to play an important role as it
works with higher quality initial solutions (see the high value
for heuristic initialization prheur) and with high levels of
determinism (d). This is not the case with t = 0.85m, where
the process seems to be more of a pipeline between BA and

123

 109 Page 10 of 16 International Journal of Computational Intelligence Systems (2024) 17:109

Ta
bl
e
1

Pa
ra
m
et
er
s
of

C
m
sa

(a
)
an
d
B
A
(b
)
to
ge
th
er

w
ith

th
ei
r
do
m
ai
ns

co
ns
id
er
ed

fo
r
th
e
tu
ni
ng

pr
oc
es
s
an
d
ch
os
en

va
lu
es

fo
r
al
ld

at
as
et
s

(a
)
Pa
ra
m
et
er

tu
ni
ng

of
C
m
sa

C
m
sa

|�
|=

4
|�

|=
12

|�
|=

20

n
=

{10
0,

20
0}

n
=

{30
0,

40
0}

n
=

{10
0,

20
0}

n
=

{30
0,

40
0}

n
=

{10
0,

20
0}

n
=

{30
0,

40
0}

Pa
ra
m
et
er

C
on

si
de
re
d
do

m
ai
n

t
=

0.
8

t
=

0.
85

t
=

0.
8

t
=

0.
85

t
=

0.
95

t
=

0.
97

t
=

1.
0

t
=

0.
95

t
=

0.
97

t
=

1.
0

t
=

0.
98

t
=

0.
99

t
=

1.
0

t
=

0.
98

t
=

0.
99

t
=

1.
0

A
ge

m
ax

{1,
2,

3,
5,
10

,
50

,
10
00

}
50

50
50

10
00

10
00

1
10

50
10
00

3
1

50
10

2
3

3

n a
{1,

2,
3,
4,
5,
10

,
20

,
50

,
10
0}

50
10
0

20
50

50
10
0

50
10
0

50
50

10
0

10
0

10
0

10
0

10
0

10
0

t s
ol
ve
r

{1,
3,
5,
10

,
20

,
50

,
10
0,

20
0,

30
0,

40
0,

50
0}

50
0

50
0

50
0

40
0

50
0

40
0

40
0

50
0

50
0

50
0

50
0

50
0

20
0

50
0

50
0

50
0

d
[0.

0,
1.
0]

0.
6

0.
73

0.
18

0.
61

0.
3

0
0.
49

0.
32

0.
01

0.
19

0.
3

0.
09

0.
19

0.
51

0.
09

0.
03

o
f

{0,
1,
2}

0
1

1
0

1
1

2
0

2
2

1
2

2
1

2
0

C
P
L
st
op

{0,
1}

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

(b
)
Pa
ra
m
et
er

tu
ni
ng

of
B
A

B
A

|�
|=

4
|�

|=
12

|�
|=

20

n
=

{10
0,

20
0}

n
=

{30
0,

40
0}

n
=

{10
0,

20
0}

n
=

{30
0,

40
0}

n
=

{10
0,

20
0}

n
=

{30
0,

40
0}

Pa
ra
m
et
er

C
on

si
de
re
d
do

m
ai
n

t
=

0.
8

t
=

0.
85

t
=

0.
8

t
=

0.
85

t
=

0.
95

t
=

0.
97

t
=

1.
0

t
=

0.
95

t
=

0.
97

t
=

1.
0

t
=

0.
98

t
=

0.
99

t
=

1.
0

t
=

0.
98

t
=

0.
99

t
=

1.
0

p s
iz
e

{10
,
10
0,

50
0,

10
00

,

20
00

,
50
00

,
10
00
0}

10
00

10
00
0

10
0

10
00
0

10
00
00

50
00

10
00
0

50
0

50
0

10
00
0

10
00
0

20
00

10
00
0

50
0

50
00

10
00
0

d r
at
e

[0.
0,

1.
0]

0.
99

0.
85

0.
64

0.
81

0.
99

0.
98

0.
82

1.
0

0.
92

0.
81

1.
0

0.
99

0.
94

1.
0

0.
96

0.
89

pr
re
g

[0.
0,

1.
0]

0.
01

0.
02

0.
01

0.
02

0.
01

0.
01

0.
71

0.
01

0.
02

0.
5

0.
01

0.
01

0.
58

0.
01

0.
01

0.
53

pr
m
ut

[0.
0,

1.
0]

0.
74

0.
39

0.
52

0.
86

0.
75

0.
53

0.
66

0.
79

0.
33

0.
54

0.
28

0.
43

0.
32

0.
9

0.
65

0.
1

pr
he
ur

[0.
0,

1.
0]

0.
72

0.
38

0.
16

0.
83

0.
67

0.
9

0.
78

0.
78

0.
65

0.
91

0.
85

0.
26

0.
61

0.
7

0.
75

0.
53

o
f

{0,
1,
2}

1
1

1
1

1
1

1
1

1
2

1
1

1
1

1
1

123

International Journal of Computational Intelligence Systems (2024) 17:109 Page 11 of 16 109

Ta
bl
e
2

A
lg
or
ith

m
pa
ra
m
et
er
s
fo
r
L
ea

rn
_C

m
sa

an
d
th
ei
r
do

m
ai
ns

co
ns
id
er
ed

fo
r
th
e
tu
ni
ng

pr
oc
es
s
w
ith

i
r
a
c
e
fo
r
al
ld

at
as
et
s

|�
|=

4
|�

|=
12

|�
|=

20

n
=

{10
0,

20
0}

n
=

{30
0,

40
0}

n
=

{10
0,

20
0}

n
=

{30
0,

40
0}

n
=

{10
0,

20
0}

n
=

{30
0,

40
0}

Pa
ra
m
et
er

C
on

si
de
re
d
do

m
ai
n

t
=

0.
80

t
=

0.
85

t
=

0.
80

t
=

0.
85

t
=

0.
95

t
=

0.
97

t
=

1.
0

t
=

0.
95

t
=

0.
97

t
=

1.
0

t
=

0.
98

t
=

0.
99

t
=

1.
0

t
=

0.
98

t
=

0.
99

t
=

1.
0

A
ge

m
ax

{1,
2,

3,
5,
10

,
50

,
10

00
}

1
50

1
50

1
5

2
3

3
5

3
5

50
50

10
50

n a
{1,

2,
3,
4,

5,
10

,
20

,
50

,
10

0}
4

20
5

20
10

0
10

0
10

0
2

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

t s
ol
ve
r

{1,
3,
5,
10

,
20

,
50

,
10

0,
20

0,
30

0,
40

0,
50

0}
2

40
0

1
40

0
10

50
0

20
1

50
0

40
0

50
0

50
0

50
0

50
0

50
0

50

b i
te
r

{1,
2,

3,
5,
10

,
30

,
50

,
75

,

10
0,

20
0,

50
0,

10
00

}
1

10
00

2
5

1
50

0
3

2
30

1
1

2
50

50
10

50

r i
nj
ec
t

[0.
0,

1.
0]

0.
02

0.
58

0.
03

0.
7

0.
14

0.
46

0.
28

0.
02

0.
4

0.
97

0.
47

0.
76

0.
75

0.
29

0.
21

0.
53

p s
iz
e

{10
,
10

0,
50

0,
10

00
,

20
00

,
50

00
,
10

00
0}

50
0

10
00

10
0

50
0

10
00

10
00

50
0

10
0

10
00

10
00

50
00

10
00

0
10

00
20

00
20

00
10

0

d
[0.

0,
1.
0]

0.
71

0.
74

0.
84

0.
34

0.
79

0.
66

0.
51

0.
26

0.
56

0.
4

0.
59

0.
54

0.
92

0.
85

0.
13

1

pr
re
g

[0.
0,

1.
0]

0.
35

0.
49

0.
11

0.
71

0.
82

0.
78

0.
7

0.
48

0.
61

0.
43

0.
6

0.
79

0.
37

0.
97

0.
46

0.
16

pr
m
ut

[0.
0,

1.
0]

0.
02

0.
16

0.
31

0.
13

0.
33

0.
86

0.
05

0.
75

0.
04

0.
79

0.
71

0.
75

0.
92

0.
87

0.
96

0.
69

pr
he
ur

[0.
0,

1.
0]

0.
83

0.
08

0.
84

0.
18

0.
39

0.
76

0.
46

0.
81

0.
03

0.
87

0.
11

0.
04

0.
86

0.
09

0.
21

0.
18

o
f

{0,
1,
2}

1
2

1
2

1
2

2
1

1
0

1
0

1
1

0
1

C
P
L
st
op

{0,
1}

1
0

0
0

0
0

1
0

0
1

0
0

1
0

0
1

CPLEX, evident from the high computation time allocated
to CPLEX and a larger number of solutions (na) extracted
for inclusion in the sub-instance. This results in larger and
more complex sub-instanceswhich demand longer execution
times by the solver.

Concerning |�| = 12, the analysis is less obvious. In
some cases where the CPLEX time is limited ((t = 0.95m,
small), (t = 0.97m, small), and (t = 1.0m, large)), the
allocated number of solutions extracted from BA (na) does
not seem consistent, resulting in potentially large instances
(t = 0.95m, small). Also, these cases are not accompanied
with a high determinism for BA (see the values for d and
prheur), unlike what was observed for Sigma = 4. This
could be attributed to the fact that, with a growing alphabet
size, the problem seems to become easier, allowing irace
more flexibility for the parameter value selection. In the
pipeline scenario, the parameters appear clearer, especially
when solver times are high ((t = 0.97m, small), (t = 0.97m,
large), (t = 1.0m, large)), resorting to extracting the maxi-
mum number of solutions from BA (na) at each iteration.

Finally, concerning |�| = 20, it also appears that a
pipeline approach is preferred with extended solver times
(tsolver) and themaximumnumber of solutions extracted from
BA (na), particularly in small cases, and for (t = 0.98m,
large) and (t = 0.99m, large). An exception is observed for
(t = 1.0m, large), which features a more limited computa-
tion time for the solver, even though it dealswith a potentially
larger sub-instance (maximum value for na).

Upon examining the tuning results concerning the chosen
objective functions, it is evident that there is a tendency to uti-
lize the enhanced functions o f = 1 (fblu) and o f = 2 (fsim)
in over 80% of the configurations. This aligns with the previ-
ous assertion that these functions enhance the performance
of the search process compared to the original objective func-
tion (forig). Hereby, note that fblu is the most frequently
used objective function (56%). Another interesting obser-
vation is that in cases where the CPLEX time is shorter,
leading to greater collaboration between BA and CPLEX
within the framework, the percentage of solution integration
from CPLEX (rinject) is lower over BA than in cases operat-
ing in a pipeline manner. This results in a reduced influence
of CPLEX solutions on the bacteria population.

Analysis of the Cmsa tuning results. In Table 1a, the
parameter values selected by irace for Cmsa are pre-
sented. The prevailing configuration across these instances
is marked by important computation time allocations to
CPLEX, coupled with a considerable number of heuristic
solutions generated at each iteration. These solutions exhibit
low levels of determinism, causing a notable variability in
the components generated. Consequently, this leads to the
creation of large sub-instances that demand extensive com-
putational time in a pipeline-oriented setup of the approach.
It is also noteworthy that the enhanced objective functions

123

 109 Page 12 of 16 International Journal of Computational Intelligence Systems (2024) 17:109

Table 3 Numerical results
concerning instances from the
Ferone set

n m t Cplex HyAco Grasp Aco+
neg Learn_Cmsa CMSA BA

300 0.8m = 240 70.77 77.84 76.26 84.07 85.24 71.08 69.53

100 600 0.8m = 480 72.11 72.97 77.53 88.12 89.25 72.65 69.09

800 0.8m = 640 72.41 70.94 82.17 89.23 90.48 72.69 67.34

300 0.8m = 240 87.40 104.17 94.71 107.41 113.63 89.91 85.09

200 600 0.8m = 480 80.30 85.02 80.94 102.42 110.4 86.23 76.33

800 0.8m = 640 76.38 77.95 85.71 97.67 106.62 80.68 63.89

300 0.8m = 240 89.42 n.a 112.83 120.16 125.53 102.55 71.45

300 600 0.8m = 480 69.74 n.a 83.12 104.95 119.23 86.77 75.14

800 0.8m = 640 66.51 n.a 90.26 92.88 114.53 82.77 56.68

300 0.8m = 240 92.8 n.a 119.32 129.29 137.39 109.66 78.43

400 600 0.8m = 480 50.72 n.a 85.99 103.86 125.36 70.08 81.00

800 0.8m = 640 48.67 n.a 92.86 89.05 111.58 61.19 62.15

300 0.85m = 255 25.43 28.30 29.54 30.53 30.9 25.56 10.45

100 600 0.85m = 510 23.84 22.82 27.47 27.53 27.98 23.85 1.36

800 0.85m = 680 24.10 21.66 26.54 26.61 26.82 24.33 0.57

300 0.85m = 255 23.19 28.59 30.37 32.32 33.04 22.04 8.42

200 600 0.85m = 510 22.14 21.90 26.35 27.31 27.95 22.91 0.56

800 0.85m = 680 22.29 20.40 24.42 25.83 26.78 23.24 0.06

300 0.85m = 255 20.92 n.a 31.83 31.33 33.33 21.26 17.05

300 600 0.85m = 510 21.87 n.a 24.95 24.68 28.39 22.09 0.61

800 0.85m = 680 22.5 n.a 23.53 20.68 26.88 22.46 0.06

300 0.85m = 255 20.98 n.a 32.78 31.55 33.76 21.32 16.06

400 600 0.85m = 510 19.67 n.a 24.56 24.80 28.27 17.61 0.39

800 0.85m = 680 20.53 n.a 22.82 15.86 26.71 18.53 0.02

are more frequently utilized than their original counterparts,
albeit at a marginally lower rate than in Learn_Cmsa (by a
difference of 0.75%).

Analysis of the BA tuning results. Table 1b presents
the parameter values selected by irace for BA. Notably,
each configuration tends to exhibit high—sometimes even
reaching the maximum—population sizes (psize). The rec-
ommended configurations predominantly resort to heuristic
initialization, showcasing medium-to-high determinism lev-
els (drate). Within its operational framework, the BA is
characterized by employing elevated mutation rates for its
recombination operator (prmut), while maintaining very low
mutation rates during regeneration phases (prreg). A salient
observation is BA’s consistent preference for enhanced
objective functions, eschewing the original altogether. This
preference is rationalized by the potential inadequacy of the
original function to differentiate between solutions. It might
happen, for example, that in a population of random indi-
viduals, all have an original objective function value of zero.
Again, function fblu (o f = 1) emerges as the primary choice,
being utilized in 93% of cases.

4.3 Results

The Learn_Cmsa, Cmsa and BA algorithms were applied
precisely once to each of the 1,200 problem instances from
the Ferone dataset (Table 3) and 10 times to each of the 60
problem instances from the Gallardo dataset (Table 4). These
choices are due to the way in which existing algorithms from
the literature were evaluated on these datasets. A computa-
tional time constraint of 600 CPU seconds was imposed for
all executions across both datasets. The tables present the
results in terms of average objective function values. For the
Ferone dataset, the displayed value represents the average
objective value across problem instances sharing the same
(n,m) combination. In contrast, for the Gallardo dataset, the
value signifies the average result over the 10 repeated runs
for all available instances.

In the case of theFeronedataset, the results ofLearn_Cmsa,
Cmsa and BA are compared with CPLEX (standalone and
with the same computation limit asLearn_Cmsa,Cmsa and
BA), a hybrid ACO algorithm called HyAco from [10], the
best performing of six variants of GRASP from [19], and the
current state-of-the-art algorithm called Aco+

neg from [24].
GRASP variants use a time limit of 30 CPU seconds. This

123

International Journal of Computational Intelligence Systems (2024) 17:109 Page 13 of 16 109

Table 4 Numerical results for
the instances from the
Gallardo set

n m t Cplex Ma Graspfer Graspmou Aco+
neg Learn_Cmsa

300 0.8m = 240 69.82 84.82 80.78 70.99 83.14 84.12

100 600 0.8m = 480 72.16 87.08 79.12 70.83 86.90 88.36

800 0.8m = 640 71.7 89.90 79.52 71.08 89.80 90.95

300 0.8m = 240 88.22 109.58 105.85 83.04 106.00 113.36

200 600 0.8m = 480 81.4 101.23 88.95 80.90 102.48 110.89

800 0.8m = 640 79.2 93.92 80.09 79.77 97.40 106.31

300 0.85m = 255 24.98 32.58 18.41 30.10 30.50 31.02

100 600 0.85m = 510 23.6 28.76 4.89 25.36 27.38 28.08

800 0.85m = 680 23.1 27.96 2.58 24.33 26.74 27.08

300 0.85m = 255 24.14 34.49 14.85 32.69 32.32 32.42

200 600 0.85m = 510 22.38 26.17 2.26 25.54 27.10 28.4

800 0.85m = 680 22.36 25.61 0.60 23.71 26.00 26.74

Average 50.29 61.84 46.49 51.53 63.98

might seem unfair as Learn_Cmsa, Cmsa and BA were
allowed 600 CPU seconds per run. However, the low time
limit of 30 CPU seconds was chosen by the authors of [19]
because GRASP did not take advantage from longer running
times. It is important to note that Learn_Cmsa outper-
forms the competing algorithms in all problemconfigurations
within the Ferone dataset. Not only does Learn_Cmsa
demonstrate superior performance compared to other heuris-
tic approaches, but it also surpasses the standalone CPLEX
component, the traditional implementation of Cmsa, and the
BA. In other words, Learn_Cmsa clearly seems to profit
from the synergy between Cmsa and BA, which are the algo-
rithmic components of Learn_Cmsa.

In the case of the Gallardo dataset, again a computation
time limit of 600s per run were employed. Table 4 offers a
comparisonof our algorithms (Learn_Cmsa,Cmsa andBA)
with the standalone-application of the Cplex component,
a Memetic Algorithm (Ma) from [20], Ferone’s GRASP
proposal [18] (Graspfer), Mousavi’s GRASP proposal [17]
(Graspmou), and the Aco+

neg approach from [24] (Aco+
neg).

Based on the experimental results, the following observations
can be made:

• In main terms, the relative comparison between the algo-
rithms allows very similar conclusions as in the case of
the Ferone dataset. Learn_Cmsa is significantly better
than the MA for threshold value t = 0.80m.

• When t = 0.85m,Learn_Cmsa results competitivewith
respect to the MA, being better than this last one in large
instances of the problem.

Note that the average performance of the Learn_Cmsa
algorithm is better than the one of all other algorithms for the
Gallardo dataset.

Finally, Table 5 presents the numerical results of ourmeth-
ods (Learn_Cmsa, Cmsa and BA), CPLEX and Aco+

neg
for our new dataset featuring instances on alphabets of sizes
12 and 20. The table clearly shows that Learn_Cmsa out-
performs not only Aco+

neg—which is, as mentioned before,
one of the current state-of-the-art approaches—but also
the individual algorithm components (Cmsa and BA) of
Learn_Cmsa. Nevertheless, Aco+

neg exhibits its competi-
tiveness in the context of specific scenarios including, for
example, (n = 200, t = 0.95m, � = 12) and (n = 300, t =
1.0m, � = 20). Nonetheless, on average, Learn_Cmsa is
superior to all considered algorithms for both alphabet sizes.
Cmsa beats CPLEX by a narrow margin and falls short
when juxtaposed with Aco+

neg and Learn_Cmsa. Impor-
tantly, BA’s performance is suboptimal when operating in
a standalone manner. In summary, it can again be observed
that the synergies between Cmsa and BA are exploited very
well in Learn_Cmsa.

For a statistical validation of the results, we aimed
to test for performance differences among the algorithms
across the encompassed datasets. For this validation, we
included the results of Aco+

neg (the strongest competitor of
Learn_Cmsa), standalone CPLEX, Learn_Cmsa, and the
individual components of Learn_Cmsa (Cmsa, BA). Ini-
tially, a simultaneous comparative analysis was conducted
via the Friedman test. Following the rejection of the null
hypothesis postulating equivalent performance across all
algorithms, pair-wise assessments were undertaken through
the Nemenyi post hoc test [25]. The findings are illustrated in
Fig. 2, via critical difference (CD) plots. These plots spatially
position each method based on its mean ranking across the
considered instance (sub)set. The CD for a significance level
of 0.05 is computed, with algorithmic performances deemed
statistically indistinguishable if differing less than the CD, as
depicted by the horizontal bars connecting the algorithms in

123

 109 Page 14 of 16 International Journal of Computational Intelligence Systems (2024) 17:109

Ta
bl
e
5

N
um

er
ic
al
re
su
lts

fo
r
ou
r
ne
w
da
ta
se
to

f
in
st
an
ce
s
w
ith

|�
|∈

{12
,
20

}
n

m
�

=
12

�
=

20
t

C
pl
ex

A
co

+ ne
g

L
ea

rn
_C

m
sa

C
M
SA

B
A

t
C
pl
ex

A
co

+ ne
g

L
ea

rn
_C

m
sa

C
M
SA

B
A

30
0

0.
95
m

=
28
5

10
0

10
0

10
0

10
0

96
.3
2

0.
98
m

=
29
4

10
0

10
0

10
0

10
0

98
.0
6

10
0

60
0

0.
95
m

=
57
0

10
0

10
0

10
0

10
0

98
.3
2

0.
98
m

=
58
8

10
0

10
0

10
0

10
0

99
.0
3

80
0

0.
95
m

=
76
0

10
0

10
0

10
0

10
0

98
.6
7

0.
98
m

=
78
4

10
0

10
0

10
0

10
0

99
.3
8

30
0

0.
97
m

=
29
1

61
.2
5

68
.5
4

69
.7
3

57
.4
5

47
.5
3

0.
99
m

=
29
7

81
.0
5

84
.3
8

85
.2
5

81
.2
2

62
.6
2

10
0

60
0

0.
97
m

=
58
2

61
.4
7

65
.6

66
.3
7

59
.0
9

27
.6

0.
99
m

=
59
4

80
.2
5

82
.7
7

83
.5

80
.6
3

44
.2
0

80
0

0.
97
m

=
77
6

59
.4
0

64
.3
5

64
.6

59
.7

19
.4
9

0.
99
m

=
79
2

79
.2
1

81
.8
7

82
.4
2

80
.0
4

35
.2
6

30
0

m
=
30
0

19
.5
4

21
.6
7

22
.1
1

19
.1

0
m

=
30
0

42
.8
9

48
.2
3

49
.1
7

42
.3
6

3.
95

10
0

60
0

m
=
60
0

17
.2
0

18
.9
7

18
.9
7

17
.1
6

0
m

=
60
0

37
.7
7

42
.3
6

42
.1
4

37
.6
8

0

80
0

m
=
80
0

16
.4
8

17
.8
8

17
.9
8

16
.4
5

0
m

=
80
0

35
.6
6

40
.5
9

39
.4
6

36
.2
4

0

30
0

0.
95
m

=
28
5

13
3.
28

15
1.
2

14
8.
35

13
9.
17

13
1.
99

0.
98
m

=
29
4

13
6.
04

15
6.
13

15
5.
74

13
8.
5

12
5.
56

20
0

60
0

0.
95
m

=
57
0

13
1.
17

15
1.
66

14
6.
68

13
7.
8

11
0.
11

0.
98
m

=
58
8

13
2.
54

14
7.
85

15
1.
29

13
6.
27

91
.3
0

80
0

0.
95
m

=
76
0

13
0.
25

15
0.
3

14
7.
38

13
2.
65

10
1.
43

0.
98
m

=
78
4

12
9.
86

14
3.
66

14
9.
58

12
8.
68

78
.2
7

30
0

0.
97
m

=
29
1

64
.9
8

77
.7
7

80
.2

54
.3
3

45
.5
3

0.
99
m

=
29
7

76
.8
7

98
.1
5

99
.2
9

73
.1
3

59
.3
0

20
0

60
0

0.
97
m

=
58
2

58
.7
0

69
.2
4

70
.5
4

55
.5
4

14
.3
3

0.
99
m

=
59
4

67
.3
9

87
.8
3

91
.1
3

72
.4
1

18
.6
7

80
0

0.
97
m

=
77
6

56
.4
1

67
.4

67
.6
7

56
.1
3

5.
36

0.
99
m

=
79
2

45
.7
3

86
.0
2

88
.1
6

71
.7
2

8.
41

30
0

m
=
30
0

19
.5
4

21
.6
7

22
.3
4

19
.2
1

0
m

=
30
0

43
.8
5

51
.0
2

51
.4
2

42
.9
3

1.
92

20
0

60
0

m
=
60
0

17
.1
4

18
.3

18
.9

17
.2
5

0
m

=
60
0

36
.5
8

43
.3
8

41
.7
4

37
.3
9

0

80
0

m
=
80
0

16
.3
4

17
.3
1

17
.9
6

16
.2
1

0
m

=
80
0

35
.1
3

40
.4
6

39
.3
7

35
.4
1

0

30
0

0.
95
m

=
28
5

13
9.
32

16
8.
79

18
3.
89

15
4.
42

14
0.
26

0.
98
m

=
29
4

12
8.
86

16
8.
62

17
5.
23

13
6.
7

13
2.
22

30
0

60
0

0.
95
m

=
57
0

12
0.
38

15
4.
83

18
3.
58

14
6.
95

10
8.
21

0.
98
m

=
58
8

11
4.
54

15
6.
4

16
2.
49

10
7.
12

82
.8
3

80
0

0.
95
m

=
76
0

11
5.
54

15
2.
79

17
6.
46

10
9.
1

88
.4
6

0.
98
m

=
78
4

11
2.
93

15
3.
4

15
8.
89

11
0.
17

58
.9
7

30
0

0.
97
m

=
29
1

54
.7
0

81
.6
9

73
.2
9

52
.2
4

44
.7
8

0.
99
m

=
29
7

75
.2
4

10
4.
73

98
.4
7

68
.7

52
.0
7

30
0

60
0

0.
97
m

=
58
2

54
.6
3

71
.1
2

73
.6
1

53
.7
1

7.
46

0.
99
m

=
59
4

64
.4
1

91
.1
4

92
.6
5

69
.2
3

13
.0
9

80
0

0.
97
m

=
77
6

55
.7
0

67
.3
6

69
.3
9

55
.2
1

1.
36

0.
99
m

=
79
2

36
.9
5

86
.6
4

88
.8
2

68
.9
8

3.
38

30
0

m
=
30
0

19
.3
6

21
.9
6

22
.6
7

19
.0
7

0
m

=
30
0

41
.2
2

52
.0
4

50
.5
3

42
.9

1.
52

30
0

60
0

m
=
60
0

17
.1
1

18
.1

18
.9
9

16
.9
4

0
m

=
60
0

36
.3
1

41
.7
2

40
.4
7

37
.4
7

0

80
0

m
=
80
0

16
.5
3

17
.2
3

17
.8
8

15
.9
6

0
m

=
80
0

34
.8
1

38
.9
6

38
.5
4

35
.6
7

0

30
0

0.
95
m

=
28
5

13
6.
08

17
8.
66

20
5.
19

16
1.
45

14
8.
98

0.
98
m

=
29
4

12
4.
84

17
9.
92

18
7.
53

13
7.
98

13
6.
51

40
0

60
0

0.
95
m

=
57
0

11
6.
12

15
8.
4

19
3.
4

11
3.
63

10
1.
74

0.
98
m

=
58
8

10
9.
96

16
4.
88

16
9.
39

10
2.
85

73
.4
6

80
0

0.
95
m

=
76
0

11
4.
30

15
3.
3

17
0.
05

10
6.
31

76
.5
4

0.
98
m

=
78
4

10
2.
02

16
0.
19

16
0.
61

10
7.
28

49
.3
9

30
0

0.
97
m

=
29
1

51
.9
5

83
.0
8

69
.0
2

50
.8
7

44
.3
4

0.
99
m

=
29
7

75
.1
7

10
8.
36

10
1.
49

67
.4
1

48
.7
0

40
0

60
0

0.
97
m

=
58
2

54
.7
3

69
.1
5

74
.3
1

53
.3
6

5.
2

0.
99
m

=
59
4

66
.7
1

93
.4
2

95
.2
2

67
.9
7

7.
77

80
0

0.
97
m

=
77
6

55
.9
4

65
.8
7

70
.6
9

55
0

0.
99
m

=
79
2

61
.4
3

88
.0
3

90
.2
7

67
.6

1.
11

30
0

m
=
30
0

19
.1
7

21
.8
6

22
.7
4

18
.7
2

0
m

=
30
0

41
.4
9

52
.5
3

51
.3
7

42
.7
5

1.
41

40
0

60
0

m
=
60
0

17
.2
4

18
.2
6

18
.9
8

16
.5
4

0
m

=
60
0

36
.6

41
.8
4

60
.6
6

36
.9
6

0

80
0

m
=
80
0

16
.6
4

17
.2
3

17
.9
2

15
.9
8

0
m

=
80
0

33
.6
8

39
.1
5

38
.4
6

34
.3
9

0

A
v
er

a
g
e

64
.9
6

77
.8
2

81
.7
2

65
.9
1

43
.4
4

73
.8
3

93
.2
4

94
.7
4

76
.0
2

41
.3
4

123

International Journal of Computational Intelligence Systems (2024) 17:109 Page 15 of 16 109

1 2 3 4 5

CPLEX

BA

(a) All problem instances

1 2 3 4 5

CPLEX

BA

(b) Problem instances with |Σ| = 4

1 2 3 4 5

CPLEX

BA

(c) Problem instances with |Σ| = 12

1 2 3 4 5

CPLEX

BA

(d) Problem instances with |Σ| = 20

Fig. 2 Critical difference (CD) plots. The four plots show the results for different (sub-)sets of problem instances

the graphical representation. All tests and plots were created
using the R scmamp package by Calvo and Santafé (2016),
accessible at https://github.com/b0rxa/scmamp.

The CD plots substantiate Learn_Cmsa’s dominance
over competing algorithms across all datasets, with Aco+

neg
trailing as a significant secondary. Cmsa and CPLEX are
closely matched, yet Cmsa displays superiority in a com-
prehensive assessment of instances (as depicted in Fig. 2a).
It is important to note that the differences between Cmsa
and CPLEX is greatest in the context of small-size alphabets
(|�| = 4; see Fig. 2b), reduces considerably with |�| = 12
(Fig. 2c), and disappears for |�| = 20 (Fig. 2d).Note that this
suggests that, with an increasing alphabet size, the FFMSP
seems to become easier to solve. The graphical analysis also
confirms the non-competitiveness of the standalone BA vari-
ant.

5 Conclusions and FutureWork

In this paper, we have proposed a hybrid variant of the Cmsa
algorithm, based on a combination with a population-based
metaheuristic (bacterial algorithm, BA) whose population
provides, at each iteration of Cmsa, the solutions that are
merged into the current sub-instance of Cmsa. In turn, the
solution provided by the ILP solver when solving the current
sub-instance of Cmsa is fed back into the population of the
BA. Therefore, it can be said that the proposedLearn_Cmsa
algorithm is based on two memory mechanisms: (1) the
sub-instance of Cmsa and (2) the population of BA. Both
algorithms—Cmsa and BA—employ a mutual interaction
to improve each other’s search process. The proposed algo-
rithm is applied to the so-called far frommost string problem,

an NP-hard problem from the field of bioinformatics. The
obtained results show, first, that Learn_Cmsa performs sig-
nificantly better than its two algorithm components (Cmsa
and BA). Second, our results show that Learn_Cmsa is a
new state-of-the-art approach for solving the far from most
strings problem.

However, our new Learn_Cmsa approach certainly also
has limitations. Thefirst limitation concerns an elevated num-
ber of algorithm parameters, which results from this new
algorithm being designed as a combination of two standalone
approaches, each one coming with its own set of parameters.
A second possible limitation is that the sub-ordinate opti-
mization technique which is used within Learn_Cmsa—
BA, in the case of this paper—must work harmonically with
the outer Cmsa approach. When an optimization problem
different to the far from most string problem is considered,
BA might not work well for this purpose, and finding a suit-
able technique might not be straightforward in all cases.

In future work, we plan to apply the same mechanism to
other NP-hard combinatorial optimization problems to show
the universal use of the proposed technique. Moreover, we
plan to replace the BAmechanism by other population-based
metaheuristics to show the generality of our algorithmic pro-
posal.

Acknowledgements We acknowledge administrative and technical
support by the Spanish National Research Council (CSIC, Spain) and
by the University of Concepción (Chile).

Author Contributions Methodology, P.P-D., C.B., R.C., and M.A.P.;
programming, P.P-D.; writing—original draft, P.P-D., C.B., and R.C.;
writing—review and editing, C.B. and M.A.P.; data curation, P.P-D.;
supervision, C.B. and R.C.; validation, M.A.P. All authors have read
and agreed to the published version of the manuscript.

123

https://github.com/b0rxa/scmamp

 109 Page 16 of 16 International Journal of Computational Intelligence Systems (2024) 17:109

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature. P. Pinacho-Davidson acknowledges
financial support from FONDECYT through grant number 11230359.
C.Blumwas supportedbygrantsTED2021-129319B-I00 andPID2022-
136787NB-I00 funded by MCIN/AEI/10.13039/501100011033.

Data Availability For detailed results, interested parties can request
information from the corresponding author. The same applies to all
the problem instances utilized in this study.

Declarations

Conflict of interest The authors declare no conflicts of interest. The
funders played no part in the study’s design, data collection, analysis,
interpretation, manuscript writing, or decision to publish the results.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Blum, C., Raidl, G.R.: Hybrid Metaheuristics. Powerful Tools for
Optimization. Springer, Switzerland (2016)

2. Raidl, G.R., Puchinger, J., Blum, C.: In: Gendreau, M., Potvin,
J.-Y. (eds.) Metaheuristic Hybrids. Springer, Cham (2019)

3. Boschetti, M.A., Maniezzo, V., Roffilli, M., Bolufé Röhler, A.:
Matheuristics: Optimization, simulation and control. In: Blesa,
M.J., Blum, C., Di Gaspero, L., Roli, A., Sampels, M., Schaerf,
A. (eds.) Proceedings of HM 2009 – 6th International Workshop
onHybridMetaheuristics. LectureNotes inComputer Science, vol.
5818, pp. 171–177. Springer, Berlin, Heidelberg (2009)

4. Blum, C., Pinacho, P., López-Ibánez, M., Lozano, J.A.: Construct,
merge, solve & adapt: A new general algorithm for combinatorial
optimization. Comput. Oper. Res. 68, 75–88 (2016)

5. Blum, C.: Construct, Merge, Solve and Adapt: Application to
unbalanced minimum common string partition. In: Blesa, M.J.,
Blum, C., Cangelosi, A., Cutello, V., Di Nuovo, A., Pavone, M.,
Talbi, E.-G. (eds.) Proceedings of HM 2016 – 10th International
Workshop on Hybrid Metaheuristics. Lecture Notes in Computer
Science, vol. 9668, pp. 17–31. Springer, Cham (2016)

6. Thiruvady, D., Blum, C., Ernst, A.T.: Maximising the net present
value of project schedules using CMSA and parallel ACO. In:
Blesa, M.J., Blum, C., Gambini Santos, H., Pinacho-Davidson, P.,
Campo, J. (eds.) Proceedings of HM 2019 – 11th International
Workshop on Hybrid Metaheuristics. Lecture Notes in Computer
Science, vol. 11299, pp. 16–30. Springer, Cham (2019)

7. Lewis, R., Thiruvady, D., Morgan, K.: Finding happiness: An anal-
ysis of the maximum happy vertices problem. Comput. Oper. Res.
103, 265–276 (2019)

8. Ferrer, J., Chicano, F., Ortega-Toro, J.A.: CMSA algorithm for
solving the prioritized pairwise test data generation problem in
software product lines. J. Heuristics 27, 229–249 (2021)

9. Mousavi, S.R.: A hybridization of constructive beam search with
local search for far from most strings problem. Int. J. Comput.
Inform. Eng. 4(8), 1200–1208 (2010)

10. Blum, C., Festa, P.: A hybrid ant colony optimization algorithm for
the far frommost string problem. In: Proceedings of EvoCOP 2014
–EuropeanConference onEvolutionaryComputation inCombina-
torial Optimization, pp. 1–12. Springer, Berlin, Heidelberg (2014)

11. Odonkor, S.T., Addo, K.K.: Bacteria resistance to antibiotics:
Recent trends and challenges. Int. J. Biol. Med. Res. 2(4), 1204–
1210 (2011)

12. RicardoContreras,A.,ValentinaHernández, P., Pinacho-Davidson,
P., Angélica Pinninghoff J., M.: A bacteria-based metaheuristic as
a tool for group formation. In: Proceedings of IWINAC 2022 – 9th
International Work-Conference on the Interplay Between Natural
and Artificial Computation. Lecture Notes in Computer Science,
vol. 13259, pp. 443–451. Springer, Berlin, Heidelberg (2022)

13. Lanctot, J., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing
string selection problems. Inform. Comput. 185(1), 41–55 (2003)

14. Meneses, C.N., Oliveira, C.A., Pardalos, P.M.: Optimization tech-
niques for string selection and comparison problems in genomics.
IEEE Eng. Med. Biol. Magaz. 24(3), 81–87 (2005)

15. Festa, P.: On some optimization problems in mulecolar biology.
Math. Biosci. 207(2), 219–234 (2007)

16. Festa, P., Pardalos, P.M.: Efficient solutions for the far from most
string problem. Ann. Oper. Res. 196(1), 663–682 (2012)

17. Mousavi, S.R., Babaie, M., Montazerian, M.: An improved heuris-
tic for the far frommost strings problem. J. Heuristics 18, 239–262
(2012)

18. Ferone, D., Festa, P., Resende, M.G.C.: Hybrid metaheuristics for
the far from most string problem. In: Blesa, M.J., Blum, C., Festa,
P., Roli, A., Sampels, M. (eds.) 8th International Workshop on
Hybrid Metaheuristics. Lecture Notes in Computer Science, vol.
7919, pp. 174–188. Springer, Berlin, Heidelberg (2013)

19. Ferone, D., Festa, P., Resende, M.G.C.: Hybridizations of grasp
with path relinking for the far frommost string problem. Int. Trans.
Oper. Res. 23(3), 481–506 (2016)

20. Gallardo, J.E., Cotta, C.: A GRASP-based memetic algorithmwith
path relinking for the far from most string problem. Eng. Appl.
Artif. Intell. 41, 183–194 (2015)

21. Blum, C., Pinacho-Davidson, P.: Application of negative learning
ant colony optimization to the far from most string problem. In:
Proceedings of EvoCOP – European Conference on Evolution-
ary Computation in Combinatorial Optimization. Lecture Notes in
Computer Science, vol. 13987, pp. 82–97. Springer, Cham (2023)

22. Pinninghoff J, M.A., Orellana M, J., Contreras A, R.: Bacterial
resistance algorithm. an application to CVRP. In: Proceedings of
IWINAC 2019 – 8th International Work-Conference on the Inter-
play Between Natural and Artificial Computation. Lecture Notes
in Computer Science, vol. 11487, pp. 204–211. Springer, Cham
(2019)

23. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M.,
Stützle, T.: The irace package: Iterated racing for automatic algo-
rithm configuration. Oper. Res. Perspectiv. 3, 43–58 (2016)

24. Blum, C., Pinacho-Davidson, P.: Application of negative learning
ant colony optimization to the far from most string problem. In:
Pérez Cáceres, L., Stützle, T. (eds.) Evolutionary Computation in
Combinatorial Optimization, pp. 82–97. Springer, Cham (2023)

25. García, S., Herrera, F.: An extension on “statistical comparisons of
classifiers over multiple data sets” for all pairwise comparisons. J.
Mach. Learn. Res. 9, 2677–2694 (2008)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Extension of CMSA with a Learning Mechanism: Application to the Far from Most String Problem
	Abstract
	1 Introduction
	1.1 Contribution and Paper Outline

	2 The Far from Most String Problem
	2.1 Existing Work on the FFMSP
	2.2 Augmented Objective Functions

	3 The Proposed Algorithms
	3.1 Cmsa for the FFMSP
	3.2 Probabilistic Solution Construction for FFMSP
	3.3 The Population-Based Metaheuristic for the FFMSP
	3.4 The Learn_Cmsa Algorithm

	4 Experimental Evaluation
	4.1 Benchmark Sets
	4.1.1 New Datasets

	4.2 Algorithm Tuning
	4.3 Results

	5 Conclusions and Future Work
	Acknowledgements
	References

