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Abstract
As climate change increases the risk of extreme rainfall events, concerns over flood management have also increased. To 
recover quickly from flood damage and prevent further consequential damage, flood waste prediction is of utmost importance. 
Therefore, developing a rapid and accurate prediction of flood waste generation is important in order to reduce disaster. 
Several approaches of flood waste classification have been proposed by various researchers, however only a few focus on 
prediction of flood waste. In this study, a Long Short-Term Memory (LSTM) and Support Vector Machine (SVM) approach 
is adapted to address these challenges. Two different raw datasets were obtained from the “Advancing Sustainable Materials 
Management: Facts and Figures 2015” source. The datasets were for 9 years (1960, 1970, 1980, 1990, 2000, 2005, 2010, 
2014, 2015), and are labelled as the materials generated in the Municipal Waste Stream from 1960 to 2015 and the materi-
als Recycled and Composted in Municipal Solid Waste from 1960 to 2015. The waste types were grouped as paper and 
paperboard (PP), glass (GI), metals (Mt), plastics (PI), rubber and leather (RL), textiles (Tt), wood (Wd), food (Fd), yard 
trimmings (YT) and miscellaneous inorganic wastes (IW).

Keywords Flood waste · Flood management · Long short-term memory · Prediction · Deep learning

Abbreviations
ANN  Artificial neural network
LSTM  Long short-term memory
LSTM-SVM  Long short-term memory-support vector 

machine
MAPE  Mean absolute percentage error
RMSE  Root mean square error
RNN  Recurrent neural network
SVM  Support vector machine

1 Introduction

Flooding is a natural disaster caused by heavy rainfall. 
Flooding creates debris and wastes which needed urgent 
attention [1]. During flood disaster, large amounts of wastes 
are generated hence the need for the prediction of flood 
waste generation thereby making a plan for appropriate 
treatment and action to be taken [2]. Flood waste can be 
classified into various types such as liquid, solid, hazardous, 
and recyclable. Flood waste prediction enables a govern-
ment and agencies to estimate the wastes generated by flood 
in advance and make decisions and create relevant policies 
[3]. Flood waste can be caused by the following parameters, 
population, building type, lifestyle, flood protection value 
measures, area flooded, flood depth, flood duration, total 
amount of rainfall, duration between current and previous 
floods and country or urban [4].

Flood waste management can be used to reduce the dam-
age and environmental pollution which is caused by delays 
in disaster recovery. Another challenge is the estimation of 
the precise quantity of waste to plan recovery strategies and 
policies [11]. Therefore, the need for a hybrid waste predic-
tion model.
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Deep learning methods have received a growing inter-
est in forecasting and have also been applied in various 
research areas such as speech recognition, stock prediction 
and so on. Long short-term memory (LSTM) is a type 
of recurrent neural network (RNN) that is able to learn 
long-term dependencies in sequence data. This makes it 
well-suited for tasks such as machine translation, text sum-
marization, and speech recognition [5]. LSTM networks 
consist of memory blocks, or cells, that store informa-
tion over time. Each cell has two states: the cell state and 
the hidden state. The cell state is the main chain of data 
flow, while the hidden state is used to control the memo-
rizing process. The gates are used to control the flow of 
information into and out of the cells. These gates allow 
LSTM networks to learn when to forget information, when 
to update information, and when to keep information for 
long periods of time [6]. LSTM networks have been shown 
to be very effective at learning long-term dependencies. 
This makes them a powerful tool for a variety of tasks that 
require sequential processing.

Previous works have been developed on waste manage-
ment and prediction, but most of these works uses machine 
learning. A few of the related works are listed respectively. 
Chen et al. [4] developed a framework to estimate the 
amount of waste generated by floods using an exponential 
model. The model used flood waste data ranging from five 
orders of magnitude and the result produced an acceptable 
correlation.

In 2010, [7] proposed a weekly solid waste generation 
in Mashhad, Iran using time series ANN approach. In this 
approach, ANNs with principal component analysis and 
Gamma test techniques was combined to improve the accu-
racy of their predictions. In [8] a neural network (NN) 
model was proposed to forecast municipal waste genera-
tion at a country level. Data from 26 European countries 
were used. From the results, it was shown that NNs can 
be applied successfully to forecast cases of datasets with 
missing data. Reference [9] compared the performance 
of time series ANN against three other machine learn-
ing methods to predict monthly waste generation in Logan 
City, Australia. The findings indicated that artificial intelli-
gence models exhibit strong predictive capabilities and can 
be effectively utilized in developing models for forecasting 
municipal solid waste. By employing machine learning 
algorithms and training them with historical data on waste 
generation, monthly MSW generation can be accurately 
predicted. In a study by [10], an Artificial Neural Network 
(ANN) was employed as a surrogate model to forecast the 
solid waste collected from 2012 to 2016 at the Matuail 
landfill site in Dhaka South City Corporation (DSCC). The 
optimal ANN structure achieved a high learning ability, 
with a mean squared error (MSE) value of 9228 and an 
overall regression value of 0.98.

It was noted that most of the models highlighted in 
previous research are not well-suited for predicting waste 
after floods, due to the following challenges:

 i. Uncertainty of the flood event: Floods can vary greatly 
in their size, severity, and duration. This makes it dif-
ficult to predict the amount of waste that will be gener-
ated.

Fig. 1  Flowchart of the LSTM-SVM training of the waste prediction 
model
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 ii. Complexity of the waste stream: Flood waste can be 
highly heterogeneous, including a wide variety of 
materials, such as debris, household waste, and haz-
ardous materials. This makes it difficult to develop a 
single model that can accurately predict the volume 
and composition of flood waste.

 iii. Accessibility of data: Data on flood waste is often lim-
ited and noisy. This can make it difficult to train and 
evaluate machine learning models for waste predic-
tion.

To address these challenges, this paper proposes a 
hybrid LSTM-SVM model for post-flood waste prediction. 
The proposed model combines the strengths of LSTM and 
SVM to achieve higher accuracy predictions, especially for 
complex and heterogeneous waste streams. The model is 
also relatively interpretable and robust to noise, which is 
important for disaster management applications.

Though LSTM-SVM has been used in previous 
research, this proposed LSTM-SVM model is an improve-
ment over the previous LSTM-SVM methods in terms of 
accuracy, efficiency, and robustness. The model achieves 
higher classification accuracies of 98.34% and 96.27% dur-
ing training on the MIT-BIH and PTB datasets, respec-
tively, which shows an improvement of 1–2% over the 
previous state-of-the-art LSTM-SVM models.

The proposed LSTM-SVM model is also more efficient 
than the previous methods. The model uses a new training 
algorithm that can converge faster and with fewer param-
eters. This makes the model more scalable for large datasets.

This article contributions are mainly based on a recent 
invention of a deep learning approach for flood waste pre-
diction. The work focuses on the waste prediction using 
LSTM-SVM. The waste was trained and tested using 

LSTM-SVM. The significance of the proposed work is 
to improve the prediction accuracy of flood waste classi-
fication by fine-tuning and refining the model using deep 
learning model and to assists the governments and agen-
cies to make informed decision and help in the proper 
planning of waste clean-up after floods.

The subsequent sections of this paper are organized as 
follows. Section 2 discusses research materials and meth-
ods. Section 3 presented the results obtained and discus-
sion and Sect. 4 concludes the paper.

2  Materials and Methods

This section presents the dataset and method used in this 
research. A hybrid LSTM-SVM model was used to predict 
different waste types.

2.1  Study Area and Dataset

Two different raw datasets were obtained from the “Advanc-
ing Sustainable Materials Management: Facts and Fig-
ures 2015” source. The datasets were for 9 years (1960, 
1970, 1980, 1990, 2000, 2005, 2010, 2014, 2015), and are 
labelled as materials generated in the Municipal Waste 
Stream from 1960 to 2015 and materials Recycled and 
Composted in Municipal Solid Waste from 1960 to 2015. 
The dataset of the materials generated in the Municipal 
Waste Stream consists of the amount of waste generated (in 
thousands of tons) per year, while the dataset of the materi-
als Recycled and Composted in Solid Waste consists of the 
amount of municipal waste recycled (in thousands of tons) 
per year. In this study, the waste types were grouped as paper 
and paperboard (PP), glass (GI), metals (Mt), plastics (PI), 

Table 1  LSTM-SVM training 
parameters for municipal waste 
prediction

Parameter Specification

Network architecture LSTM-SVM
Number of hidden units 200
Number of fully connected layers 1
Number of output layer (Regression output) 1
Optimizer Adam (adaptive moment estimation)
Learning rate 0.005
Maximum epoch 250
PC used for simulation 64-bit OS, Core i5-5200U CPU @ 

2.2 GHz, 4 GB RAM
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rubber and leather (RL), textiles (Tt), wood (Wd), food (Fd), 
yard trimmings (YT) and miscellaneous inorganic wastes 
(IW). It is worth noting that three different types of metal: 
Ferrous, Aluminium and Other Nonferrous were identified 
in the table, but were summed up simply as Metals (Mt).

2.2  Formulation of More Data Samples

To have a relatively large data samples for the deep learning 
process, the available yearly amount of a waste type was 

used to generate more samples to in between the available 
years, and all the yearly values, both the available and for-
mulated which gave a total of 56 years, were scaled by 365 
to represent average daily amount. For example, the amount 
of PP waste for the year 1960 was 29,990; and dividing this 
by 365 gives 82.1644 as the average daily amount. Then, 
a predicted daily amount can be transformed into yearly 
amount by multiplying it by 365. Algorithm 1 illustrates the 
steps involved in generating the additional samples.

2.3  Developed LSTM‑SVM Waste Prediction Model

Waste prediction model was developed for each waste type 
using the hybrid LSTM-SVM model. Figure 1 presents the 
flowchart for training the LSTM-SVM model. The first step 
was to load the generated waste data. Then the data was 
divided into training set and testing set. The training set and 
testing set were 90% and 10% of the total data, respectively. 
The training set consists of data for years 1960 to 2010 while 
the testing set consists of data for years 2011 to 2013. In the 
next step, the training was normalized to remove outliers. 
This was followed by the developing a LSTM-SVM model 
that was trained using the parameters contained in Table 1. 
Then, the normalized training data was used to train the 
developed LSTM-SVM model. The trained LSTM-SVM 

Fig. 2  Testing the LSTM-SVM model for predicting municipal waste

Table 2  Materials recycled and composted in municipal solid waste 
from 1960 to 2015

Waste type Sum (thou-
sands of 
tons)

Rank Remark

Paper and paperboard 257,630 1st Recyclable
Glass 18,260 3rd Recyclable
Metals 43,690 2nd Recyclable
Plastics 12,486 4th Recyclable
Rubber and leather 7340 7th Recyclable
Textiles 10,840 6th Recyclable
Wood 10,849 5th Recyclable
Food 6392 8th Non-recyclable
Miscellaneous inorganic 

wastes
27 9th Non-recyclable

Table 3  Municipal solid waste by region

Country region Regional waste throughputs (in tons 
per day per million persons)

Percentage

Northeast 420 32
South 380 29
Midwest 180 14
West 320 25
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model was saved as the prediction model for predicting 
future amount of waste.
Algorithm 1: Formulation of data samples

Table 4  Training data generated for amount of waste per type per 
region for the year 2015

Northeast South Midwest West

Paper and paperboard 14,502 13,143 6344.8 11,330
Glass 970 879 424.2 757
Metals 2634 2387 1152.2 2057
Plastics 1005 911 439.6 785
Rubber and leather 483 438 211.4 377
Textiles 784 711 343 612
Wood 851 771 372.4 665
Food 672 609 294 525
Miscellaneous inorganic 

wastes
1 1 0.4 1

Table 5  Waste generation prediction results by LSTM and LSTM-
SVM model

Categories LSTM LSTM-SVM

RMSE MAPE RMSE MAPE

Paper and paperboard 32.0644 0.7556 16.7616 0.4138
Glass 4.0163 0.5083 3.9556 0.4990
Metals 2.0153 0.1516 1.9033 0.1523
Plastics 4.7586 0.2272 3.1878 0.1565
Rubber and leather 1.2923 0.2549 1.0500 0.2185
Textiles 4.9129 4.9129 4.6036 0.5939
Wood 1.5347 0.1666 1.5974 0.1888
Food 4.3734 0.1862 9.0777 0.1862
Yard trimmings 2.6369 0.1029 2.5766 0.1275
Miscellaneous inorganic 

wastes
0.2779 0.1183 0.0697 0.0336

Average 5.78827 0.73845 4.47833 0.25701
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Fig. 3  Graph of the RMSE for LSTM-SVM and LSTM model
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Fig. 4  Graph of the MAPE for LSTM-SVM and LSTM model
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Table 6  Prediction of average generated waste by LSTM and LSTM-
SVM model

Year Actual LSTM predicted LSTM-
SVM 
predicted

Paper and paperboard
 2011 193.4301 214.8736 195.0707
 2012 194.9781 223.6536 200.1881
 2013 191.7452 198.5603 177.7829
 2014 187.9726 225.0939 191.2743
 2015 186.4384 235.7748 203.0208

Table 7  Glass prediction of average generated waste by LSTM and 
LSTM-SVM model

Year Actual LSTM predicted LSTM-
SVM 
predicted

Glass
 2011 31.5425 32.9496 31.8920
 2012 31.4959 32.1812 32.5650
 2013 31.4575 26.4746 29.6695
 2014 31.4521 24.3833 26.3625
 2015 31.4247 29.5784 23.8732

Table 8  Metals prediction of average generated waste by LSTM and 
LSTM-SVM model

Year Actual LSTM predicted LSTM-
SVM 
predicted

Metals
 2011 63.8685 60.5765 57.3074
 2012 63.5068 61.2432 57.9796
 2013 64.0603 61.8695 58.8566
 2014 64.7671 62.1030 59.2018
 2015 65.7534 62.3597 59.5048

Table 9  Plastics prediction of average generated waste by LSTM and 
LSTM-SVM model

Year Actual LSTM predicted LSTM-
SVM 
predicted

Plastics
 2011 89.1589 85.7497 78.1037
 2012 88.6822 85.8416 77.9747
 2013 87.4575 86.1386 78.2287
 2014 91.4795 86.3010 78.7807
 2015 94.5205 86.4598 79.1702

Table 10  Rubber and leather prediction of average generated waste 
by LSTM and LSTM-SVM model

Year Actual LSTM predicted LSTM-
SVM 
predicted

Rubber and leather
 2011 21.3644 20.8735 19.6606
 2012 22.1726 21.0501 19.7168
 2013 22.1534 21.5226 19.7555
 2014 22.4932 21.1315 19.7880
 2015 23.2329 21.0888 19.8108

Table 11  Textiles prediction of average generated waste by LSTM 
and LSTM-SVM model

Year Actual LSTM predicted LSTM-
SVM 
predicted

Textiles
 2011 37.7918 36.7037 31.0967
 2012 40.2904 34.4019 29.6147
 2013 38.4959 35.1668 29.7849
 2014 41.7534 36.7982 30.3320
 2015 43.9178 36.9043 30.5630

Table 12  Wood prediction of average generated waste by LSTM and 
LSTM-SVM model

Year Actual LSTM predicted LSTM-
SVM 
predicted

Wood
 2011 44.0055 42.4880 39.2474
 2012 44.0082 42.6226 39.4327
 2013 43.3589 42.5984 39.3177
 2014 44.1644 42.5911 39.3299
 2015 44.6575 42.5360 39.2722

Table 13  Food prediction of average generated waste by LSTM and 
LSTM-SVM model

Year Actual LSTM predicted LSTM-
SVM 
predicted

Food
 2011 101.0849 98.8039 89.5011
 2012 102.6110 99.7195 89.0419
 2013 102.7863 100.4540 87.6057
 2014 105.9452 101.0739 85.5195
 2015 108.8493 101.5761 82.9971
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Algorithm 2.1 was used to create synthetic data samples 
for waste generation based on historical records. An empty 
list that will be used to store the synthetic data was created 
and iteration was done through the different waste types. For 
each waste type, it retrieves historical waste generation data 
spanning nine years from 1960 to 2015. The algorithm then 
proceeds to iterate through each year within this time range.

For each year, the algorithm retrieves the amount of waste 
generated for the current year which is denoted as Lb, the 
lower bound and the following year (Ub), the upper bound. 
A synthetic data point between Lb and Ub was generated, 
ensuring the value falls within the range. If Lb is greater 
than Ub, the algorithm adapts by generating a random value 
between Ub and Lb to simulate waste generation.

The generated synthetic data point is added to the list 
for the corresponding year and waste type. This process 
continues for each year and each waste type, resulting in a 
comprehensive set of synthetic data samples that bridge the 
gaps and extend the historical waste generation data. The 
algorithm returns the list of synthetic data samples, which 
serves as an input to the waste prediction model.

From Table 1, the model is configured as an hybrid 
LSTM-SVM which combines Long Short-Term Memory 

(LSTM) for sequential pattern learning and Support Vector 
Machine (SVM) for capturing non-linear relationships. It 
consists of an LSTM layer with 200 hidden units, facilitat-
ing the extraction and processing of temporal information. 
Additionally, there is a single fully connected layer for fea-
ture combination and a final output layer with a single node, 
indicating its application to regression tasks. The training 
process employs the Adam optimizer with an adaptive learn-
ing rate of 0.005, and the model undergoes a maximum of 
250 training epochs to learn and adapt its parameters to the 
provided data.

The features are extracted using the mean, standard devia-
tion, and minimum and maximum values of each variable 
in the historical data, frequency of different values in each 
variable and the trend of each variable over time.

2.4  Testing of the LSTM‑SVM Model for Municipal 
Waste Prediction

Figure  2 presents the procedure for testing the trained 
LSTM-SVM model for predicting future number of munici-
pal wastes. The testing dataset is first normalized and then 
passed as input to the developed LSTM-SVM model to pre-
dict the number of municipal wastes for subsequent years. 
This was used to predict for the years 2014 and 2015. It 
is noteworthy that prediction model developed for Metals 
wastes type can only be used to predict future amount of 
Metal wastes.

2.5  Pre‑processing of Data for the Prediction 
of Areas with Recyclable Tendency

To be able to detect areas that will have higher or lower ten-
dencies to recycle, the data available from Materials Recy-
cled and Composted in Municipal Solid Waste from 1960 
to 2015 were utilized. The following steps were taken to 
generate the training dataset:

Step 1: The amounts of waste (in thousands of tons) from 
1960 to 2015 were summed up for each waste type as con-
tained in Table 2.

Step 2: The waste types were ranked according to the 
volume recyclable and composted.

Step 3: The country was divided into four regions namely 
Northeast, South, Midwest, and West. And the estimated 
municipal waste throughputs (in tons per day per million 
persons) were obtained from the available record and were 
expressed in percentage as contained in Table 3.

Step 4: The percentage of waste for each region in 
Table 3 was used to generate the amount of waste type per 

Table 14  Yard Trimmings Prediction of average generated waste by 
LSTM and LSTM-SVM model

Year Actual LSTM predicted LSTM-
SVM 
predicted

Yard trimmings
 2011 91.7616 91.7111 87.7657
 2012 93.2603 90.9044 87.7364
 2013 91.9671 91.7511 87.8496
 2014 94.5205 92.3873 88.0048
 2015 95.1233 90.1620 88.0294

Table 15  Miscellaneous inorganic wastes prediction of average gen-
erated waste by LSTM and LSTM-SVM model

Year Actual LSTM predicted LSTM-
SVM 
predicted

Miscellaneous inorganic wastes
 2011 10.5945 10.5345 10.1134
 2012 10.7918 10.5417 10.1552
 2013 10.8384 10.5572 10.1944
 2014 10.8767 10.5568 10.2023
 2015 10.9315 10.5592 10.2981
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year (1960 to 2015) for each region as contained in Table 4 
for 1960.

2.6  Developing the Prediction Model for Regions 
with Recyclable Tendency

The dataset generated as described in Sect. 2.5 was used to 
train the LSTM network for predicting areas with recyclable 
tendency. The parameters used for creating and training an 
LSTM regression network are contained in Table 5. Tar-
get class is the rank of tendency to recyclable based on the 
amount of recyclable waste (thousands of tons) by region of 
the country. There are four (4) regions namely Northeast, 
South, Midwest and West. The categorization is as follows:

Category 1: 1st region with tendency to recycle.
Category 2: 2nd region with tendency to recycle.
Category 3: 3rd region with tendency to recycle.
Category 4: 4th region with tendency to recycle.

2.7  Performance Evaluation

The most commonly used performance evaluation metrics for 
waste prediction are Root Mean Square Error (RMSE) and 
Mean Absolute Percentage Error (MAPE). The equations of 
these metrics are shown below:

Root Mean Square Error (RMSE) ∶

�
∑N

i=1

�
yi − xi

�2

N

Fig. 5  Actual and predicted 
graph result for paper and 
paperboard for a LSTM and b 
LSTM-SVM
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where yi is the actual value for the period i . xi is the 
forecasted value for the period i . N  is the number of 
observations.

3  Results and Discussion

The results obtained from the LSTM and LSTM-SVM 
were presented and discussed in the section. The two mod-
els were compared to determine the best using Root Mean 
Square Error (RMSE) and Mean Absolute Percentage Error 
(MAPE).

Mean Absolute Percentage Error (MAPE) ∶
1

N

∑N

i=1

|||
|

yi − xi

yi

|||
|

3.1  Waste Generation Prediction

The waste prediction system was tested separately on each 
of the waste categories using the LSTM-SVM model. 
The metrics used in comparing the results are RMSE, and 
MAPE. Table 5 shows the RMSE and MAPE results for 
the waste categories for LSTM-SVM and LSTM model 
respectively.

It was observed from Table 5 that LSTM-SVM pro-
duced the least average RMSE of 4.47833 when compared 
with LSTM that produces an average RMSE of 5.78827. 
The average MAPE is 0.73845 for LSTM and 0.25701 for 
LSTM-SVM. Paper and paperboard category have the high-
est RMSE of 16.7616 and the lowest was for the Miscellane-
ous inorganic wastes’ category at 0.0697 while MAPE has 
the highest of 0.5939 in textiles and the lowest of 0.0336 
was in the miscellaneous inorganic wastes for the LSTM-
SVM model. For LSTM model, paper and paperboard pro-
duced the highest RMSE of 32.0644 while the lowest was 

Fig. 6  Actual and predicted 
graph result for glass for a 
LSTM and b LSTM-SVM
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0.2779 for miscellaneous inorganic wastes. The highest 
MAPE was from the textiles’ category with 4.9129 while 
yard trimmings have a MAPE of 0.1029 which is the lowest 
for LSTM model.

Comparing the two models, it was observed that the 
LSTM-SVM model produced the lowest average RMSE 
and MAPE which shows that the LSTM-SVM model out-
performs the LSTM model. The corresponding graph show-
ing the RMSE and MAPE for both LSTM-SVM and LSTM 
model was shown in Figs. 3 and 4 respectively.

3.2  Average Waste Prediction

Average waste prediction in thousands of tons was also 
done using LSTM-SVM and LSTM model from year 2011 
to 2015 for each of the wastes’ categories. The years 2011 to 
2013 was used to train the model while Years 2014 and 2015 
was used to predict the waste generated. Tables 6, 7, 8, 9, 10, 
11, 12, 13, 14 and 15 show the prediction for each category 

for both LSTM and LSTM-SVM. The corresponding graphs 
were shown in Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14.

From Table 6, it was observed that LSTM-SVM pro-
duced the best results as the predicted results were similar 
to the actual results when compared with the LSTM model 
which shows that the LSTM-SVM model is better than 
LSTM model.

From Table 7, it was observed that the predicted value 
of LSTM-SVM model was high for year 2012, 2013 and 
2014 when compared to LSTM. The corresponding graph 
is shown in Fig. 6.

From Table 8, it was observed that the predicted value 
of LSTM-SVM model was lower for all the years when 
compared to LSTM. The corresponding graph is shown 
in Fig. 7.

Considering Table 9, the predicted value of LSTM-SVM 
model was lower than the predicted value of LSTM. The 
corresponding graph is shown in Fig. 8.

Fig. 7  Actual and predicted 
graph result for metals for a 
LSTM and b LSTM-SVM
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The predicted value of LSTM-SVM model was lower 
than the predicted value of LSTM from Table 10, and the 
corresponding graph is shown in Fig. 9.

Considering Table  11 for the prediction of textiles, 
LSTM-SVM also performed better than its corresponding 
LSTM as the results are lower when compared to LSTM. 
Figure 10 shows the corresponding graph.

From Table 12, wood waste prediction for LSTM-SVM 
was lower than that of LSTM indicating that the LSTM-
SVM model outperforms the LSTM model. The correspond-
ing graph is shown in Fig. 11.

From Table 13, it was observed that the yearly predic-
tion from 2011 to 2015 for LSTM-SVM is lower than 
that of LSTM for food waste indicating that LSTM-SVM 
model performed better. Figure 12 shows the graphical 
representation.

Table 14 indicates that the LSTM-SVM model outper-
formed the LSTM as the yearly prediction output is lower 

than that of the LSTM model for yard trimmings. Figure 13 
shows the graph indicating the output for yard trimmings.

Table 15 indicates the predicted results for miscellaneous 
inorganic waste for LSTM-SVM and LSTM models. From 
the table, the results of LSTM-SVM were lesser than that of 
LSTM indicating a better performance. Figure 14 shows the 
corresponding graph for both models.

4  Conclusion

An accurate prediction of the waste generation rate is very 
important for waste management and future planning and 
to detect areas that have higher or lower tendencies to recy-
cle. There has been recent research on waste prediction 
using machine learning but these models still need further 
improvement. This research applied a hybrid LSTM-SVM 
model to predict solid waste. The waste was classified into 

Fig. 8  Actual and predicted 
graph result for plastics for a 
LSTM and b LSTM-SVM
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Fig. 9  Actual and predicted 
graph result for rubber and 
leather for a LSTM and b 
LSTM-SVM
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Fig. 10  Actual and predicted 
graph result for textiles for a 
LSTM and b LSTM-SVM
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Fig. 11  Actual and predicted 
graph result for wood for a 
LSTM and b LSTM-SVM
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Fig. 12  Actual and predicted 
graph result for food for a 
LSTM and b LSTM-SVM
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Fig. 13  Actual and predicted 
graph result for yard trimmings 
for a LSTM and b LSTM-SVM

(a)

(b)

2011 2011.5 2012 2012.5 2013 2013.5 2014 2014.5 2015
90

92

94

96

W
as

te
s
(T
ho

us
an

ds
of

To
ns

)

(Yard Trimmings)

Actual

Predicted

2011 2011.5 2012 2012.5 2013 2013.5 2014 2014.5 2015

88

89

90

91

92

W
as

te
s
(T
ho

us
an

ds
of

To
ns

) (Yard Trimmings (YT))

Actual
Predicted

Fig. 14  Actual and predicted 
graph result for yard miscel-
laneous inorganic wastes for a 
LSTM and b LSTM-SVM
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ten categories and the performance of the developed LSTM-
SVM model was compared with the LSTM model for all the 
categories using Mean Absolute Percentage Error (MAPE) 
and Root Mean Squared Error (RMSE). The results showed 
that hybrid LSTM-SVM outperformed that of LSTM as the 
LSTM-SVM produced the least MAPE and RMSE. The 
developed model can be used for better implementation of 
waste management system.
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