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Abstract
This research introduces a state-of-the-art Persian spelling correction system that seamlessly integrates deep learning tech-
niques with phonetic analysis, significantly enhancing the accuracy and efficiency of natural language processing (NLP) for 
Persian. Utilizing a fine-tuned language representation model, our methodology effectively combines deep contextual analysis 
with phonetic insights, adeptly correcting both non-word and real-word spelling errors. This strategy proves particularly 
effective in tackling the unique complexities of Persian spelling, including its elaborate morphology and the challenge of 
homophony. A thorough evaluation on a wide-ranging dataset confirms our system’s superior performance compared to 
existing methods, with impressive F1-Scores of 0.890 for detecting real-word errors and 0.905 for correcting them. Addition-
ally, the system demonstrates a strong capability in non-word error correction, achieving an F1-Score of 0.891. These results 
illustrate the significant benefits of incorporating phonetic insights into deep learning models for spelling correction. Our 
contributions not only advance Persian language processing by providing a versatile solution for a variety of NLP applica-
tions but also pave the way for future research in the field, emphasizing the critical role of phonetic analysis in developing 
effective spelling correction system.

Keywords Real-word error · Non-word error · Spelling correction · Contextualized embeddings · Deep learning · Phonetic 
similarity

1 Introduction

Spelling correction is an integral component of all text 
processing environments, particularly for languages with 
complex morphology and syntax like Persian. The task of 
spelling correction primarily involves the detection and cor-
rection of two types of errors: non-word errors and real-word 
errors.

Non-word errors are instances where the misspelled 
words are not found in a dictionary and are meaningless. 
These errors often occur due to typographical mistakes or a 
lack of knowledge about the correct spelling of a word. 
While non-word errors in Persian are mostly similar to those 
in other languages, there are unique cases due to the specific 

features of the Persian language. For instance, consider the 
word (“مینوازم”/minævɑzæm/‘I play’).1 If a user ignores the 
pseudo space, the word transforms to “مینوازم”, which might 
not be found in a standard dictionary. Conversely, if the user 
commits a split error and uses a white space instead of a 
pseudo space, then the word transforms into two different 
sequences of characters—“می” and “نوازم”—neither of which 
can be attested in the dictionary.

Real-word errors in spelling correction are a significant 
challenge. They occur when a correctly spelled word is used 
incorrectly in context. These errors can be due to accidental 
mistyping, confusion between similar sounding or meaning 
words [1], incorrect replacements by automated systems like 
AutoCorrect features [2], and misinterpretation of input by 
Automatic Speech Recognition (ASR) and Optical Character 
Recognition (OCR) systems [3–6].

The Persian language, with its extensive vocabulary and 
intricate properties, further complicates real-word error 
correction. Unique features of Persian such as homophony 
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(words that sound the same but have different meanings), 
polysemy (words with multiple meanings), heterography 
(words with the same spelling but different meanings 
depending on pronunciation), and word boundary issues 
add to this complexity.

Despite these inherent challenges, there have been con-
certed efforts to develop both statistical and rule-based 
methods for detecting and correcting both classes of 
errors in Persian. However, these methods have achieved 
only limited success. The task of word error detection 
and correction in Persian continues to be an active area 
of research. The advent of more advanced methods and 
tools holds promise for overcoming these challenges and 
enhancing the accuracy of error detection and correction. 
The objective of this study is to introduce an advanced 
method for detecting and correcting spelling errors in 
Persian. Our primary contributions are summarized as 
follows:

• General Persian Corpus: we introduce a large general 
corpus of Persian text, consisting of 1.4 million formal 
documents.

• Language Representation Model: we present a lan-
guage representation model that has been fine-tuned 
for the task of spelling correction. Our method utilizes 
the contextual score of words to determine the best 
replacement candidate for an error.

• Error Generation Algorithm: we propose a novel error 
generation algorithm for populating original corpora 
of Persian text with artificially generated errors. This 
algorithm offers flexibility in specifying the proportion 
of real-word and non-word errors in a given corpus. 
Importantly, it can also determine the edit distance of 
generated errors, allowing NLP researchers to set up 
various test scenarios tailored to their specific research 
questions.

• Persian Soundex: we introduce a Persian Soundex algo-
rithm that measures the phonetic similarity between pairs 
of words. This algorithm has proven useful in word error 
correction in other languages. We adapt this algorithm 
based on the Persian alphabet and vocabulary and use it 
to improve error correction accuracy.

We assess the effectiveness of our hybrid approach 
using evaluation metrics such as F1-score and compare our 
approach to existing techniques for non-word and real-word 
error detection and correction.

The remainder of this paper is structured as follows: we 
begin with a review of prior research in the field. Next, we 
explain the challenges faced in Persian language text pro-
cessing. Subsequently, we describe our proposed approach. 
Evaluation and experiment results are then presented and 
discussed. In the final segment, we conclude our findings.

2  Related Works

Automatic word error correction is a pivotal component 
in Natural Language Processing (NLP) systems. Initial 
techniques were reliant on edit distance and phonetic 
algorithms [7–10], with subsequent enhancements dem-
onstrating the effectiveness of incorporating context infor-
mation to boost the efficiency of auto-correction systems 
[11]. Utilization of contextual measures such as semantic 
distance and noisy channel models based on N-grams has 
been widespread across various NLP applications [1, 2, 
12–14]. Innovative strategies have been devised to cor-
rect multiple real-word errors in highly noisy contexts 
[15], including a notable model by Dashti for detecting 
and auto-correcting real-word errors within sequences 
containing multiple inaccuracies [16].

The adoption of neural word or sense embeddings, 
leveraging context information for spelling correction, 
marked a significant advancement [17]. The use of pre-
trained contextual embeddings for detecting and correcting 
real-word errors was a notable milestone [18]. By 2020, 
deep learning methodologies were applied to address con-
text-sensitive spelling errors in English documents [19], 
with subsequent research developing a BERT-based model 
for similar purposes [20].

The rapid progression and innovation in pre-trained lan-
guage models, exemplified by the development of BERT 
and the subsequent introduction of the GPT series—
including GPT-2.0, GPT-3.0, have markedly revolution-
ized the field of error correction. These advancements 
have ushered in an era of unparalleled adaptability and 
enhanced performance across a diverse array of languages, 
as documented in seminal works [21, 22]. Notably, the 
application of these models to English and Arabic has 
demonstrated their proficiency in leveraging vast knowl-
edge bases for the effective correction of complex error 
types through fine-tuned, prompt-based methods [23, 24]. 
In parallel, the exploration and utilization of large lan-
guage models for Chinese language processing, as seen 
with innovations like SpellBERT and methodologies that 
employ disentangled phonetic representations, highlight 
the bespoke adaptations necessary to address the unique 
challenges presented by Chinese orthography and pho-
nology [25, 26]. Further contributions to the Chinese 
language processing field have introduced phonetic pre-
training techniques [27], enhancing the model's linguis-
tic comprehension. Additionally, NeuSpell emerges as a 
neural spelling correction toolkit, offering a suite of pre-
trained models designed for straightforward, user-friendly 
implementation [28].

In clinical text, Tran et al. introduced a context-sensitive 
spelling correction model [29], and a contextual spelling 
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correction approach tailored for end-to-end speech recog-
nition systems was developed [30]. A multi-task detector-
corrector framework for Chinese spelling correction was 
also proposed [31]. Liu et al. advanced Chinese spell-
ing correction with CRASpell, a contextual typo robust 
approach [32]. Furthermore, AraSpell employed a Trans-
former model for Arabic spelling correction, learning the 
relationships between words and their misspellings [33].

This body of research collectively underscores a sig-
nificant leap forward in the development of sophisticated, 
nuanced error correction tools capable of navigating the 
complexities inherent in multiple languages.

Despite these advancements, the exploration of sophis-
ticated models like BERT and GPT for Persian language 
spelling correction remains limited. Early efforts in Persian 
spelling correction have relied on statistical or rule-based 
methods, with systems like Vafa spellchecker and the work 
of Mosavi and Miangah using N-grams, a monolingual cor-
pus, and string distance measures to tackle spelling chal-
lenges in Persian [34–41]. The transition from foundational 
models to advanced AI technologies such as BERT and 
GPT highlights a promising area, aiming to leverage these 
models to address the unique challenges of Persian spelling 
correction.

2.1  Linguistic Challenges in Persian Automatic 
Spelling Correction

Persian, an integral member of the Indo-Iranian group within 
the Indo-European language family, serves as the official lan-
guage in Iran, Tajikistan, and Afghanistan. Its deep historical 
roots contribute to a rich linguistic tapestry. This language, 
enriched by Arabic elements yet retaining its core structure 
over centuries, poses unique challenges in the field of Auto-
matic Spelling Correction (ASC) [39, 42]. The complexity 
of Persian, especially apparent in its script and morphology, 
stands in stark contrast not only to the Latin alphabet of Eng-
lish, with its irregular phoneme-grapheme correspondences 
[43], but also to the cursive script of Arabic, which grapples 
with complexities in its system of vowelization [44].

Adding to this linguistic diversity, Chinese introduces a 
set of challenges distinct from those of Persian, English, and 
Arabic. As a language with thousands of years of history, 
it plays a central role in East Asia, being the official lan-
guage of China, Taiwan, and one of the official languages of 
Singapore [45]. Chinese is characterized by its logographic 
writing system, where each character represents a morpheme 
and can be a word on its own or part of a compound word 
[46]. This system is fundamentally different from the alpha-
betic and abjad systems used by English, Persian, and Ara-
bic, respectively. The challenges in ASC for Chinese stem 
primarily from this logographic nature, the high degree of 
homophony due to its tonal system, and the absence of a 

clear boundary between words in written text [47]. These 
characteristics necessitate ASC approaches that are highly 
sensitive to the context and semantic content of text, as well 
as sophisticated algorithms for character recognition and 
word segmentation.

Thus, the diversity in linguistic structures across these 
languages—ranging from the complexity of scripts and 
morphology in Persian, the irregular phoneme-grapheme 
correspondences in English, the vowelization system in 
Arabic, to the logographic writing system and tonality of 
Chinese—underscores the necessity for ASC systems to be 
finely attuned to the phonetic, orthographic, and grammati-
cal nuances of each language. This multifaceted landscape 
presents a compelling challenge for developing effective and 
nuanced ASC technologies that can accommodate the rich 
variety of human language.

Incorporating Chinese into the comparative analysis 
of linguistic challenges in Automatic Spelling Correction 
(ASC) alongside Persian, English, and Arabic enriches our 
understanding of the unique and shared hurdles each lan-
guage presents. This broader comparison underscores the 
diverse nature of linguistic structures and the necessity for 
ASC systems to be highly tailored to address the specific 
challenges of each language:

• Writing System Complexity: Persian employs an Arabic-
derived script with additional characters and nuanced 
diacritics, complicating its script beyond the straightfor-
ward Latin alphabet of English or the cursive, voweliza-
tion-dependent script of Arabic. Chinese, distinctively, 
uses a logographic system where characters represent 
morphemes or whole words, introducing challenges in 
character recognition and segmentation not found in pho-
netic or alphabetic systems.

• Homophonic Variability: Persian and Chinese both deal 
with extensive homophony; Persian's arises from its ety-
mological diversity, while Chinese's stems from its tonal 
nature and limited syllable inventory. English also faces 
homophonic challenges due to its irregular spellings. 
Arabic, while phonetically transparent, is not without its 
homophonic issues, albeit to a moderate extent.

• Vowel Representation: Persian's context-dependent 
vowel representation contrasts sharply with English's 
relatively stable vowel system and Arabic's tendency to 
omit short vowels in informal writing. Chinese stands 
apart by not employing a vowel representation system per 
se but instead uses tones to distinguish meanings across 
its syllable-based script.

• Morphological Density: Persian and Arabic exhibit a 
complex morphological structure, with Persian involv-
ing intricate affixation and Arabic featuring a root-
pattern morphology. English presents a less complex 
morphology. Chinese, while having a simpler morpho-
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logical structure regarding affixation, demonstrates 
complexity in compound word formation, necessitating 
effective segmentation strategies.

• Diacritic Variability: Persian and Arabic experience 
variability and omission of diacritics, respectively, 
which can impact word recognition. English diacrit-
ics are consistent across dialects. Chinese, using tone 
marks in its Pinyin romanization system, faces chal-
lenges in tone recognition and representation, though 
these are not used in the standard Chinese script.

Reflecting these insights, the extended comparison in 
Table 1, highlights the nuanced challenges ASC systems 
face in adapting to the linguistic features of Persian, Eng-
lish, Arabic, and now Chinese:

This comprehensive overview illustrates the diverse 
requirements for ASC systems across different languages, 
emphasizing the importance of specialized approaches to 
effectively address the unique combination of script, pho-
nology, morphology, and orthographic practices in Per-
sian, English, Arabic, and Chinese.

On the other hand, Persian's richness and expressive-
ness as a language, however, bring forth numerous chal-
lenges in its processing, particularly in the realm of Auto-
matic Spelling Correction (ASC):

• Character ambiguity: Persian characters like “ی” and 
-are often used interchangeably but represent differ ”ي“
ent sounds [48].

• Rich morphology: New words can be created by adding 
prefixes and suffixes to a base word, like “دست” (hand) 
to “دستها” (hands) [49].

• Orthography: Persian involves a combination of spaces 
and semi-spaces, which can lead to inconsistencies 
[50].

• Co-articulation: the pronunciation of a consonant like 
.can be affected by the subsequent vowel. [51] ”ب“

• Dialectal variation: Persian has several standard varieties 
such as Farsi, Dari, and Tajik [52].

• Cultural factors: the phenomenon of Persianization can 
shape the way Persian is used and interpreted.

• Lack of resources: Persian is often categorized as a low-
resource language due to the limited availability of data 
and tools for natural language processing [49].

• Free word order: Persian allows for the rearrangement of 
words within a sentence without significantly altering its 
meaning [53].

• Homophony: Different words have identical pronuncia-
tion but different meanings, like (“گذار” /gʊzɑr/ ‘transi-
tion’) and (“گزار” /gʊzɑr/ ‘predicate’) [54].

• Diacritics: they are frequently left out in writing, leading 
to ambiguity in word recognition [55].

• Rapidly changing vocabulary: Persian’s vocabulary is 
rapidly evolving due to factors such as technology, glo-
balization [56].

• Lack of standardization: there is not a single standard for 
Persian text, which can complicate the development of 
language processing models capable of handling a vari-
ety of dialects and styles [57].

3  Materials and Methods

Our method detects and corrects two types of errors in Per-
sian text: Non-word and Real-word errors. Figure 1 dem-
onstrates the architecture of the proposed system. The sys-
tem design consists of six distinct modules that exchange 
information through a databus. The INPUT module takes 
raw test corpora. The pre-processing component normal-
izes the text and handles word boundary issues. The error 
generation module generates errors based on a desired den-
sity at different edit-distance function values. The contextual 
analyzer module evaluates the contextual similarity within 
desired word sequences. Error detection uses a dictionary 

Table 1  Comparative overview of linguistic challenges in ASC for Persian, English, Arabic and Chinese

Feature Persian ASC challenges English ASC challenges Arabic ASC challenges Chinese ASC challenges

Writing system Arabic script with addi-
tional characters and 
diacritics

Latin alphabet with 
phoneme-grapheme 
irregularities

Cursive script with voweli-
zation complexities

Logographic system, repre-
senting morphemes/words

Homophones Extensive, due to etymo-
logical diversity

Significant, from irregular 
spellings

Moderate, with phonetic 
transparency

High, due to tonal language 
and limited syllable inven-
tory

Vowel representation Context-dependent, non-
unique representation

Relatively stable but occa-
sionally irregular

Short vowels often omitted 
in informal writing

N/A, uses tones for different 
meanings

Morphological density Complex affixation and 
word formation

Less complex morphology Root-pattern morphology Simple in affixation, complex 
in compound word forma-
tion

Diacritic variation Variable by dialect and style Consistent across dialects Consistent but often omit-
ted

Tone marks crucial in Pinyin, 
not used in standard script
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look-up method for non-word error detection and contextual 
similarity matching for real-word errors. The error correc-
tion module corrects both classes of errors using context 
information from fine-tuned contextual embeddings model, 
along with phonetic and edit-distance similarity measures. 
The corrected corpora or word sequence is delivered through 
the OUTPUT module.

3.1  Pre‑processing Step

Text pre-processing is a crucial step in most NLP appli-
cations, consisting of sentence segmentation, tokenization, 
normalization, and stop-word elimination. Sentence seg-
mentation involves determining the boundaries of sentences, 
typically divided by punctuation marks such as periods, 
exclamation points, or question marks. Tokenization is the 
process of dividing a sentence into a sequence of terms that 
represent the sentence, which will be used to extract features. 
Normalization involves converting text into canonical forms 
and is an important step in Persian NLP applications, as it is 
in many other languages.

One of the key tasks in normalizing Persian text is con-
verting pseudo and white spaces to regular forms, substi-
tuting whitespaces with zero width nonjoiners when neces-
sary. For example, (‘می بینم’ /mibinæm/ ‘see’) is replaced 
with (‘میبینم’ / mibinæm / ‘see’). Persian and Arabic share 
many characteristics, and some Persian letters are often 
misspelled using Arabic forms. Researchers often find it 
beneficial to standardize these variations by replacing Ara-
bic characters (ی ‘Y’ /j/; ک ‘k’ /k/; ه ‘h’ /h/) with their 
Persian equivalents. For instance, (‘راي’ /ræy/ ‘vote’) is 
transformed to (‘رای’ /ræy/ ‘vote’). Normalization also 
includes removing diacritics from Persian words; e.g., 
 .(’dære/ ‘valley/ ’دره‘) is changed to (’dærre/ ‘valley/ ’درّه‘)
Additionally, Kashida(s) are removed from words; for 
instance, (‘بــــــانک’ /bɑnk/ ‘bank’) is transformed to 
 ,To achieve the normalization goal .(’bɑnk/ ‘bank/ ’بانک‘)
a dictionary including the correct typographic form of all 
Persian words named Dehkhoda is used to find the normal 
form of multi-shaped words [58].

Fig. 1  Architecture of the proposed system for generating, detecting and correcting Persian word errors
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3.2  Damerau–Levenshtein Distance

Our approach uses the Damerau–Levenshtein distance 
measure to generate non-word and real-word errors for 
detection and correction tasks. This measure considers 
insertion, deletion, substitution, and transposition of char-
acters. For example, the Damerau–Levenshtein distance 
between “KC” and “CKE” is 2. It’s found that around 80% 
of human-generated spelling errors involve these four error 
types [59]. Studies show that real-word errors account for 
about 25% to 40% of all spelling errors in English text 
[60, 61]. We choose an edit distance of up to 2 between 
the correct term and the error. When the edit distance is 
set to one, an average of five candidates are generated as 
replacements for a target context word. However, once the 
distance is increased to 2, the average number rises to 23. 
The computing time increases correspondingly. We ensure 
that the generated candidates are attested in the reference 
lexicon.

3.3  Error Generation

In the following two sections, we describe the error gen-
eration algorithm and its properties, as well as explain how 
we determine the density of errors.

3.3.1  Error Density

There are no publicly available Persian texts containing 
genuine word errors with reasonable density. Researchers 
address this issue by inserting artificially generated mis-
spellings into free-running text. For instance, the authors 
of [62] randomly generated malapropisms into the test 
corpus in free-running English texts at a frequency rate 
of 0.005, replacing 1 word in every 200 words. Differ-
ent frequency rates were used in [1, 15, 16]. The authors 
used an approach based on confusion sets for the Persian 
language [34, 63], although they did not specify the real-
word error density in the test corpus. However, based on 
the size of the evaluation corpora and the number of test 
instances, it can be estimated that it amounts to about 
15% of total sentences. In the evaluation of spelling cor-
rection systems, there is a unique constraint where the 
maximum number of errors per sentence is set to one 
when generating word errors, meaning that each distinct 
sentence may contain only one error. In our proposed 
model, we follow this strategy and generate only one 
word error per sentence. However, we test various error 

density rates, ranging from 10 to 50% of the sentences in 
the test corpus containing a word error, where 10 repre-
sents a normal source of error and 50 represents a very 
noisy error source. This high density of errors was used 
to assess the effectiveness of our proposed technique.

3.3.2  Error Generation Algorithm

We proposed a novel error generation algorithm for 
populating pre-processed corpora. Pseudocode1 is used 
to generate errors in a corpus that is essentially free of 
misspellings. The method introduces artificially gener-
ated errors into the original test corpora within distances 
1 and 2. The number of sentences with errors is deter-
mined by the error density E. For each target term in the 
text, we extract all probable occurrences of error that 
are within the appropriate distance in the dictionary. To 
produce errors and replacement candidates, the suggested 
model uses a large lexicon borrowed from the Vafa spell-
checker for the Persian language dictionary, which con-
tains 1,095,959 different terms. In the error generation 
process, we adhere to a strict rule: only those original 
corpora words that can be attested in the lexicon may be 
replaced with an instance of error, in order to avoid any 
Out-Of-Vocabularies (OOV).

Furthermore, parameter D1 allows us to determine the 
number of errors within distance 1, with the remaining errors 
at distance 2 denoted as 1 − D1 . For example, if there is a 
1000-sentence test corpus with E = 0.20 and D1 = 0.60, then 
200 sentences will contain misspellings, with 120 of them hav-
ing distance 1 misspellings and 80 of them including errors 
within distance 2. Following the observations of [8] and [59] 
and keeping in mind the objective of the model, we classify 
word errors into two types and assign a specific density to 
each one. β represents the total number of artificially gener-
ated errors in the erroneous corpora, while �1 and �2 are coef-
ficient parameters representing the density of non-word and 
real-word errors, respectively. Equation 1 represents the rela-
tionship between the size of the corpora and the frequency of 
non-word and real-word errors.

Our novel error generation algorithm allows us to set up 
various scenarios and evaluate the robustness of our model in 
detecting and correcting real-word and non-word errors at the 
desired density and complexity.

(1)�

⎧
⎪⎨⎪⎩

N × E

�1 + �2 ≤ 1
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Pseudocode 1  Error Generation Algorithm
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3.4  Contextual Embeddings

Word embeddings analyze large volumes of textual data to 
embed word meanings into low-dimensional vectors [64, 
65]. They store valuable syntactic and semantic information 
[66] and are beneficial to many NLP applications [67]. How-
ever, they suffer from meaning conflation deficiency: the 
inability to distinguish between a word’s multiple meanings.

To address this, state-of-the-art approaches represent spe-
cific word senses, referred to as contextual embeddings or 
sense representation. Contextualized word embedding meth-
ods like ELMo consider the context of the input sequence 
[64]. There are two ways to pre-train language representa-
tions: feature-based approaches like ELMo and fine-tuning 
approaches like OpenAI GPT [22]. Fine-tuning methods 
train a language model using massive datasets of unlabeled 
plain texts. The parameters of these models are then fine-
tuned using task-specific data [22, 68, 69].

However, pre-training an efficient language model 
requires significant data and computational resources 
[70–73]. Multilingual models have been developed for 
languages with identical morphology and syntactic organi-
zation. But non-Latin languages differ greatly from Latin-
based languages and require a language-specific approach 
[74]. A similar issue exists in the Persian language. Despite 
the fact that some multilingual models include Persian, they 
may fall behind monolingual models that are specifically 
trained on language-specific vocabulary with larger volumes 
of Persian text data. To the best of our knowledge, ParsBert 
[57] is the only attempt to pre-train a Bidirectional Encoder 
Representation Transformer (BERT) [68] model for the Per-
sian language.

3.4.1  PERCORE’s Language Representation Model

Persian is considered an under-resourced language. Despite 
the existence of language models that support Persian, only 
one has been pre-trained on a large Persian corpus [57]. 
However, ParsBERT’s data includes many informal docu-
ments, such as user reviews and comments, and many of 
the collected documents contain misspelled words, mak-
ing the model unsuitable for spelling correction tasks. The 
absence of a high-performance language model in this field 
is a significant challenge. In this section, we will discuss 
our General Persian Corpus and the process of pre-training 
PERCORE’s language representation model.

3.4.2  Data

While there are many freely available formal Persian texts, 
they have not been compiled into a single, error-free, large 
corpus. This is necessary for the purpose of pre-training a 

language representation model for spelling correction. As 
a result, to train an effective model for spelling correction 
in Persian, we had to gather a large collection of texts from 
available corpora of formal text. This corpus contains 1.4 
million documents collected from various sources:

• Bijankhan Corpus: The Bijankhan corpus2 is a collec-
tion of tagged texts, including daily news and common 
texts [75]. It comprises 4300 articles that have been cat-
egorized into different subject categories such as politi-
cal, cultural, and others. With around 2.6 million words, 
this corpus provides a rich source of data for researchers 
working on Persian language processing

• Hamshahri Corpus: The second version of the Hamshahri 
corpus3 was released on October 20, 2008 [76]. It con-
tains 323,616 text stories organized into 82 categories 
and 65 subjects, with an average article length of 380 
words.

• Persian Wikipedia Corpus: The Persian Wikipedia cor-
pus4 is a collection of 441 million tokens in Persian text, 
which comprises 1,160,676 articles from the Persian 
Wikipedia as of October 1, 2018.

The collected documents undergo normalization, pre-
processing, and cleaning to remove elements such as POS 
tags, HTML tags, hyperlinks, etc.

3.4.2.1 Model Architecture PERCORE’s architecture uses 
the original ����

����
 configuration with 12 hidden layers, 

12 attention heads, 768 hidden sizes, and a total of 110M 
parameters. Our model has a maximum token capacity of 
512. Model’s architecture is shown in Fig. 2.

Many attribute BERT’s success to its MLM pre-training 
task, where it masks or replaces tokens at random before 
predicting the original tokens [68]. This makes BERT well-
suited to be a spelling checker, as it interprets the masked 
and changed tokens as misspellings. In BERT’s embedding 
layer, each input token Ti is indexed to its embedding rep-
resentation ERi . Then, ERi is forwarded to BERT’s encoder 
layers to obtain the following representation ofHRi:

where ERi and HRi ∈ R
1∗d and d is the hidden dimension. 

Following this, similarities between HRi and all token 
embeddings will be estimated to predict the distribution of 
Yi over the existing vocabulary.

(2)ERi = BERT − Embedding(Ti)

(3)HRi = BERT − Encoder
(
ERi

)

2 https:// dbrg. ut. ac. ir/% d8% a8% db% 8c% da% 98% d9% 86% e2% 80% 
8c% d8% ae% d8% a7% d9% 86/.
3 https:// dbrg. ut. ac. ir/ hamsh ahri/.
4 https:// github. com/ Text- Mining/ Persi an- Wikip edia- Corpus.

https://dbrg.ut.ac.ir/%d8%a8%db%8c%da%98%d9%86%e2%80%8c%d8%ae%d8%a7%d9%86/
https://dbrg.ut.ac.ir/%d8%a8%db%8c%da%98%d9%86%e2%80%8c%d8%ae%d8%a7%d9%86/
https://dbrg.ut.ac.ir/hamshahri/
https://github.com/Text-Mining/Persian-Wikipedia-Corpus
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where E ∈ R
V∗d and Yi ∈ R1∗V ; here V  represents the size of 

the vocabulary and E denotes the BERT embedding layer. 
The i th row of E corresponds to ERi in Eq. 2. The final 
rectification result for Ti is the Tk token, whose ERk has the 
highest similarity to HRi.

3.4.3  Fine‑Tuning for Spelling Correction Task

We fine-tuned the language representation model on the 
Persian spelling correction task to achieve maximum 

(4)Yi = Sof tmax(HRi,E
T ) performance for spelling correction. To fine-tune the model, 

we used TestSet1 from the Hamshahri corpus, which con-
tains 103,840 sentences from the reserved articles. As input 
to the model, we used a single sentence that ended with a full 
stop. We only took one sentence at a time because our focus 
was on training the model for spelling correction. A closer 
examination of the test set indicated that several sentences 
were short, and masking a few tokens would eliminate a 
substantial amount of context. As a result, sentences with 
fewer than 20 words were excluded from the corpus. Finally, 
91,420 sentences with a minimum length of 20 were chosen. 
However, because the input was a list of sentences that could 

Fig. 2  Architecture of PER-
CORE’s language representa-
tion model for Persian language 
spelling correction task

0 1 2 3 511
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not be directly fed into the model, we tokenized the text. 
The goal of the error correction task is to anticipate target 
or masked words by obtaining context from adjacent words. 
In other words, the model attempts to recreate the original 
sentence from the masked sentence received in the input at 
the output. Therefore, the target labels are the tokenizer’s 
actual input_ids.

In the original ����
����

 model, 15% of the input tokens 
were masked, with 80% replaced with [mask] tokens, 10% 
replaced with random tokens, and the remaining 10% left 
unchanged. However, in our fine-tuning task, we only 
replaced 15% of the input tokens with [mask], except for 
special ones; we did not use [mask] tokens to replace [SEP] 
and [CLS] tokens. We also avoided the random replacement 
of tokens in order to achieve better results. We employed a 
TensorFlow [77] background for training with Keras [78]. In 
addition, we used the Adam optimizer with a learning rate of 
1E − 4 . The batch size was 32 and the model fully converged 
by the fourth epoch.

3.5  Persian Soundex

Soundex is a phonetic algorithm that indexes names based 
on their pronunciation in English [79]. It is widely recog-
nized as one of the most popular phonetic algorithms. The 
primary objective of Soundex is to encode homophones 
with identical representations, allowing them to be matched 
despite minor variations in spelling.

In the case of the Persian language, there are 32 alphabets 
(in written form) that were divided into 14 categories based 
on their sounds. This classification is informed by extensive 
research in the field of Persian phonology [80, 81]. Our pro-
posed code length for Persian is fixed at 4 characters. In our 

approach, Persian alphabet elements are grouped based on 
their pronunciation, with characters that have identical pro-
nunciation being placed in the same classes, as shown in 
Table 2. When assigning codes, we ignored vowels. Some 
alphabets, such as “ا“, ”و” and “ی”, can function as both a 
vowel and a consonant in Persian. When these letters appear 
at the beginning of a word, they act as consonants. As a 
result, syllabification is necessary to determine whether a 
letter is functioning as a vowel or a consonant.

In the evaluation section, we will examine the impact of 
the Persian Soundex algorithm on spelling correction accu-
racy. By analyzing the results, we can determine how effec-
tive the algorithm is in improving the accuracy of spelling 
correction for the Persian language.

3.6  Error Detection Module

The error detection module employs two distinct meth-
odologies, depending on the type of error being detected. 
Lexical lookup is used for non-word errors, while contex-
tual analysis is used for real-word errors. The first step in 
error detection, regardless of the type of error, is boundary 
detection and token identification. When the model receives 
a sentence S as input, it first marks the beginning and end 
of the sentence with Beginning of Sentence (BoS ) and End 
of Sentence ( EoS ) markers, respectively, and estimates the 
number of tokens in the sentence:

It is important to note that the number of tokens is equal 
to the maximum number of iterations that the model will 
attempt to detect an error in the sentence.

< BoS > T1T2T3 …T
n
< EoS >

Table 2  Soundex code for 
Persian Language Alphabet

Set Number Soundex Code Characters with identical pronunciation

1 0 ص ث ش س
2 1 د ت ط
3 2 ژ ز ض ظ ذ
4 3 چ ج
5 4 ه ح ه
6 5 خ ک ق
7 6 پ ب
8 7 غ گ
9 8 ع آ ا
10 9 ن م
11 A ف
12 B ل
13 C و
14 D ر
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3.6.1  Non‑word Error Detection

Spell checkers primarily utilize the lexical lookup 
approach to identify spelling errors. This method involves 
real-time comparison of each word in the input sentence 
against a reference dictionary, which is typically con-
structed using a hash table. Starting with the BoS marker, 
every token in the sentence is scrutinized to determine its 
correctness based on word order. This procedure continues 
until the EoS marker is encountered. However, if a word is 
detected as misspelled, the error detection cycle terminates 
and the error correction phase is initiated. The following 
is an example of non-word error detection:

In the provided example, the intended (“روند” / rævænd 
/ ‘trend’) was erroneously typed as ‘زوند’. This error is a 
result of a substitution operation and is just one unit of 
distance away from the correct word. The model was able 
to efficiently detect this error.

3.6.1.1 Real‑Word Error Detection In this work, contex-
tual analysis is employed for the identification of real-
word errors. Traditional statistical models utilized n-gram 
language models to examine the frequency of a word’s 
occurrence and assess the word’s context by considering 
the frequency of the word appearing with “n” preceding 
terms. More modern approaches employ neural embed-

dings to evaluate the semantic fit of words within a given 
sentence. In our proposed method, we utilize the mask 
feature and leverage contextual scores derived from fine-
tuned bidirectional language model to detect and correct 
word errors. The real-word error detection is explained as 
follows:

(1) First, starting with the BoS marker, the model attempts 
to encode each word as a masked word, beginning with 
the first word.

(2) Second, a list of probable candidates for the masked 
word is obtained from the language representation 
model’s output.

(3) Thirdly, based on the error generation scenario, replace-
ment candidates are generated within edit-distances of 
1 and 2 from the masked word.

(4) List of candidates, along with the original token, is 
checked against the language model's output for the 
masked token.

(5) If any candidate has a higher probability value than the 
masked word, we consider the original word to be an 
error, and thus, the process ends. However, if no error 
is found, the model shifts one unit to the right, and the 
same steps are repeated for all words within the sen-
tence until the EoS marker is reached.

As mentioned earlier, based on our error generation strat-
egy, a sentence may contain only one error. Therefore, as 
soon as an error is detected, the correction process com-
mences immediately; afterward, the model proceeds to the 
next sentence. Pseudocode2 shows the algorithm for real-
word error detection.
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Pseudocode 2  Real-word Error Detection Algorithm

Table 3  Contextual Scores of the Top Five Replacement Candidates

# Replacement candidate Contextual Score

1 زنان 0.530
2 زمان 0.090
3 زبان 0.190
4 رمان 0.001
5 زیان 0.003

Table 4  Dataset details

Dataset name TestSet1 TestSet2 TestSet3 TestSet4

Number of articles 15,712 6,204 3,455 69,008
Number of sentences 103,840 86,035 57,638 123,512
Number of tokens 3,496,720 3,191,898 1,700,321 6,546,136
Number of distinct 

tokens
147,851 155,964 160,912 183,473
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Here’s an example of successful real-world error detection:

In the example provided, the term (“ ” /zæmɑn/ ‘time’) 
is identified as a real-word error. The user’s intended word was 
(“ ” /zænɑn/ ‘women’). The model first encodes the masked 
token and inputs it into language representation model, which 
then produce a list of contextually appropriate tokens.

Subsequently, a list of candidate replacements is gener-
ated using the Damerau–Levenshtein distance measure. In 
this case, the edit-distance is 1. The model then compares 
the context similarity score of each replacement candidate 
with the output list from the language model.

Table 3 displays the context similarity scores of the top 
five replacement candidates from the output of the language 
representation model.

3.7  Error Correction Module

The error correction process is initiated when a misspelling 
is identified in the input. In this stage, a ranking algorithm is 
designed that mainly relies on the contextual scores from fine-
tuned language representation model and phonetic similarity 
algorithm.

3.7.1  Non‑word Error Correction Process

In the process of non-word error correction, following steps 
are taken:

(1) The model first utilizes the Damerau–Levenshtein edit 
distance measure to generate a set of replacement can-
didates within 1 or 2 edits.

(2) The misspelled word is then encoded as a “mask” and 
input into the fine-tuned model.

(3) The model retrieves all probable words from the output 
and matches them against the candidate list.

(4) Next, the model retains a certain number of candidates 
with the highest contextual scores. Based on our obser-
vations, the optimal number is 10.

(5) The method then compares the Soundex similarity 
between the erroneous word and remaining replace-
ment candidates. If the error and candidate share the 

same code, that candidate is deemed the most suitable 
word. However, if two or more probable candidates 
carry the same Soundex code as the erroneous word, 
then the candidate with the highest contextual score is 
selected as the replacement for the error.

3.7.2  Real‑Word Error Correction Process

In the case of real-word error correction, this process follows 
the real-word error detection process:

(1) The contextual scores of probable candidates are 
retrieved from fine-tuned model.

(2) The model stores a number of desired candidates with 
the highest contextual score. Based on our observa-
tions, the optimal number is 10.

(3) The method compares the Soundex similarity between 
the word error and replacement candidates. If the error 
and the candidate share the same code, then that can-
didate is the most suitable word.

(4) However, if two or more probable candidates carry the 
same Soundex code as the word error, then the candi-
date with the highest contextual score is chosen as the 
replacement for the error.

4  Evaluation and Results

In this section, we first examine the effect of fine-tuning 
various parameters on the performance of our proposed 
model. We then evaluate and compare the performance of 
our method against various baseline models in the spelling 
correction task. This will provide insight into the effective-
ness and accuracy of our approach in detecting and correct-
ing spelling errors.

4.1  Dataset

Our evaluation datasets comprise 94,379 reserved articles 
from the Hamshahri corpus. We collected articles from 
the twelve most frequently referred categories, including 
international, religious, economic, political, social, sports, 

Table 5  The Proposed approach’s performance for various values of 
E and edit-distance function on real-word error detection task

E Model Edit-distance1 Edit-distance2 Overall result

10% PERCORE 0.891 0.853 0.883
20% PERCORE 0.866 0.829 0.859
30% PERCORE 0.848 0.813 0.841
40% PERCORE 0.836 0.803 0.829
50% PERCORE 0.832 0.800 0.826
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literary, scientific, general, incidents, legal, and national 
security, into four unique datasets. Table 4 shows the spe-
cifics of each dataset.

Our evaluation datasets are comprised of four different 
test sets from the Hamshahri corpus. TestSet1 contains 
103,840 sentences from eight different genres: social, eco-
nomic, law and national security, international, religious, 
sports, science, and politics. TestSet2 covers six various 
news categories and includes 155,964 distinct tokens. Test-
Set3 mainly includes 3455 articles from five different genres. 
Finally, TestSet4 is comprised of 6,546,136 distinct tokens 
that cover eleven different genres.

4.2  Evaluation Metrics

The primary evaluation measures for assessing the perfor-
mance of models on non-word and real-word error detec-
tion and correction tasks are precision (P), recall (R), and 
F-measure (F1-Score). Precision (P) measures the accuracy 
of a model, while recall measures its exhaustiveness or sen-
sitivity. The F1-Score, which is the weighted harmonic mean 
of both metrics, can be calculated by combining them. In F1, 
both precision and recall are given equal weight. Equation 5 
describes the F1-Score evaluation measure.

4.3  Experiments and Fine‑Tuning System 
Parameters

The experiments are divided into two main groups. The 
first set of experiments uses TestSet1, while the final set 
uses TestSet2, TestSet3, and TestSet4. The goal of the first 
experiment is to fine-tune the language representation model 
for spelling correction tasks, determine the impact of vari-
ous error densities, and examine the effect of different edit-
distance function values on the performance of word-error 
detection. The second series of experiments, on the other 
hand, investigates the effectiveness of the proposed model 
for detecting and correcting various types of errors and pro-
vides a meaningful comparison with other baselines.

4.3.1  Fine‑Tuning Error Generation Algorithm

We investigate the impact of various error densities 
and edit-distance function values on the error-detection 
task. To do this, we use the TestSet1 corpus to exam-
ine how these parameters affect the context-sensitive 
error detection performance of the model. We first 
inject context errors into the sample text and then assess 

F1 − Score = 2 ×
P × R

P + R

context-sensitive error detection using the erroneous text. 
Similar strategies have been employed in previous stud-
ies [1, 15, 16, 34, 63]. To build the erroneous corpora, 
we randomly selected 10,000 sentences from the TestSet1 
corpus and populated them with context-sensitive errors 
using Pseudocode1.

Authors in [8] reported that 80% of word errors are within 
distance 1, and 20% are within distance 2. We used the same 
values in the error-generation algorithm ( D1=0.8). In addi-
tion, based on observations from [34, 63], average values of 
0.5–0.85 for �1 and 0.16–0.20 for �2 are suitable. However, 
since we are evaluating the real-word error detection perfor-
mance, we assign values of 0.0 and 1.0 to the aforementioned 
variables ((�1 = 0.0 �2 = 1.0), which means all the generated 
errors are real-word errors. For the edit distance, we used 
Damerau–Levenshtein since it treats the swapping of two 
adjacent letters as a single operation, whereas Levenshtein 
requires two operations. We generate context errors that are 
within 1 and 2 edit-distance of the original word using the 
Damerau–Levenshtein measure dDL = (1, 2). Another factor 
we must consider is the number of errors. We used various E 
values between 10 and 50% to check the performance of the 
model. In other words, if the “one-error-per-sentence” rule 
is strictly adhered to, 10–50% of the sentences will contain 
an error. As a result, when E equals 10%, D1 equals 0.0, �1 
equals 0.0, and �2 equals 1, the total number of errors will 
be 1000. This amounts to zero non-word errors and 1000 
real-word errors, where 800 real-word errors are within edit-
distance 1 and 200 are within distance 2.

To test the resilience of our method and simulate various 
error sources, we employ error densities of 10%, 20%, 30%, 
40%, and 50%, where 50% represents a highly erroneous 
source. We want to assess the accuracy of our model and 
see how different error densities and edit-distance func-
tion values affect the error detection success rate. Table 5 
summarizes the results on the TestSet1 corpus in terms of 
F1 − Score . The results indicate that the highest F1 − Score 
values are attained when the error density is set to a mini-
mum value of 10%. In this scenario, the overall detection 
F1 − Score is 0.883, and the difference between the detec-
tion F1 − Scores for edit-distance 1 and edit-distance 2 is 
3.8%. The reason for this difference is that as the number of 
replacement candidates in higher edit-distances increases, it 
becomes more likely for the model to mistakenly identify a 
correct word as an error.

As indicated in Table 5, there is a gradual decrease in 
the system’s overall F1 − Score as the value of E increases. 
However, for higher error density values such as 40% and 
50%, the numbers are more stable. When the error density is 
set to 40%, the F1 − Score begins to converge. In this situa-
tion, the detection F1-Scores for detecting errors at distances 
1 and 2 are 0.836 and 0.803 respectively, while the overall 
F1 − Score is 0.829. These results validate that our proposed 
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approach is highly accurate and can effectively identify real-
word errors across various distances, even when the fre-
quency of errors in a given corpus is extremely high.

We also carried out an in-depth examination of the mis-
takes made by our model. We observed that the model 
tended to overlook errors when the artificially introduced 
error had a semantic connection to the context words. For 
example, in the original word sequence “جهت اصلاح مسیل” (to 
repair a stream), the error generation algorithm substituted 
the word (“مسیل” /mæsil/ ‘stream’) with the artificially intro-
duced error (“مسیر” /mæsir/ ‘path’), which is within edit 
distance 1. This led to the word sequence “جهت اصلاح مسیر” 
(to correct a path), which had a higher context similarity 
score than the original word sequence. As a result, this word 
sequence was overlooked by the model.

While this issue has not been mentioned in prior research on 
Persian spelling correction, we consider it to be a major chal-
lenge when introducing artificially generated errors into Persian 
corpora. This is probably due to the absence of comprehensive 
and authentic error corpora for the Persian language. Nonethe-
less, this problem can be addressed by verifying the generated 
errors against a list of N-grams and contextual similarity scores 
within the error generation algorithm.

4.3.2  Preparing Datasets for Full Evaluation

At this stage, we are preparing erroneous text to evaluate 
the performance of our proposed model and other baseline 
methods in both real-word and non-word error detection 
and correction tasks. Initially, we randomly selected 10,000 
sentences from each of the TestSet2, TestSet3, and TestSet4 
corpora, resulting in a total of 30,000 sentences. We then 
used Pseudocode1 to generate the erroneous corpora. The 
default configuration for error generation includes the fol-
lowing parameter values:

(1)N = 10,000; ( 2)E =10%, 50%; (3)D1=0.8; ( 4)β1=0.8; 
(5)β2=0.2;

Based on the error generation settings, 30,000 sentences 
were randomly selected from all three datasets to create the 
real-word and non-word error test set. The Damerau–Lev-
enshtein edit-distance of 1 or 2 was applied to the target sets 
to generate artificial errors resulting from insertion, dele-
tion, transposition, or substitution operations. Of the 30,000 
sentences, 24,000 included an error within edit-distance 1, 
where 19,200 were non-word errors and 4,800 were real-
word errors. Additionally, 6000 sentences contained errors 
within edit-distance 2; of these, 4800 were spelling errors 
and the remainder were real-word errors.

4.4  Baseline Models

In our research, we implemented several baseline models 
for non-word and real-word error correction tasks to ensure 

a fair comparison. All models, including Perspell by Dast-
gheib et al. [34], the four-gram model [41], and a Persian 
Continuous Bag-of-Words (CBOW) model [82], were 
developed using Python and trained on the same dataset as 
PERCORE.

For real-word error correction, we replicated the meth-
odology of two distinguished models. The first is based on 
confusion sets, as proposed by Dastgheib et al. [34]. The 
second is the real-word error correction module from the 
Vafa spell-checker [63], a tool widely used for identifying 
and correcting real-word errors in Persian texts. By com-
paring these models, we aim to understand their strengths 
and weaknesses, and leverage this understanding to enhance 
error correction in Persian language processing.

4.4.1  Perspell

Perspell, a statistical spelling correction framework tailored 
for Persian, exploits a dictionary lookup strategy to pinpoint 
non-word errors [34]. Leveraging a bigram language model, 
Perspell discerns the most contextually fitting candidate for 
correction. It differentiates itself by employing predefined 
confusion sets and harnessing the rich lexicon of Persian 
WordNet to extract synonyms, thereby enhancing real-word 
error detection.

Adaptations for auto-correction have seen the introduc-
tion of an advanced bigram language model that meticu-
lously combs through related bigrams for each candidate. 
The enhancement involves sorting candidates based on prob-
ability values, ensuring the selection of the most probable 
candidate for correction. This strategic approach empow-
ers Perspell to offer corrections, significantly reducing the 
manual review workload.

4.4.2  Yazdani, Et Al. Model

The Yazdani et al. model emerges as a benchmark in Per-
sian non-word error correction through its utilization of a 
weighted bi-directional fourgram language model. [41]. This 
model's core lies in its application of a nuanced quadripartite 
equation, designed to accord precedence to n-grams based 
on their sequential order.

This methodical prioritization facilitates a nuanced and 
highly accurate error correction process, showcasing the 
model's unparalleled effectiveness in refining Persian texts. 
The innovative use of a bi-directional approach allows for 
a more holistic analysis of text, considering both preced-
ing and succeeding context to identify the optimal replace-
ment, thereby setting a new standard in language processing 
precision.



 International Journal of Computational Intelligence Systems          (2024) 17:114   114  Page 16 of 23

4.4.3  CBOW Model

The Continuous Bag of Words (CBOW) model represents a 
leap forward in understanding word meanings through con-
textual analysis [82]. Focused on predicting suitable words 
within specific contexts, the CBOW architecture is instru-
mental in identifying target words amidst source context 
words. Its training on a corpus of 1.4 million documents 
from PERCORE signifies a substantial effort to refine its 
prediction capabilities. With technical parameters such as 
a context window size of 10 and a dimension size of 300, 
the model utilizes input and output matrices to calculate 
the hidden layer effectively. This extensive training empow-
ers the CBOW model to excel in non-word error correction 
tasks, showcasing its robustness in language modeling and 
its potential for broader linguistic applications.

4.4.4  Vafa Spell‑Checker

The Vafa spell-checker, specifically engineered for Persian 
text, adopts a comprehensive three-step methodology to 
tackle real-word errors [63]. It initiates the process with a 
detailed contextual analysis, considering adjacent words to 
gauge the context accurately. The model then generates a list 
of potential replacements, contemplating every conceivable 
single-letter modification and semantically akin words. This 
process is further refined using predefined confusion sets, 
enhancing the model's capability to detect real-word errors 
with high precision. Employing a trigram language model, 
the Vafa spell-checker not only identifies but also corrects 
errors, leveraging its sophisticated algorithm to ensure tex-
tual integrity. This model's implementation highlights its 

effectiveness in enhancing the quality of Persian texts, pro-
viding a valuable tool for language practitioners.

4.4.5  GPT‑2.0 for Persian Spelling Correction

GPT-2.0 marks a significant milestone in NLP, acclaimed 
for its generative prowess and profound understanding of 
context [83]. Its pre-training, conducted on a varied array of 
datasets, lays a solid foundation for fine-tuning endeavors, 
including the delicate task of spelling correction in Persian. 
Importantly, the initial pre-training of GPT-2.0 leveraged an 
extensive corpus of 1.4 million documents to ensure com-
prehensive coverage of Persian's linguistic diversity, provid-
ing a robust starting point for fine-tuning related to spelling 
correction.

•  GPT-2.0 Implementation and Fine-tuning

Approach:

• Model Preparation: we initiate the process with a GPT-
2.0 model pre-trained on a diverse dataset, including a 
significant corpus of 1.4 million documents to immerse 
the model in Persian language intricacies. This pre-train-
ing phase is crucial for acquainting the model with the 
nuances of Persian, setting the stage for its subsequent 
fine-tuning on the TestSet1 corpus.

• Fine-Tuning Strategy: utilizing a corpus of 91,420 sen-
tences from TestSet1 of the Hamshahri corpus, each with 
a minimum of 20 words and infused with artificially gen-
erated spelling errors, effectively simulates real-world 
spelling correction challenges. This targeted exposure is 
crucial for the model to acquire and refine strategies for 

Table 6  Comparison of various 
models’ performance on non-
word error correction task

Model E (%) Edit-distance1 Edit-distance2 Overall result

PERCORE 10 0.886 0.849 0.879
PERCORE + Soundex 10 0.898 0.863 0.891
Perspell 10 0.614 0.568 0.605
 Yazdani et al. 10 0.716 0.674 0.708
 Continuous Bag-of-Words (CBOW) 10 0.752 0.701 0.742
 GPT-2.0 10 0.818 0.776 0.810
 GPT-3.0 10 0.872 0.834 0.864

PERCORE 50 0.838 0.813 0.833
PERCORE + Soundex 50 0.850 0.824 0.845
Perspell 50 0.559 0.515 0.550
 Yazdani et al 50 0.660 0.619 0.652
 Continuous Bag-of-Words (CBOW) 50 0.703 0.653 0.693
 GPT-2.0 50 0.798 0.756 0.788
 GPT-3.0 50 0.850 0.812 0.842
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accurately identifying and correcting errors in Persian 
texts.

Hyperparameters:

• Learning rate: a carefully chosen learning rate of 5e-5 
supports gradual and precise model adjustments, enhanc-
ing its performance in spelling correction tasks.

• Batch size: opting for a batch size of 16 strikes a bal-
ance between computational efficiency and the richness 
of linguistic input.

• Epochs: limiting the training to 4 epochs helps avoid 
overfitting, fostering a model that remains versatile 
across different contexts.

4.4.6  GPT‑3.0 for Persian Spelling Correction

GPT-3.0, as the successor to GPT-2.0, elevates the capa-
bilities of NLP models through its vast scale and intricate 
architecture [21]. By undergoing pre-training on an even 
broader spectrum of data, including the aforementioned 
1.4 million documents to enrich its understanding of 
Persian, GPT-3.0 showcases unparalleled adaptability to 
a wide range of NLP tasks. Its precision in generating 

text that is both contextually relevant and grammatically 
coherent positions it as an indispensable asset for refin-
ing spelling correction techniques, particularly within the 
complex linguistic framework of Persian.

• GPT-3.0 Implementation and Fine-Tuning

Approach:

• API Utilization: we harness GPT-3.0’s capabilities 
through OpenAI's API, creating a dynamic environ-
ment where sentences with intentional spelling errors 
are processed, mirroring the complexities of Persian 
spelling correction.

• Prompt Engineering: a critical component of meth-
odology is the crafting of prompts that mirror the lin-
guistic diversity and commonality of spelling mistakes 
within Persian. By leveraging a comprehensive cor-
pus of 1.4 million documents, we generate prompts 
that blend correctly spelled words with deliberately 
introduced spelling errors. This rich dataset serves 
to acquaint GPT-3.0 with the wide array of spelling 
inaccuracies characteristic of Persian, guiding the 
model towards making accurate corrections based on 

Table 7  Performance evaluation on real-word error correction task

Task Model E (%) Edit-distance1 Edit-distance2 Overall result

Real-word Error Detection
PERCORE 10 0.897 0.860 0.890
Perspell 10 0.668 0.593 0.653
Vafa Spell-checker 10 0.188 0.159 0.182
GPT-2.0 10 0.813 0.765 0.805
GPT-3.0 10 0.879 0.831 0.871
PERCORE 50 0.850 0.814 0.843
Perspell 50 0.618 0.558 0.606
Vafa Spell-checker 50 0.164 0.133 0.158
GPT-2.0 50 0.795 0.747 0.787
GPT-3.0 50 0.861 0.813 0.853

Real-word Error Correction
PERCORE 10 0.900 0.861 0.892
PERCORE + Soundex 10 0.913 0.873 0.905
Perspell 10 0.349 0.322 0.344
Vafa Spell-checker 10 0.315 0.290 0.310
GPT-2.0 10 0.818 0.774 0.810
GPT-3.0 10 0.901 0.859 0.886
PERCORE 50 0.856 0.833 0.851
PERCORE + Soundex 50 0.868 0.846 0.864
Perspell 50 0.324 0.293 0.318
Vafa Spell-checker 50 0.297 0.268 0.291
GPT-2.0 50 0.798 0.756 0.783
GPT-3.0 50 0.867 0.823 0.852
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contextual clues. For fine-tuning, we specifically uti-
lize 91,420 sentences from TestSet1 of the Hamshahri 
corpus, each with a minimum of 20 words, to ensure 
the model is finely attuned to the task of correcting 
spelling errors in Persian texts.

Hyperparameters (via API settings):

• Temperature: the temperature is carefully adjusted to 
0.7, optimizing the model's output for a judicious mix 
of creativity and precision. This setting is pivotal in 
ensuring that the corrections made by GPT-3.0 are not 
only imaginative but also adhere strictly to Persian 
orthographic standards.

• Max tokens: with the average length of sentences in 
our training corpus at 23 words and the maximum 
length at 90 words, we adjust the Max Tokens setting 
accordingly. This calibration ensures that GPT-3.0 can 
fully process and correct errors within sentences of 
these lengths, providing contextually appropriate cor-
rections that accommodate the variability and com-
plexity characteristic of the Persian language.

• Max tokens and Top P: set at 0.95, enabling the model 
to consider a broad range of correction possibilities 
while prioritizing those most likely to be accurate 
within the specific context of each sentence.

5  Results and Analysis

In this section, we present the evaluations and results of 
both the proposed model and the baselines. To assess 
the effectiveness of our Persian Soundex algorithm, we 
employed two distinct correction strategies. The first strat-
egy involves ranking replacements and correcting errors 
based solely on contextual scores. The second strategy 
involves applying a comprehensive correction method. 
These strategies provide a thorough evaluation of our 
model’s performance in comparison to the baselines.

5.1  Non‑Word Error Correction Evaluation

In the first stage of evaluation, we compare the perfor-
mance of our proposed approach to that of the aforemen-
tioned baseline models in terms of non-word error correc-
tion. It is important to note that since all the models utilize 
a dictionary look-up approach for detecting misspellings, 
the F1-score for misspelling detection is 100%. Table 6 
presents the results of the non-word error correction task, 
providing a detailed comparison of the effectiveness of 
our approach and the baseline models. We evaluate all 
the models in two different scenarios: first, with an error 

density of 10% that simulates a normal source of errors; 
and second, with an error density set to 50%, which repre-
sents a very noisy source.

Table 6 provides a comprehensive comparison of the 
performance of various models on the non-word error cor-
rection task. Two configurations of PERCORE are com-
pared with statistical baselines and the CBOW model. The 
results clearly show that both configurations of PERCORE 
outperform the other models, demonstrating superior 
performance and stability across different levels of error 
density. When the error density ( E ) is set to 10% and the 
Soundex algorithm is employed, PERCORE achieves its 
best performance with an F1 − Score of 0.891. This model 
effectively corrects misspellings within both edit-distance 
1 and 2. The combination of contextual similarity with the 
Soundex algorithm proves to be the most robust scheme, 
offering a 1.2% increase in correcting non-word errors 
compared to using only contextual scores

In contrast, Perspell shows the lowest performance, with 
F1 − Score of 0.605 and 0.550 for different error density 
values. The Contextual Scores + Soundex scheme outper-
forms Yazdani et al.'s approach by 18.3% when ( E ) equals 
10%, and by 19.3% when E is set to 50%. These results 
demonstrate the robustness of the proposed approach even 
when the frequency of errors in the given corpora is high. 
The CBOW baseline was also significantly outperformed. 
According to Table 6, Perspell’s Bigram method yielded 
the lowest F1 − Score . However, using n-grams of higher 
order in Yazdani et al.'s approach appears to be effective. 
The CBOW model offers significantly better performance 
than the statistical models.

GPT-2.0 and GPT-3.0 show strong performance in non-
word error correction tasks, with GPT-3.0 outperforming 
GPT-2.0 at both 10% and 50% error densities. This indicates 
the advancements in model capabilities and training meth-
odologies from GPT-2.0 to GPT-3.0, showcasing improved 
context understanding and error correction effectiveness. 
However, the proposed PERCORE + Soundex approach 
outperforms both GPT models, particularly at a 10% error 
density, highlighting the tailored effectiveness of PERCORE 
when combined with phonetic analysis through Soundex for 
the Persian language.

In terms of PERCORE, the results of the Contextual 
Scores + Soundex scheme are notably better than those 
achieved using only Contextual scores. The best results are 
achieved when the pretrained model is used in conjunction 
with the Soundex phonetic similarity algorithm. Observa-
tions confirm that Soundex significantly improves results as 
substitution errors account for 41.7% of all errors in the test 
corpus when compared to insertion, deletion, and transposi-
tion errors, and most substitution errors are either phoneti-
cally or visually similar.
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5.2  Real‑Word Error Detection and Correction 
Evaluation

We conducted an exhaustive comparison between our pro-
posed model and the established baselines, focusing on the 
detection and correction of real-word errors in the Persian 
language. The results of our evaluations are presented in 
Table 7.

In the task of real-word error detection, our proposed 
approach outperformed both baselines. Our model, PER-
CORE, achieved its best performance when the error den-
sity ( E ) was set to 10%. In this scenario, the test corpora 
contained 600 test instances at distances 1 and 2, yielding 
an overall F1 − Score of 0.890. The method proved to be 
robust, with a mere 4.7% difference in the overall F1 − Score 
between the largest ( E = 50%) and smallest ( E = 10%) error 
density values. Furthermore, it demonstrated promising per-
formance in detecting errors at both distances 1 and 2.

The authors of [34] claimed to have achieved an 
F1 − Score of 0.726 for real-word error correction; however, 
we were unable to replicate this result in our evaluations. We 
subjected all models to a large number of test instances to 
evaluate their practical performance. In the case of Perspell, 
it achieved a maximum F1 − Score of 0.653 for detecting 
real-word errors with an error density of 10% ( E = 10%). 
However, Perspell encountered difficulties in detecting real-
word errors within distance 2 due to its exclusive reliance 
on confusion sets and the presence of a large number of 
potential candidates. This suggests that Perspell’s effective-
ness in detecting errors at distance 2 is somewhat limited. In 
our tests, Vafa Spell-checker delivered the least impressive 
results, with a maximum F1 − Score of just 0.182 when the 
error density was set to 10%. Our findings suggest that it 
struggled to detect real-word errors at both distances 1 and 
2. Performance of GPT models is competitive but yet behind 
PERCORE, with GPT-3.0 achieving an F1-Score of 0.871 
and GPT-2.0 at 0.805 for the same error density. This high-
lights the strength of PERCORE in leveraging context and 
phonetic similarity for error detection, matching closely with 
GPT-3.0's advanced contextual understanding capabilities.

We evaluated the proficiency of all models in rectify-
ing real-word errors. As shown in Table 7, our suggested 
method excels in correcting real-word errors at various 
distances and densities, outperforming the other models. 
The peak F1 − Score of 0.905 is attained when the error 
density is set to 10% and the Persian Soundex algorithm 
is employed. Conversely, the lowest F1 − Score of 0.851 
is achieved with an error density of 50%, where the model 
relies solely on the contextual score from the pretrained 
model. The 5.4% difference is justifiable given the sub-
stantial number of corrections made. The results for cor-
recting context-errors at distance 2 are also commendable, 

indicating that our suggested method is both robust and 
accurate in rectifying detected context-errors. GPT-3.0 
recorded an F1-Score of 0.886 in real-word error correc-
tion, while GPT-2.0 scored 0.810. Although GPT-3.0 pre-
sents a formidable capability in generating contextually 
appropriate corrections, PERCORE + Soundex surpasses 
it, suggesting that for the specific challenges of Persian 
spelling correction, the incorporation of phonetic simi-
larity provides an edge. The Perspell correction software 
attains its optimal F1 − Score of 0.344 for correcting real-
word errors when the error density is set to 10%. However, 
its performance significantly deteriorates when the error 
density escalates to 50%, leading to a 2.6% reduction in 
F1 − Score . This implies that Perspell often fails to sub-
stitute detected word errors with the correct candidate, 
particularly when correcting real-word errors at distance 2.

Among the six models, Vafa Spell-checker exhibits the 
least impressive performance, with a peak F1 − Score of 
0.310 achieved at an error density of 10%. Its performance 
further declines when correcting context-errors at distance 2.

In summary, the results of our study affirm the effective-
ness of the proposed approach in both correcting non-word 
errors and accurately detecting and correcting real-word 
errors within Persian texts. Our approach demonstrates a 
notable improvement over traditional baseline models, offer-
ing a more nuanced understanding and handling of the Per-
sian language's unique characteristics. By integrating con-
textual analysis with phonetic considerations, our system 
achieves a balanced performance that addresses common 
challenges in spelling correction tasks.

6  Discussion

This research has made considerable advancements in the 
field of spelling correction for the Persian language, spe-
cifically addressing the automatic detection and correc-
tion of two major spelling errors: non-word and real-word 
errors. A four-stage architecture was developed, which not 
only preprocesses and normalizes free-running Persian text 
but also generates error corpora with artificially induced 
errors of different types at the desired density level. This 
architecture is capable of auto-detecting and correcting 
real-word and non-word errors with high precision, mark-
ing a significant improvement over earlier Persian spelling 
correction models.

The proposed approach leverages a state-of-the-art lan-
guage representation model fine-tuned for the Persian lan-
guage spelling correction task. The model uses contextual 
scores for both error detection and correction. The integra-
tion of the developed Persian Soundex phonetic matching 
algorithm with the contextual score from the language 
model significantly increases the correction success rate. 
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The robustness of our model was tested under various error 
densities, demonstrating its resilience even under high error 
density values. To make a fair comparison, three baselines 
were imitated and developed, all trained with the same high-
quality, manageable samples as the language representation 
model. According to the evaluations, our method outper-
formed all the baselines with outstanding results, achieving 
F1-Scores of 0.890 and 0.905 in the detection and correction 
of real-word errors, respectively. For non-word error cor-
rection, our model also exhibits promise with an F1-Score 
of 0.891.

While GPT models exhibit commendable performance, 
their proficiency in addressing the nuanced complexities 
of Persian spelling errors reveals inherent limitations. This 
observation highlights the superiority of incorporating spe-
cialized phonetic algorithms alongside contextual analysis 
within our proposed model. Specifically, GPT-2.0, despite 
its efficacy, demonstrates a noticeable shortfall in precisely 
detecting real-word errors compared to GPT-3.0. This dis-
crepancy can be attributed to GPT-2.0's relatively smaller 
model size and its less sophisticated grasp of the intricate 
linguistic patterns that characterize Persian text.

The application of GPT-3.0, especially via its API ser-
vice, necessitates a careful evaluation of cost and real-time 
usability concerns. The model's per-request pricing structure 
poses a potential financial burden on applications necessitat-
ing high-frequency interactions, thereby impacting devel-
opers with limited budgets and smaller entities. Moreover, 
despite efforts to minimize latency, the inherent delay in 
processing API requests might compromise user experience 
in scenarios where immediate feedback is essential.

To navigate these challenges, a hybrid methodology, 
leveraging lightweight, local models for initial processing 
supplemented by selective use of the GPT-3.0 API for more 
complex inquiries, emerges as a pragmatic solution. This 
approach not only seeks to reduce operational expenses 
but also to improve system responsiveness, facilitating a 
smoother interaction for users.

One clear limitation of our evaluations was that it is 
dedicated to detection and correction of non-word and 
real-word errors and may fail in handling grammatical 
errors. This is an area that could be explored in future 
research.

Another limitation encountered during this study was 
dealing with cases where our system was unable to identify 
the correct replacement word. After ranking the candidates 
based on contextual scores and Soundex code comparison, 
the model selects the top word in the ranked correction 
candidates list. However, this may not always align with 
the user’s intended word.

For instance, consider the sentence “تحدید راستای   در 
-The system accu .(in order to limit the contract) ”قرارداد
rately identified the context error word, (“تحدید” /tæhdid/ 

‘limit’). The correction is (“تمدید” /tæmdid/ ‘extend’), but 
among the most probable candidates are: (“تمدید” /tæmdid/ 
‘extend’), (“تجدید” /tædʒdid/ ‘extend’) and (“تشدید” /tæʃdid/ 
‘intensify’). The intended correction is second on the list, 
but due to close contextual scores of the first and second 
entries, either could be chosen as correct. The model also 
compares Soundex similarity of candidates to the error. 
Persian Soundex code for error is “1411”, while for can-
didate words(“تمدید” /tæmdid/ ‘extend’), (“تجدید” /tædʒdid/ 
‘extend’) and (“تشدید” /tæʃdid/ ‘intensify’) it’s “1911”, 
“1311” and “1011” respectively. Given that the difference 
between Soundex code for error and candidates is limited 
to one unit, the model leverages contextual score to select 
best correction candidate. As first candidate has higher 
contextual score, it replaces context error.

To mitigate this issue, we propose incorporating ortho-
graphic features of Persian alphabet into our model. This 
could be achieved by developing an exclusive Persian 
Shapex algorithm that considers orthography of letters. 
For instance, characters such as “چ“, ”ج“, ”ح”, and “خ” are 
very similar in terms of orthography, so we could group 
them together and assign them with same code. This meth-
odology could help address problems in the identification 
of probable candidates.

Furthermore, we found that the model was more likely 
to misdetect errors when the artificially generated error 
was semantically related to the context words. This is 
likely due to the lack of genuine error corpora in Persian. 
However, this issue could be mitigated by checking gener-
ated errors against the list of N-grams in the error genera-
tion algorithm.

The practical implications of our research findings sug-
gest that our proposed spelling correction model could be 
implemented in real-world applications to enhance text 
processing systems in Persian language. This opens up new 
avenues for improving text-based communication systems, 
educational platforms, and digital content creation tools that 
cater to Persian language users.

7  Conclusions

In this study, we introduced a novel approach for detect-
ing and correcting both non-word and real-word errors in 
Persian text. Our method, which leverages a state-of-the-art 
language representation model fine-tuned for the Persian 
language spelling correction task, has demonstrated supe-
rior performance compared to previous models. It achieved 
F1-Scores of 0.890 and 0.905 in the detection and correction 
of real-word errors respectively, and an F1-Score of 0.891 
for non-word error correction.

Moreover, our approach is robust to variations in error 
density and dataset size, effectively handling a wide range of 
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real-world errors. The integration of the developed Persian 
Soundex phonetic matching algorithm with the contextual 
score from the pre-trained model significantly increases the 
correction success rate.

We believe that our method represents a significant 
advancement in the field of spelling error detection and cor-
rection for Persian text. By improving the quality of Persian 
text on the internet and other digital media, our approach has 
the potential to make a meaningful impact on the Persian-
speaking community.

In our future work, we aim to leverage the capabilities of 
large language models to address the complex challenge of 
correcting multiple errors within a single sentence. By inte-
grating the structured semantic framework of ontologies like 
FarsNet with the dynamic, contextual prowess of large lan-
guage models, we plan to significantly enhance our model's 
precision and adaptability. This approach, complemented by 
the incorporation of orthographic similarity features through 
the Persian Shapex algorithm and new strategies for gram-
matical error correction, aims to advance the robustness and 
applicability of our method in Persian language processing.
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