
Vol.:(0123456789)

International Journal of Computational Intelligence Systems (2024) 17:114
https://doi.org/10.1007/s44196-024-00459-y

RESEARCH ARTICLE

PERCORE: A Deep Learning‑Based Framework for Persian Spelling
Correction with Phonetic Analysis

Seyed Mohammad Sadegh Dashti1 · Amid Khatibi Bardsiri1 · Mehdi Jafari Shahbazzadeh2

Received: 13 December 2023 / Accepted: 12 March 2024
© The Author(s) 2024

Abstract
This research introduces a state-of-the-art Persian spelling correction system that seamlessly integrates deep learning tech-
niques with phonetic analysis, significantly enhancing the accuracy and efficiency of natural language processing (NLP) for
Persian. Utilizing a fine-tuned language representation model, our methodology effectively combines deep contextual analysis
with phonetic insights, adeptly correcting both non-word and real-word spelling errors. This strategy proves particularly
effective in tackling the unique complexities of Persian spelling, including its elaborate morphology and the challenge of
homophony. A thorough evaluation on a wide-ranging dataset confirms our system’s superior performance compared to
existing methods, with impressive F1-Scores of 0.890 for detecting real-word errors and 0.905 for correcting them. Addition-
ally, the system demonstrates a strong capability in non-word error correction, achieving an F1-Score of 0.891. These results
illustrate the significant benefits of incorporating phonetic insights into deep learning models for spelling correction. Our
contributions not only advance Persian language processing by providing a versatile solution for a variety of NLP applica-
tions but also pave the way for future research in the field, emphasizing the critical role of phonetic analysis in developing
effective spelling correction system.

Keywords Real-word error · Non-word error · Spelling correction · Contextualized embeddings · Deep learning · Phonetic
similarity

1 Introduction

Spelling correction is an integral component of all text
processing environments, particularly for languages with
complex morphology and syntax like Persian. The task of
spelling correction primarily involves the detection and cor-
rection of two types of errors: non-word errors and real-word
errors.

Non-word errors are instances where the misspelled
words are not found in a dictionary and are meaningless.
These errors often occur due to typographical mistakes or a
lack of knowledge about the correct spelling of a word.
While non-word errors in Persian are mostly similar to those
in other languages, there are unique cases due to the specific

features of the Persian language. For instance, consider the
word (“مینوازم”/minævɑzæm/‘I play’).1 If a user ignores the
pseudo space, the word transforms to “مینوازم”, which might
not be found in a standard dictionary. Conversely, if the user
commits a split error and uses a white space instead of a
pseudo space, then the word transforms into two different
sequences of characters—“می” and “نوازم”—neither of which
can be attested in the dictionary.

Real-word errors in spelling correction are a significant
challenge. They occur when a correctly spelled word is used
incorrectly in context. These errors can be due to accidental
mistyping, confusion between similar sounding or meaning
words [1], incorrect replacements by automated systems like
AutoCorrect features [2], and misinterpretation of input by
Automatic Speech Recognition (ASR) and Optical Character
Recognition (OCR) systems [3–6].

The Persian language, with its extensive vocabulary and
intricate properties, further complicates real-word error
correction. Unique features of Persian such as homophony

 * Amid Khatibi Bardsiri
 a.khatibi@srbiau.ac.ir

1 Department of Computer Engineering, Kerman Branch,
Islamic Azad University, Kerman, Iran

2 Department of Electrical Engineering, Kerman Branch,
Islamic Azad University, Kerman, Iran

1 All pronunciations have been provided in International Phonetic
Alphabet (IPA).

http://crossmark.crossref.org/dialog/?doi=10.1007/s44196-024-00459-y&domain=pdf

 International Journal of Computational Intelligence Systems (2024) 17:114 114 Page 2 of 23

(words that sound the same but have different meanings),
polysemy (words with multiple meanings), heterography
(words with the same spelling but different meanings
depending on pronunciation), and word boundary issues
add to this complexity.

Despite these inherent challenges, there have been con-
certed efforts to develop both statistical and rule-based
methods for detecting and correcting both classes of
errors in Persian. However, these methods have achieved
only limited success. The task of word error detection
and correction in Persian continues to be an active area
of research. The advent of more advanced methods and
tools holds promise for overcoming these challenges and
enhancing the accuracy of error detection and correction.
The objective of this study is to introduce an advanced
method for detecting and correcting spelling errors in
Persian. Our primary contributions are summarized as
follows:

• General Persian Corpus: we introduce a large general
corpus of Persian text, consisting of 1.4 million formal
documents.

• Language Representation Model: we present a lan-
guage representation model that has been fine-tuned
for the task of spelling correction. Our method utilizes
the contextual score of words to determine the best
replacement candidate for an error.

• Error Generation Algorithm: we propose a novel error
generation algorithm for populating original corpora
of Persian text with artificially generated errors. This
algorithm offers flexibility in specifying the proportion
of real-word and non-word errors in a given corpus.
Importantly, it can also determine the edit distance of
generated errors, allowing NLP researchers to set up
various test scenarios tailored to their specific research
questions.

• Persian Soundex: we introduce a Persian Soundex algo-
rithm that measures the phonetic similarity between pairs
of words. This algorithm has proven useful in word error
correction in other languages. We adapt this algorithm
based on the Persian alphabet and vocabulary and use it
to improve error correction accuracy.

We assess the effectiveness of our hybrid approach
using evaluation metrics such as F1-score and compare our
approach to existing techniques for non-word and real-word
error detection and correction.

The remainder of this paper is structured as follows: we
begin with a review of prior research in the field. Next, we
explain the challenges faced in Persian language text pro-
cessing. Subsequently, we describe our proposed approach.
Evaluation and experiment results are then presented and
discussed. In the final segment, we conclude our findings.

2 Related Works

Automatic word error correction is a pivotal component
in Natural Language Processing (NLP) systems. Initial
techniques were reliant on edit distance and phonetic
algorithms [7–10], with subsequent enhancements dem-
onstrating the effectiveness of incorporating context infor-
mation to boost the efficiency of auto-correction systems
[11]. Utilization of contextual measures such as semantic
distance and noisy channel models based on N-grams has
been widespread across various NLP applications [1, 2,
12–14]. Innovative strategies have been devised to cor-
rect multiple real-word errors in highly noisy contexts
[15], including a notable model by Dashti for detecting
and auto-correcting real-word errors within sequences
containing multiple inaccuracies [16].

The adoption of neural word or sense embeddings,
leveraging context information for spelling correction,
marked a significant advancement [17]. The use of pre-
trained contextual embeddings for detecting and correcting
real-word errors was a notable milestone [18]. By 2020,
deep learning methodologies were applied to address con-
text-sensitive spelling errors in English documents [19],
with subsequent research developing a BERT-based model
for similar purposes [20].

The rapid progression and innovation in pre-trained lan-
guage models, exemplified by the development of BERT
and the subsequent introduction of the GPT series—
including GPT-2.0, GPT-3.0, have markedly revolution-
ized the field of error correction. These advancements
have ushered in an era of unparalleled adaptability and
enhanced performance across a diverse array of languages,
as documented in seminal works [21, 22]. Notably, the
application of these models to English and Arabic has
demonstrated their proficiency in leveraging vast knowl-
edge bases for the effective correction of complex error
types through fine-tuned, prompt-based methods [23, 24].
In parallel, the exploration and utilization of large lan-
guage models for Chinese language processing, as seen
with innovations like SpellBERT and methodologies that
employ disentangled phonetic representations, highlight
the bespoke adaptations necessary to address the unique
challenges presented by Chinese orthography and pho-
nology [25, 26]. Further contributions to the Chinese
language processing field have introduced phonetic pre-
training techniques [27], enhancing the model's linguis-
tic comprehension. Additionally, NeuSpell emerges as a
neural spelling correction toolkit, offering a suite of pre-
trained models designed for straightforward, user-friendly
implementation [28].

In clinical text, Tran et al. introduced a context-sensitive
spelling correction model [29], and a contextual spelling

International Journal of Computational Intelligence Systems (2024) 17:114 Page 3 of 23 114

correction approach tailored for end-to-end speech recog-
nition systems was developed [30]. A multi-task detector-
corrector framework for Chinese spelling correction was
also proposed [31]. Liu et al. advanced Chinese spell-
ing correction with CRASpell, a contextual typo robust
approach [32]. Furthermore, AraSpell employed a Trans-
former model for Arabic spelling correction, learning the
relationships between words and their misspellings [33].

This body of research collectively underscores a sig-
nificant leap forward in the development of sophisticated,
nuanced error correction tools capable of navigating the
complexities inherent in multiple languages.

Despite these advancements, the exploration of sophis-
ticated models like BERT and GPT for Persian language
spelling correction remains limited. Early efforts in Persian
spelling correction have relied on statistical or rule-based
methods, with systems like Vafa spellchecker and the work
of Mosavi and Miangah using N-grams, a monolingual cor-
pus, and string distance measures to tackle spelling chal-
lenges in Persian [34–41]. The transition from foundational
models to advanced AI technologies such as BERT and
GPT highlights a promising area, aiming to leverage these
models to address the unique challenges of Persian spelling
correction.

2.1 Linguistic Challenges in Persian Automatic
Spelling Correction

Persian, an integral member of the Indo-Iranian group within
the Indo-European language family, serves as the official lan-
guage in Iran, Tajikistan, and Afghanistan. Its deep historical
roots contribute to a rich linguistic tapestry. This language,
enriched by Arabic elements yet retaining its core structure
over centuries, poses unique challenges in the field of Auto-
matic Spelling Correction (ASC) [39, 42]. The complexity
of Persian, especially apparent in its script and morphology,
stands in stark contrast not only to the Latin alphabet of Eng-
lish, with its irregular phoneme-grapheme correspondences
[43], but also to the cursive script of Arabic, which grapples
with complexities in its system of vowelization [44].

Adding to this linguistic diversity, Chinese introduces a
set of challenges distinct from those of Persian, English, and
Arabic. As a language with thousands of years of history,
it plays a central role in East Asia, being the official lan-
guage of China, Taiwan, and one of the official languages of
Singapore [45]. Chinese is characterized by its logographic
writing system, where each character represents a morpheme
and can be a word on its own or part of a compound word
[46]. This system is fundamentally different from the alpha-
betic and abjad systems used by English, Persian, and Ara-
bic, respectively. The challenges in ASC for Chinese stem
primarily from this logographic nature, the high degree of
homophony due to its tonal system, and the absence of a

clear boundary between words in written text [47]. These
characteristics necessitate ASC approaches that are highly
sensitive to the context and semantic content of text, as well
as sophisticated algorithms for character recognition and
word segmentation.

Thus, the diversity in linguistic structures across these
languages—ranging from the complexity of scripts and
morphology in Persian, the irregular phoneme-grapheme
correspondences in English, the vowelization system in
Arabic, to the logographic writing system and tonality of
Chinese—underscores the necessity for ASC systems to be
finely attuned to the phonetic, orthographic, and grammati-
cal nuances of each language. This multifaceted landscape
presents a compelling challenge for developing effective and
nuanced ASC technologies that can accommodate the rich
variety of human language.

Incorporating Chinese into the comparative analysis
of linguistic challenges in Automatic Spelling Correction
(ASC) alongside Persian, English, and Arabic enriches our
understanding of the unique and shared hurdles each lan-
guage presents. This broader comparison underscores the
diverse nature of linguistic structures and the necessity for
ASC systems to be highly tailored to address the specific
challenges of each language:

• Writing System Complexity: Persian employs an Arabic-
derived script with additional characters and nuanced
diacritics, complicating its script beyond the straightfor-
ward Latin alphabet of English or the cursive, voweliza-
tion-dependent script of Arabic. Chinese, distinctively,
uses a logographic system where characters represent
morphemes or whole words, introducing challenges in
character recognition and segmentation not found in pho-
netic or alphabetic systems.

• Homophonic Variability: Persian and Chinese both deal
with extensive homophony; Persian's arises from its ety-
mological diversity, while Chinese's stems from its tonal
nature and limited syllable inventory. English also faces
homophonic challenges due to its irregular spellings.
Arabic, while phonetically transparent, is not without its
homophonic issues, albeit to a moderate extent.

• Vowel Representation: Persian's context-dependent
vowel representation contrasts sharply with English's
relatively stable vowel system and Arabic's tendency to
omit short vowels in informal writing. Chinese stands
apart by not employing a vowel representation system per
se but instead uses tones to distinguish meanings across
its syllable-based script.

• Morphological Density: Persian and Arabic exhibit a
complex morphological structure, with Persian involv-
ing intricate affixation and Arabic featuring a root-
pattern morphology. English presents a less complex
morphology. Chinese, while having a simpler morpho-

 International Journal of Computational Intelligence Systems (2024) 17:114 114 Page 4 of 23

logical structure regarding affixation, demonstrates
complexity in compound word formation, necessitating
effective segmentation strategies.

• Diacritic Variability: Persian and Arabic experience
variability and omission of diacritics, respectively,
which can impact word recognition. English diacrit-
ics are consistent across dialects. Chinese, using tone
marks in its Pinyin romanization system, faces chal-
lenges in tone recognition and representation, though
these are not used in the standard Chinese script.

Reflecting these insights, the extended comparison in
Table 1, highlights the nuanced challenges ASC systems
face in adapting to the linguistic features of Persian, Eng-
lish, Arabic, and now Chinese:

This comprehensive overview illustrates the diverse
requirements for ASC systems across different languages,
emphasizing the importance of specialized approaches to
effectively address the unique combination of script, pho-
nology, morphology, and orthographic practices in Per-
sian, English, Arabic, and Chinese.

On the other hand, Persian's richness and expressive-
ness as a language, however, bring forth numerous chal-
lenges in its processing, particularly in the realm of Auto-
matic Spelling Correction (ASC):

• Character ambiguity: Persian characters like “ی” and
-are often used interchangeably but represent differ ”ي“
ent sounds [48].

• Rich morphology: New words can be created by adding
prefixes and suffixes to a base word, like “دست” (hand)
to “دستها” (hands) [49].

• Orthography: Persian involves a combination of spaces
and semi-spaces, which can lead to inconsistencies
[50].

• Co-articulation: the pronunciation of a consonant like
.can be affected by the subsequent vowel. [51] ”ب“

• Dialectal variation: Persian has several standard varieties
such as Farsi, Dari, and Tajik [52].

• Cultural factors: the phenomenon of Persianization can
shape the way Persian is used and interpreted.

• Lack of resources: Persian is often categorized as a low-
resource language due to the limited availability of data
and tools for natural language processing [49].

• Free word order: Persian allows for the rearrangement of
words within a sentence without significantly altering its
meaning [53].

• Homophony: Different words have identical pronuncia-
tion but different meanings, like (“گذار” /gʊzɑr/ ‘transi-
tion’) and (“گزار” /gʊzɑr/ ‘predicate’) [54].

• Diacritics: they are frequently left out in writing, leading
to ambiguity in word recognition [55].

• Rapidly changing vocabulary: Persian’s vocabulary is
rapidly evolving due to factors such as technology, glo-
balization [56].

• Lack of standardization: there is not a single standard for
Persian text, which can complicate the development of
language processing models capable of handling a vari-
ety of dialects and styles [57].

3 Materials and Methods

Our method detects and corrects two types of errors in Per-
sian text: Non-word and Real-word errors. Figure 1 dem-
onstrates the architecture of the proposed system. The sys-
tem design consists of six distinct modules that exchange
information through a databus. The INPUT module takes
raw test corpora. The pre-processing component normal-
izes the text and handles word boundary issues. The error
generation module generates errors based on a desired den-
sity at different edit-distance function values. The contextual
analyzer module evaluates the contextual similarity within
desired word sequences. Error detection uses a dictionary

Table 1 Comparative overview of linguistic challenges in ASC for Persian, English, Arabic and Chinese

Feature Persian ASC challenges English ASC challenges Arabic ASC challenges Chinese ASC challenges

Writing system Arabic script with addi-
tional characters and
diacritics

Latin alphabet with
phoneme-grapheme
irregularities

Cursive script with voweli-
zation complexities

Logographic system, repre-
senting morphemes/words

Homophones Extensive, due to etymo-
logical diversity

Significant, from irregular
spellings

Moderate, with phonetic
transparency

High, due to tonal language
and limited syllable inven-
tory

Vowel representation Context-dependent, non-
unique representation

Relatively stable but occa-
sionally irregular

Short vowels often omitted
in informal writing

N/A, uses tones for different
meanings

Morphological density Complex affixation and
word formation

Less complex morphology Root-pattern morphology Simple in affixation, complex
in compound word forma-
tion

Diacritic variation Variable by dialect and style Consistent across dialects Consistent but often omit-
ted

Tone marks crucial in Pinyin,
not used in standard script

International Journal of Computational Intelligence Systems (2024) 17:114 Page 5 of 23 114

look-up method for non-word error detection and contextual
similarity matching for real-word errors. The error correc-
tion module corrects both classes of errors using context
information from fine-tuned contextual embeddings model,
along with phonetic and edit-distance similarity measures.
The corrected corpora or word sequence is delivered through
the OUTPUT module.

3.1 Pre‑processing Step

Text pre-processing is a crucial step in most NLP appli-
cations, consisting of sentence segmentation, tokenization,
normalization, and stop-word elimination. Sentence seg-
mentation involves determining the boundaries of sentences,
typically divided by punctuation marks such as periods,
exclamation points, or question marks. Tokenization is the
process of dividing a sentence into a sequence of terms that
represent the sentence, which will be used to extract features.
Normalization involves converting text into canonical forms
and is an important step in Persian NLP applications, as it is
in many other languages.

One of the key tasks in normalizing Persian text is con-
verting pseudo and white spaces to regular forms, substi-
tuting whitespaces with zero width nonjoiners when neces-
sary. For example, (‘می بینم’ /mibinæm/ ‘see’) is replaced
with (‘میبینم’ / mibinæm / ‘see’). Persian and Arabic share
many characteristics, and some Persian letters are often
misspelled using Arabic forms. Researchers often find it
beneficial to standardize these variations by replacing Ara-
bic characters (ی ‘Y’ /j/; ک ‘k’ /k/; ه ‘h’ /h/) with their
Persian equivalents. For instance, (‘راي’ /ræy/ ‘vote’) is
transformed to (‘رای’ /ræy/ ‘vote’). Normalization also
includes removing diacritics from Persian words; e.g.,
 .(’dære/ ‘valley/ ’دره‘) is changed to (’dærre/ ‘valley/ ’درّه‘)
Additionally, Kashida(s) are removed from words; for
instance, (‘بــــــانک’ /bɑnk/ ‘bank’) is transformed to
 ,To achieve the normalization goal .(’bɑnk/ ‘bank/ ’بانک‘)
a dictionary including the correct typographic form of all
Persian words named Dehkhoda is used to find the normal
form of multi-shaped words [58].

Fig. 1 Architecture of the proposed system for generating, detecting and correcting Persian word errors

 International Journal of Computational Intelligence Systems (2024) 17:114 114 Page 6 of 23

3.2 Damerau–Levenshtein Distance

Our approach uses the Damerau–Levenshtein distance
measure to generate non-word and real-word errors for
detection and correction tasks. This measure considers
insertion, deletion, substitution, and transposition of char-
acters. For example, the Damerau–Levenshtein distance
between “KC” and “CKE” is 2. It’s found that around 80%
of human-generated spelling errors involve these four error
types [59]. Studies show that real-word errors account for
about 25% to 40% of all spelling errors in English text
[60, 61]. We choose an edit distance of up to 2 between
the correct term and the error. When the edit distance is
set to one, an average of five candidates are generated as
replacements for a target context word. However, once the
distance is increased to 2, the average number rises to 23.
The computing time increases correspondingly. We ensure
that the generated candidates are attested in the reference
lexicon.

3.3 Error Generation

In the following two sections, we describe the error gen-
eration algorithm and its properties, as well as explain how
we determine the density of errors.

3.3.1 Error Density

There are no publicly available Persian texts containing
genuine word errors with reasonable density. Researchers
address this issue by inserting artificially generated mis-
spellings into free-running text. For instance, the authors
of [62] randomly generated malapropisms into the test
corpus in free-running English texts at a frequency rate
of 0.005, replacing 1 word in every 200 words. Differ-
ent frequency rates were used in [1, 15, 16]. The authors
used an approach based on confusion sets for the Persian
language [34, 63], although they did not specify the real-
word error density in the test corpus. However, based on
the size of the evaluation corpora and the number of test
instances, it can be estimated that it amounts to about
15% of total sentences. In the evaluation of spelling cor-
rection systems, there is a unique constraint where the
maximum number of errors per sentence is set to one
when generating word errors, meaning that each distinct
sentence may contain only one error. In our proposed
model, we follow this strategy and generate only one
word error per sentence. However, we test various error

density rates, ranging from 10 to 50% of the sentences in
the test corpus containing a word error, where 10 repre-
sents a normal source of error and 50 represents a very
noisy error source. This high density of errors was used
to assess the effectiveness of our proposed technique.

3.3.2 Error Generation Algorithm

We proposed a novel error generation algorithm for
populating pre-processed corpora. Pseudocode1 is used
to generate errors in a corpus that is essentially free of
misspellings. The method introduces artificially gener-
ated errors into the original test corpora within distances
1 and 2. The number of sentences with errors is deter-
mined by the error density E. For each target term in the
text, we extract all probable occurrences of error that
are within the appropriate distance in the dictionary. To
produce errors and replacement candidates, the suggested
model uses a large lexicon borrowed from the Vafa spell-
checker for the Persian language dictionary, which con-
tains 1,095,959 different terms. In the error generation
process, we adhere to a strict rule: only those original
corpora words that can be attested in the lexicon may be
replaced with an instance of error, in order to avoid any
Out-Of-Vocabularies (OOV).

Furthermore, parameter D1 allows us to determine the
number of errors within distance 1, with the remaining errors
at distance 2 denoted as 1 − D1 . For example, if there is a
1000-sentence test corpus with E = 0.20 and D1 = 0.60, then
200 sentences will contain misspellings, with 120 of them hav-
ing distance 1 misspellings and 80 of them including errors
within distance 2. Following the observations of [8] and [59]
and keeping in mind the objective of the model, we classify
word errors into two types and assign a specific density to
each one. β represents the total number of artificially gener-
ated errors in the erroneous corpora, while �1 and �2 are coef-
ficient parameters representing the density of non-word and
real-word errors, respectively. Equation 1 represents the rela-
tionship between the size of the corpora and the frequency of
non-word and real-word errors.

Our novel error generation algorithm allows us to set up
various scenarios and evaluate the robustness of our model in
detecting and correcting real-word and non-word errors at the
desired density and complexity.

(1)�

⎧
⎪⎨⎪⎩

N × E

�1 + �2 ≤ 1

International Journal of Computational Intelligence Systems (2024) 17:114 Page 7 of 23 114

Pseudocode 1 Error Generation Algorithm

 International Journal of Computational Intelligence Systems (2024) 17:114 114 Page 8 of 23

3.4 Contextual Embeddings

Word embeddings analyze large volumes of textual data to
embed word meanings into low-dimensional vectors [64,
65]. They store valuable syntactic and semantic information
[66] and are beneficial to many NLP applications [67]. How-
ever, they suffer from meaning conflation deficiency: the
inability to distinguish between a word’s multiple meanings.

To address this, state-of-the-art approaches represent spe-
cific word senses, referred to as contextual embeddings or
sense representation. Contextualized word embedding meth-
ods like ELMo consider the context of the input sequence
[64]. There are two ways to pre-train language representa-
tions: feature-based approaches like ELMo and fine-tuning
approaches like OpenAI GPT [22]. Fine-tuning methods
train a language model using massive datasets of unlabeled
plain texts. The parameters of these models are then fine-
tuned using task-specific data [22, 68, 69].

However, pre-training an efficient language model
requires significant data and computational resources
[70–73]. Multilingual models have been developed for
languages with identical morphology and syntactic organi-
zation. But non-Latin languages differ greatly from Latin-
based languages and require a language-specific approach
[74]. A similar issue exists in the Persian language. Despite
the fact that some multilingual models include Persian, they
may fall behind monolingual models that are specifically
trained on language-specific vocabulary with larger volumes
of Persian text data. To the best of our knowledge, ParsBert
[57] is the only attempt to pre-train a Bidirectional Encoder
Representation Transformer (BERT) [68] model for the Per-
sian language.

3.4.1 PERCORE’s Language Representation Model

Persian is considered an under-resourced language. Despite
the existence of language models that support Persian, only
one has been pre-trained on a large Persian corpus [57].
However, ParsBERT’s data includes many informal docu-
ments, such as user reviews and comments, and many of
the collected documents contain misspelled words, mak-
ing the model unsuitable for spelling correction tasks. The
absence of a high-performance language model in this field
is a significant challenge. In this section, we will discuss
our General Persian Corpus and the process of pre-training
PERCORE’s language representation model.

3.4.2 Data

While there are many freely available formal Persian texts,
they have not been compiled into a single, error-free, large
corpus. This is necessary for the purpose of pre-training a

language representation model for spelling correction. As
a result, to train an effective model for spelling correction
in Persian, we had to gather a large collection of texts from
available corpora of formal text. This corpus contains 1.4
million documents collected from various sources:

• Bijankhan Corpus: The Bijankhan corpus2 is a collec-
tion of tagged texts, including daily news and common
texts [75]. It comprises 4300 articles that have been cat-
egorized into different subject categories such as politi-
cal, cultural, and others. With around 2.6 million words,
this corpus provides a rich source of data for researchers
working on Persian language processing

• Hamshahri Corpus: The second version of the Hamshahri
corpus3 was released on October 20, 2008 [76]. It con-
tains 323,616 text stories organized into 82 categories
and 65 subjects, with an average article length of 380
words.

• Persian Wikipedia Corpus: The Persian Wikipedia cor-
pus4 is a collection of 441 million tokens in Persian text,
which comprises 1,160,676 articles from the Persian
Wikipedia as of October 1, 2018.

The collected documents undergo normalization, pre-
processing, and cleaning to remove elements such as POS
tags, HTML tags, hyperlinks, etc.

3.4.2.1 Model Architecture PERCORE’s architecture uses
the original ����

����
 configuration with 12 hidden layers,

12 attention heads, 768 hidden sizes, and a total of 110M
parameters. Our model has a maximum token capacity of
512. Model’s architecture is shown in Fig. 2.

Many attribute BERT’s success to its MLM pre-training
task, where it masks or replaces tokens at random before
predicting the original tokens [68]. This makes BERT well-
suited to be a spelling checker, as it interprets the masked
and changed tokens as misspellings. In BERT’s embedding
layer, each input token Ti is indexed to its embedding rep-
resentation ERi . Then, ERi is forwarded to BERT’s encoder
layers to obtain the following representation ofHRi:

where ERi and HRi ∈ R
1∗d and d is the hidden dimension.

Following this, similarities between HRi and all token
embeddings will be estimated to predict the distribution of
Yi over the existing vocabulary.

(2)ERi = BERT − Embedding(Ti)

(3)HRi = BERT − Encoder
(
ERi

)

2 https:// dbrg. ut. ac. ir/% d8% a8% db% 8c% da% 98% d9% 86% e2% 80%
8c% d8% ae% d8% a7% d9% 86/.
3 https:// dbrg. ut. ac. ir/ hamsh ahri/.
4 https:// github. com/ Text- Mining/ Persi an- Wikip edia- Corpus.

https://dbrg.ut.ac.ir/%d8%a8%db%8c%da%98%d9%86%e2%80%8c%d8%ae%d8%a7%d9%86/
https://dbrg.ut.ac.ir/%d8%a8%db%8c%da%98%d9%86%e2%80%8c%d8%ae%d8%a7%d9%86/
https://dbrg.ut.ac.ir/hamshahri/
https://github.com/Text-Mining/Persian-Wikipedia-Corpus

International Journal of Computational Intelligence Systems (2024) 17:114 Page 9 of 23 114

where E ∈ R
V∗d and Yi ∈ R1∗V ; here V represents the size of

the vocabulary and E denotes the BERT embedding layer.
The i th row of E corresponds to ERi in Eq. 2. The final
rectification result for Ti is the Tk token, whose ERk has the
highest similarity to HRi.

3.4.3 Fine‑Tuning for Spelling Correction Task

We fine-tuned the language representation model on the
Persian spelling correction task to achieve maximum

(4)Yi = Sof tmax(HRi,E
T) performance for spelling correction. To fine-tune the model,

we used TestSet1 from the Hamshahri corpus, which con-
tains 103,840 sentences from the reserved articles. As input
to the model, we used a single sentence that ended with a full
stop. We only took one sentence at a time because our focus
was on training the model for spelling correction. A closer
examination of the test set indicated that several sentences
were short, and masking a few tokens would eliminate a
substantial amount of context. As a result, sentences with
fewer than 20 words were excluded from the corpus. Finally,
91,420 sentences with a minimum length of 20 were chosen.
However, because the input was a list of sentences that could

Fig. 2 Architecture of PER-
CORE’s language representa-
tion model for Persian language
spelling correction task

0 1 2 3 511

 International Journal of Computational Intelligence Systems (2024) 17:114 114 Page 10 of 23

not be directly fed into the model, we tokenized the text.
The goal of the error correction task is to anticipate target
or masked words by obtaining context from adjacent words.
In other words, the model attempts to recreate the original
sentence from the masked sentence received in the input at
the output. Therefore, the target labels are the tokenizer’s
actual input_ids.

In the original ����
����

 model, 15% of the input tokens
were masked, with 80% replaced with [mask] tokens, 10%
replaced with random tokens, and the remaining 10% left
unchanged. However, in our fine-tuning task, we only
replaced 15% of the input tokens with [mask], except for
special ones; we did not use [mask] tokens to replace [SEP]
and [CLS] tokens. We also avoided the random replacement
of tokens in order to achieve better results. We employed a
TensorFlow [77] background for training with Keras [78]. In
addition, we used the Adam optimizer with a learning rate of
1E − 4 . The batch size was 32 and the model fully converged
by the fourth epoch.

3.5 Persian Soundex

Soundex is a phonetic algorithm that indexes names based
on their pronunciation in English [79]. It is widely recog-
nized as one of the most popular phonetic algorithms. The
primary objective of Soundex is to encode homophones
with identical representations, allowing them to be matched
despite minor variations in spelling.

In the case of the Persian language, there are 32 alphabets
(in written form) that were divided into 14 categories based
on their sounds. This classification is informed by extensive
research in the field of Persian phonology [80, 81]. Our pro-
posed code length for Persian is fixed at 4 characters. In our

approach, Persian alphabet elements are grouped based on
their pronunciation, with characters that have identical pro-
nunciation being placed in the same classes, as shown in
Table 2. When assigning codes, we ignored vowels. Some
alphabets, such as “ا“, ”و” and “ی”, can function as both a
vowel and a consonant in Persian. When these letters appear
at the beginning of a word, they act as consonants. As a
result, syllabification is necessary to determine whether a
letter is functioning as a vowel or a consonant.

In the evaluation section, we will examine the impact of
the Persian Soundex algorithm on spelling correction accu-
racy. By analyzing the results, we can determine how effec-
tive the algorithm is in improving the accuracy of spelling
correction for the Persian language.

3.6 Error Detection Module

The error detection module employs two distinct meth-
odologies, depending on the type of error being detected.
Lexical lookup is used for non-word errors, while contex-
tual analysis is used for real-word errors. The first step in
error detection, regardless of the type of error, is boundary
detection and token identification. When the model receives
a sentence S as input, it first marks the beginning and end
of the sentence with Beginning of Sentence (BoS) and End
of Sentence (EoS) markers, respectively, and estimates the
number of tokens in the sentence:

It is important to note that the number of tokens is equal
to the maximum number of iterations that the model will
attempt to detect an error in the sentence.

< BoS > T1T2T3 …T
n
< EoS >

Table 2 Soundex code for
Persian Language Alphabet

Set Number Soundex Code Characters with identical pronunciation

1 0 ص ث ش س
2 1 د ت ط
3 2 ژ ز ض ظ ذ
4 3 چ ج
5 4 ه ح ه
6 5 خ ک ق
7 6 پ ب
8 7 غ گ
9 8 ع آ ا
10 9 ن م
11 A ف
12 B ل
13 C و
14 D ر

International Journal of Computational Intelligence Systems (2024) 17:114 Page 11 of 23 114

3.6.1 Non‑word Error Detection

Spell checkers primarily utilize the lexical lookup
approach to identify spelling errors. This method involves
real-time comparison of each word in the input sentence
against a reference dictionary, which is typically con-
structed using a hash table. Starting with the BoS marker,
every token in the sentence is scrutinized to determine its
correctness based on word order. This procedure continues
until the EoS marker is encountered. However, if a word is
detected as misspelled, the error detection cycle terminates
and the error correction phase is initiated. The following
is an example of non-word error detection:

In the provided example, the intended (“روند” / rævænd
/ ‘trend’) was erroneously typed as ‘زوند’. This error is a
result of a substitution operation and is just one unit of
distance away from the correct word. The model was able
to efficiently detect this error.

3.6.1.1 Real‑Word Error Detection In this work, contex-
tual analysis is employed for the identification of real-
word errors. Traditional statistical models utilized n-gram
language models to examine the frequency of a word’s
occurrence and assess the word’s context by considering
the frequency of the word appearing with “n” preceding
terms. More modern approaches employ neural embed-

dings to evaluate the semantic fit of words within a given
sentence. In our proposed method, we utilize the mask
feature and leverage contextual scores derived from fine-
tuned bidirectional language model to detect and correct
word errors. The real-word error detection is explained as
follows:

(1) First, starting with the BoS marker, the model attempts
to encode each word as a masked word, beginning with
the first word.

(2) Second, a list of probable candidates for the masked
word is obtained from the language representation
model’s output.

(3) Thirdly, based on the error generation scenario, replace-
ment candidates are generated within edit-distances of
1 and 2 from the masked word.

(4) List of candidates, along with the original token, is
checked against the language model's output for the
masked token.

(5) If any candidate has a higher probability value than the
masked word, we consider the original word to be an
error, and thus, the process ends. However, if no error
is found, the model shifts one unit to the right, and the
same steps are repeated for all words within the sen-
tence until the EoS marker is reached.

As mentioned earlier, based on our error generation strat-
egy, a sentence may contain only one error. Therefore, as
soon as an error is detected, the correction process com-
mences immediately; afterward, the model proceeds to the
next sentence. Pseudocode2 shows the algorithm for real-
word error detection.

 International Journal of Computational Intelligence Systems (2024) 17:114 114 Page 12 of 23

Pseudocode 2 Real-word Error Detection Algorithm

Table 3 Contextual Scores of the Top Five Replacement Candidates

Replacement candidate Contextual Score

1 زنان 0.530
2 زمان 0.090
3 زبان 0.190
4 رمان 0.001
5 زیان 0.003

Table 4 Dataset details

Dataset name TestSet1 TestSet2 TestSet3 TestSet4

Number of articles 15,712 6,204 3,455 69,008
Number of sentences 103,840 86,035 57,638 123,512
Number of tokens 3,496,720 3,191,898 1,700,321 6,546,136
Number of distinct

tokens
147,851 155,964 160,912 183,473

International Journal of Computational Intelligence Systems (2024) 17:114 Page 13 of 23 114

Here’s an example of successful real-world error detection:

In the example provided, the term (“ ” /zæmɑn/ ‘time’)
is identified as a real-word error. The user’s intended word was
(“ ” /zænɑn/ ‘women’). The model first encodes the masked
token and inputs it into language representation model, which
then produce a list of contextually appropriate tokens.

Subsequently, a list of candidate replacements is gener-
ated using the Damerau–Levenshtein distance measure. In
this case, the edit-distance is 1. The model then compares
the context similarity score of each replacement candidate
with the output list from the language model.

Table 3 displays the context similarity scores of the top
five replacement candidates from the output of the language
representation model.

3.7 Error Correction Module

The error correction process is initiated when a misspelling
is identified in the input. In this stage, a ranking algorithm is
designed that mainly relies on the contextual scores from fine-
tuned language representation model and phonetic similarity
algorithm.

3.7.1 Non‑word Error Correction Process

In the process of non-word error correction, following steps
are taken:

(1) The model first utilizes the Damerau–Levenshtein edit
distance measure to generate a set of replacement can-
didates within 1 or 2 edits.

(2) The misspelled word is then encoded as a “mask” and
input into the fine-tuned model.

(3) The model retrieves all probable words from the output
and matches them against the candidate list.

(4) Next, the model retains a certain number of candidates
with the highest contextual scores. Based on our obser-
vations, the optimal number is 10.

(5) The method then compares the Soundex similarity
between the erroneous word and remaining replace-
ment candidates. If the error and candidate share the

same code, that candidate is deemed the most suitable
word. However, if two or more probable candidates
carry the same Soundex code as the erroneous word,
then the candidate with the highest contextual score is
selected as the replacement for the error.

3.7.2 Real‑Word Error Correction Process

In the case of real-word error correction, this process follows
the real-word error detection process:

(1) The contextual scores of probable candidates are
retrieved from fine-tuned model.

(2) The model stores a number of desired candidates with
the highest contextual score. Based on our observa-
tions, the optimal number is 10.

(3) The method compares the Soundex similarity between
the word error and replacement candidates. If the error
and the candidate share the same code, then that can-
didate is the most suitable word.

(4) However, if two or more probable candidates carry the
same Soundex code as the word error, then the candi-
date with the highest contextual score is chosen as the
replacement for the error.

4 Evaluation and Results

In this section, we first examine the effect of fine-tuning
various parameters on the performance of our proposed
model. We then evaluate and compare the performance of
our method against various baseline models in the spelling
correction task. This will provide insight into the effective-
ness and accuracy of our approach in detecting and correct-
ing spelling errors.

4.1 Dataset

Our evaluation datasets comprise 94,379 reserved articles
from the Hamshahri corpus. We collected articles from
the twelve most frequently referred categories, including
international, religious, economic, political, social, sports,

Table 5 The Proposed approach’s performance for various values of
E and edit-distance function on real-word error detection task

E Model Edit-distance1 Edit-distance2 Overall result

10% PERCORE 0.891 0.853 0.883
20% PERCORE 0.866 0.829 0.859
30% PERCORE 0.848 0.813 0.841
40% PERCORE 0.836 0.803 0.829
50% PERCORE 0.832 0.800 0.826

 International Journal of Computational Intelligence Systems (2024) 17:114 114 Page 14 of 23

literary, scientific, general, incidents, legal, and national
security, into four unique datasets. Table 4 shows the spe-
cifics of each dataset.

Our evaluation datasets are comprised of four different
test sets from the Hamshahri corpus. TestSet1 contains
103,840 sentences from eight different genres: social, eco-
nomic, law and national security, international, religious,
sports, science, and politics. TestSet2 covers six various
news categories and includes 155,964 distinct tokens. Test-
Set3 mainly includes 3455 articles from five different genres.
Finally, TestSet4 is comprised of 6,546,136 distinct tokens
that cover eleven different genres.

4.2 Evaluation Metrics

The primary evaluation measures for assessing the perfor-
mance of models on non-word and real-word error detec-
tion and correction tasks are precision (P), recall (R), and
F-measure (F1-Score). Precision (P) measures the accuracy
of a model, while recall measures its exhaustiveness or sen-
sitivity. The F1-Score, which is the weighted harmonic mean
of both metrics, can be calculated by combining them. In F1,
both precision and recall are given equal weight. Equation 5
describes the F1-Score evaluation measure.

4.3 Experiments and Fine‑Tuning System
Parameters

The experiments are divided into two main groups. The
first set of experiments uses TestSet1, while the final set
uses TestSet2, TestSet3, and TestSet4. The goal of the first
experiment is to fine-tune the language representation model
for spelling correction tasks, determine the impact of vari-
ous error densities, and examine the effect of different edit-
distance function values on the performance of word-error
detection. The second series of experiments, on the other
hand, investigates the effectiveness of the proposed model
for detecting and correcting various types of errors and pro-
vides a meaningful comparison with other baselines.

4.3.1 Fine‑Tuning Error Generation Algorithm

We investigate the impact of various error densities
and edit-distance function values on the error-detection
task. To do this, we use the TestSet1 corpus to exam-
ine how these parameters affect the context-sensitive
error detection performance of the model. We first
inject context errors into the sample text and then assess

F1 − Score = 2 ×
P × R

P + R

context-sensitive error detection using the erroneous text.
Similar strategies have been employed in previous stud-
ies [1, 15, 16, 34, 63]. To build the erroneous corpora,
we randomly selected 10,000 sentences from the TestSet1
corpus and populated them with context-sensitive errors
using Pseudocode1.

Authors in [8] reported that 80% of word errors are within
distance 1, and 20% are within distance 2. We used the same
values in the error-generation algorithm (D1=0.8). In addi-
tion, based on observations from [34, 63], average values of
0.5–0.85 for �1 and 0.16–0.20 for �2 are suitable. However,
since we are evaluating the real-word error detection perfor-
mance, we assign values of 0.0 and 1.0 to the aforementioned
variables ((�1 = 0.0 �2 = 1.0), which means all the generated
errors are real-word errors. For the edit distance, we used
Damerau–Levenshtein since it treats the swapping of two
adjacent letters as a single operation, whereas Levenshtein
requires two operations. We generate context errors that are
within 1 and 2 edit-distance of the original word using the
Damerau–Levenshtein measure dDL = (1, 2). Another factor
we must consider is the number of errors. We used various E
values between 10 and 50% to check the performance of the
model. In other words, if the “one-error-per-sentence” rule
is strictly adhered to, 10–50% of the sentences will contain
an error. As a result, when E equals 10%, D1 equals 0.0, �1
equals 0.0, and �2 equals 1, the total number of errors will
be 1000. This amounts to zero non-word errors and 1000
real-word errors, where 800 real-word errors are within edit-
distance 1 and 200 are within distance 2.

To test the resilience of our method and simulate various
error sources, we employ error densities of 10%, 20%, 30%,
40%, and 50%, where 50% represents a highly erroneous
source. We want to assess the accuracy of our model and
see how different error densities and edit-distance func-
tion values affect the error detection success rate. Table 5
summarizes the results on the TestSet1 corpus in terms of
F1 − Score . The results indicate that the highest F1 − Score
values are attained when the error density is set to a mini-
mum value of 10%. In this scenario, the overall detection
F1 − Score is 0.883, and the difference between the detec-
tion F1 − Scores for edit-distance 1 and edit-distance 2 is
3.8%. The reason for this difference is that as the number of
replacement candidates in higher edit-distances increases, it
becomes more likely for the model to mistakenly identify a
correct word as an error.

As indicated in Table 5, there is a gradual decrease in
the system’s overall F1 − Score as the value of E increases.
However, for higher error density values such as 40% and
50%, the numbers are more stable. When the error density is
set to 40%, the F1 − Score begins to converge. In this situa-
tion, the detection F1-Scores for detecting errors at distances
1 and 2 are 0.836 and 0.803 respectively, while the overall
F1 − Score is 0.829. These results validate that our proposed

International Journal of Computational Intelligence Systems (2024) 17:114 Page 15 of 23 114

approach is highly accurate and can effectively identify real-
word errors across various distances, even when the fre-
quency of errors in a given corpus is extremely high.

We also carried out an in-depth examination of the mis-
takes made by our model. We observed that the model
tended to overlook errors when the artificially introduced
error had a semantic connection to the context words. For
example, in the original word sequence “جهت اصلاح مسیل” (to
repair a stream), the error generation algorithm substituted
the word (“مسیل” /mæsil/ ‘stream’) with the artificially intro-
duced error (“مسیر” /mæsir/ ‘path’), which is within edit
distance 1. This led to the word sequence “جهت اصلاح مسیر”
(to correct a path), which had a higher context similarity
score than the original word sequence. As a result, this word
sequence was overlooked by the model.

While this issue has not been mentioned in prior research on
Persian spelling correction, we consider it to be a major chal-
lenge when introducing artificially generated errors into Persian
corpora. This is probably due to the absence of comprehensive
and authentic error corpora for the Persian language. Nonethe-
less, this problem can be addressed by verifying the generated
errors against a list of N-grams and contextual similarity scores
within the error generation algorithm.

4.3.2 Preparing Datasets for Full Evaluation

At this stage, we are preparing erroneous text to evaluate
the performance of our proposed model and other baseline
methods in both real-word and non-word error detection
and correction tasks. Initially, we randomly selected 10,000
sentences from each of the TestSet2, TestSet3, and TestSet4
corpora, resulting in a total of 30,000 sentences. We then
used Pseudocode1 to generate the erroneous corpora. The
default configuration for error generation includes the fol-
lowing parameter values:

(1)N = 10,000; (2)E =10%, 50%; (3)D1=0.8; (4)β1=0.8;
(5)β2=0.2;

Based on the error generation settings, 30,000 sentences
were randomly selected from all three datasets to create the
real-word and non-word error test set. The Damerau–Lev-
enshtein edit-distance of 1 or 2 was applied to the target sets
to generate artificial errors resulting from insertion, dele-
tion, transposition, or substitution operations. Of the 30,000
sentences, 24,000 included an error within edit-distance 1,
where 19,200 were non-word errors and 4,800 were real-
word errors. Additionally, 6000 sentences contained errors
within edit-distance 2; of these, 4800 were spelling errors
and the remainder were real-word errors.

4.4 Baseline Models

In our research, we implemented several baseline models
for non-word and real-word error correction tasks to ensure

a fair comparison. All models, including Perspell by Dast-
gheib et al. [34], the four-gram model [41], and a Persian
Continuous Bag-of-Words (CBOW) model [82], were
developed using Python and trained on the same dataset as
PERCORE.

For real-word error correction, we replicated the meth-
odology of two distinguished models. The first is based on
confusion sets, as proposed by Dastgheib et al. [34]. The
second is the real-word error correction module from the
Vafa spell-checker [63], a tool widely used for identifying
and correcting real-word errors in Persian texts. By com-
paring these models, we aim to understand their strengths
and weaknesses, and leverage this understanding to enhance
error correction in Persian language processing.

4.4.1 Perspell

Perspell, a statistical spelling correction framework tailored
for Persian, exploits a dictionary lookup strategy to pinpoint
non-word errors [34]. Leveraging a bigram language model,
Perspell discerns the most contextually fitting candidate for
correction. It differentiates itself by employing predefined
confusion sets and harnessing the rich lexicon of Persian
WordNet to extract synonyms, thereby enhancing real-word
error detection.

Adaptations for auto-correction have seen the introduc-
tion of an advanced bigram language model that meticu-
lously combs through related bigrams for each candidate.
The enhancement involves sorting candidates based on prob-
ability values, ensuring the selection of the most probable
candidate for correction. This strategic approach empow-
ers Perspell to offer corrections, significantly reducing the
manual review workload.

4.4.2 Yazdani, Et Al. Model

The Yazdani et al. model emerges as a benchmark in Per-
sian non-word error correction through its utilization of a
weighted bi-directional fourgram language model. [41]. This
model's core lies in its application of a nuanced quadripartite
equation, designed to accord precedence to n-grams based
on their sequential order.

This methodical prioritization facilitates a nuanced and
highly accurate error correction process, showcasing the
model's unparalleled effectiveness in refining Persian texts.
The innovative use of a bi-directional approach allows for
a more holistic analysis of text, considering both preced-
ing and succeeding context to identify the optimal replace-
ment, thereby setting a new standard in language processing
precision.

 International Journal of Computational Intelligence Systems (2024) 17:114 114 Page 16 of 23

4.4.3 CBOW Model

The Continuous Bag of Words (CBOW) model represents a
leap forward in understanding word meanings through con-
textual analysis [82]. Focused on predicting suitable words
within specific contexts, the CBOW architecture is instru-
mental in identifying target words amidst source context
words. Its training on a corpus of 1.4 million documents
from PERCORE signifies a substantial effort to refine its
prediction capabilities. With technical parameters such as
a context window size of 10 and a dimension size of 300,
the model utilizes input and output matrices to calculate
the hidden layer effectively. This extensive training empow-
ers the CBOW model to excel in non-word error correction
tasks, showcasing its robustness in language modeling and
its potential for broader linguistic applications.

4.4.4 Vafa Spell‑Checker

The Vafa spell-checker, specifically engineered for Persian
text, adopts a comprehensive three-step methodology to
tackle real-word errors [63]. It initiates the process with a
detailed contextual analysis, considering adjacent words to
gauge the context accurately. The model then generates a list
of potential replacements, contemplating every conceivable
single-letter modification and semantically akin words. This
process is further refined using predefined confusion sets,
enhancing the model's capability to detect real-word errors
with high precision. Employing a trigram language model,
the Vafa spell-checker not only identifies but also corrects
errors, leveraging its sophisticated algorithm to ensure tex-
tual integrity. This model's implementation highlights its

effectiveness in enhancing the quality of Persian texts, pro-
viding a valuable tool for language practitioners.

4.4.5 GPT‑2.0 for Persian Spelling Correction

GPT-2.0 marks a significant milestone in NLP, acclaimed
for its generative prowess and profound understanding of
context [83]. Its pre-training, conducted on a varied array of
datasets, lays a solid foundation for fine-tuning endeavors,
including the delicate task of spelling correction in Persian.
Importantly, the initial pre-training of GPT-2.0 leveraged an
extensive corpus of 1.4 million documents to ensure com-
prehensive coverage of Persian's linguistic diversity, provid-
ing a robust starting point for fine-tuning related to spelling
correction.

• GPT-2.0 Implementation and Fine-tuning

Approach:

• Model Preparation: we initiate the process with a GPT-
2.0 model pre-trained on a diverse dataset, including a
significant corpus of 1.4 million documents to immerse
the model in Persian language intricacies. This pre-train-
ing phase is crucial for acquainting the model with the
nuances of Persian, setting the stage for its subsequent
fine-tuning on the TestSet1 corpus.

• Fine-Tuning Strategy: utilizing a corpus of 91,420 sen-
tences from TestSet1 of the Hamshahri corpus, each with
a minimum of 20 words and infused with artificially gen-
erated spelling errors, effectively simulates real-world
spelling correction challenges. This targeted exposure is
crucial for the model to acquire and refine strategies for

Table 6 Comparison of various
models’ performance on non-
word error correction task

Model E (%) Edit-distance1 Edit-distance2 Overall result

PERCORE 10 0.886 0.849 0.879
PERCORE + Soundex 10 0.898 0.863 0.891
Perspell 10 0.614 0.568 0.605
 Yazdani et al. 10 0.716 0.674 0.708
 Continuous Bag-of-Words (CBOW) 10 0.752 0.701 0.742
 GPT-2.0 10 0.818 0.776 0.810
 GPT-3.0 10 0.872 0.834 0.864

PERCORE 50 0.838 0.813 0.833
PERCORE + Soundex 50 0.850 0.824 0.845
Perspell 50 0.559 0.515 0.550
 Yazdani et al 50 0.660 0.619 0.652
 Continuous Bag-of-Words (CBOW) 50 0.703 0.653 0.693
 GPT-2.0 50 0.798 0.756 0.788
 GPT-3.0 50 0.850 0.812 0.842

International Journal of Computational Intelligence Systems (2024) 17:114 Page 17 of 23 114

accurately identifying and correcting errors in Persian
texts.

Hyperparameters:

• Learning rate: a carefully chosen learning rate of 5e-5
supports gradual and precise model adjustments, enhanc-
ing its performance in spelling correction tasks.

• Batch size: opting for a batch size of 16 strikes a bal-
ance between computational efficiency and the richness
of linguistic input.

• Epochs: limiting the training to 4 epochs helps avoid
overfitting, fostering a model that remains versatile
across different contexts.

4.4.6 GPT‑3.0 for Persian Spelling Correction

GPT-3.0, as the successor to GPT-2.0, elevates the capa-
bilities of NLP models through its vast scale and intricate
architecture [21]. By undergoing pre-training on an even
broader spectrum of data, including the aforementioned
1.4 million documents to enrich its understanding of
Persian, GPT-3.0 showcases unparalleled adaptability to
a wide range of NLP tasks. Its precision in generating

text that is both contextually relevant and grammatically
coherent positions it as an indispensable asset for refin-
ing spelling correction techniques, particularly within the
complex linguistic framework of Persian.

• GPT-3.0 Implementation and Fine-Tuning

Approach:

• API Utilization: we harness GPT-3.0’s capabilities
through OpenAI's API, creating a dynamic environ-
ment where sentences with intentional spelling errors
are processed, mirroring the complexities of Persian
spelling correction.

• Prompt Engineering: a critical component of meth-
odology is the crafting of prompts that mirror the lin-
guistic diversity and commonality of spelling mistakes
within Persian. By leveraging a comprehensive cor-
pus of 1.4 million documents, we generate prompts
that blend correctly spelled words with deliberately
introduced spelling errors. This rich dataset serves
to acquaint GPT-3.0 with the wide array of spelling
inaccuracies characteristic of Persian, guiding the
model towards making accurate corrections based on

Table 7 Performance evaluation on real-word error correction task

Task Model E (%) Edit-distance1 Edit-distance2 Overall result

Real-word Error Detection
PERCORE 10 0.897 0.860 0.890
Perspell 10 0.668 0.593 0.653
Vafa Spell-checker 10 0.188 0.159 0.182
GPT-2.0 10 0.813 0.765 0.805
GPT-3.0 10 0.879 0.831 0.871
PERCORE 50 0.850 0.814 0.843
Perspell 50 0.618 0.558 0.606
Vafa Spell-checker 50 0.164 0.133 0.158
GPT-2.0 50 0.795 0.747 0.787
GPT-3.0 50 0.861 0.813 0.853

Real-word Error Correction
PERCORE 10 0.900 0.861 0.892
PERCORE + Soundex 10 0.913 0.873 0.905
Perspell 10 0.349 0.322 0.344
Vafa Spell-checker 10 0.315 0.290 0.310
GPT-2.0 10 0.818 0.774 0.810
GPT-3.0 10 0.901 0.859 0.886
PERCORE 50 0.856 0.833 0.851
PERCORE + Soundex 50 0.868 0.846 0.864
Perspell 50 0.324 0.293 0.318
Vafa Spell-checker 50 0.297 0.268 0.291
GPT-2.0 50 0.798 0.756 0.783
GPT-3.0 50 0.867 0.823 0.852

 International Journal of Computational Intelligence Systems (2024) 17:114 114 Page 18 of 23

contextual clues. For fine-tuning, we specifically uti-
lize 91,420 sentences from TestSet1 of the Hamshahri
corpus, each with a minimum of 20 words, to ensure
the model is finely attuned to the task of correcting
spelling errors in Persian texts.

Hyperparameters (via API settings):

• Temperature: the temperature is carefully adjusted to
0.7, optimizing the model's output for a judicious mix
of creativity and precision. This setting is pivotal in
ensuring that the corrections made by GPT-3.0 are not
only imaginative but also adhere strictly to Persian
orthographic standards.

• Max tokens: with the average length of sentences in
our training corpus at 23 words and the maximum
length at 90 words, we adjust the Max Tokens setting
accordingly. This calibration ensures that GPT-3.0 can
fully process and correct errors within sentences of
these lengths, providing contextually appropriate cor-
rections that accommodate the variability and com-
plexity characteristic of the Persian language.

• Max tokens and Top P: set at 0.95, enabling the model
to consider a broad range of correction possibilities
while prioritizing those most likely to be accurate
within the specific context of each sentence.

5 Results and Analysis

In this section, we present the evaluations and results of
both the proposed model and the baselines. To assess
the effectiveness of our Persian Soundex algorithm, we
employed two distinct correction strategies. The first strat-
egy involves ranking replacements and correcting errors
based solely on contextual scores. The second strategy
involves applying a comprehensive correction method.
These strategies provide a thorough evaluation of our
model’s performance in comparison to the baselines.

5.1 Non‑Word Error Correction Evaluation

In the first stage of evaluation, we compare the perfor-
mance of our proposed approach to that of the aforemen-
tioned baseline models in terms of non-word error correc-
tion. It is important to note that since all the models utilize
a dictionary look-up approach for detecting misspellings,
the F1-score for misspelling detection is 100%. Table 6
presents the results of the non-word error correction task,
providing a detailed comparison of the effectiveness of
our approach and the baseline models. We evaluate all
the models in two different scenarios: first, with an error

density of 10% that simulates a normal source of errors;
and second, with an error density set to 50%, which repre-
sents a very noisy source.

Table 6 provides a comprehensive comparison of the
performance of various models on the non-word error cor-
rection task. Two configurations of PERCORE are com-
pared with statistical baselines and the CBOW model. The
results clearly show that both configurations of PERCORE
outperform the other models, demonstrating superior
performance and stability across different levels of error
density. When the error density (E) is set to 10% and the
Soundex algorithm is employed, PERCORE achieves its
best performance with an F1 − Score of 0.891. This model
effectively corrects misspellings within both edit-distance
1 and 2. The combination of contextual similarity with the
Soundex algorithm proves to be the most robust scheme,
offering a 1.2% increase in correcting non-word errors
compared to using only contextual scores

In contrast, Perspell shows the lowest performance, with
F1 − Score of 0.605 and 0.550 for different error density
values. The Contextual Scores + Soundex scheme outper-
forms Yazdani et al.'s approach by 18.3% when (E) equals
10%, and by 19.3% when E is set to 50%. These results
demonstrate the robustness of the proposed approach even
when the frequency of errors in the given corpora is high.
The CBOW baseline was also significantly outperformed.
According to Table 6, Perspell’s Bigram method yielded
the lowest F1 − Score . However, using n-grams of higher
order in Yazdani et al.'s approach appears to be effective.
The CBOW model offers significantly better performance
than the statistical models.

GPT-2.0 and GPT-3.0 show strong performance in non-
word error correction tasks, with GPT-3.0 outperforming
GPT-2.0 at both 10% and 50% error densities. This indicates
the advancements in model capabilities and training meth-
odologies from GPT-2.0 to GPT-3.0, showcasing improved
context understanding and error correction effectiveness.
However, the proposed PERCORE + Soundex approach
outperforms both GPT models, particularly at a 10% error
density, highlighting the tailored effectiveness of PERCORE
when combined with phonetic analysis through Soundex for
the Persian language.

In terms of PERCORE, the results of the Contextual
Scores + Soundex scheme are notably better than those
achieved using only Contextual scores. The best results are
achieved when the pretrained model is used in conjunction
with the Soundex phonetic similarity algorithm. Observa-
tions confirm that Soundex significantly improves results as
substitution errors account for 41.7% of all errors in the test
corpus when compared to insertion, deletion, and transposi-
tion errors, and most substitution errors are either phoneti-
cally or visually similar.

International Journal of Computational Intelligence Systems (2024) 17:114 Page 19 of 23 114

5.2 Real‑Word Error Detection and Correction
Evaluation

We conducted an exhaustive comparison between our pro-
posed model and the established baselines, focusing on the
detection and correction of real-word errors in the Persian
language. The results of our evaluations are presented in
Table 7.

In the task of real-word error detection, our proposed
approach outperformed both baselines. Our model, PER-
CORE, achieved its best performance when the error den-
sity (E) was set to 10%. In this scenario, the test corpora
contained 600 test instances at distances 1 and 2, yielding
an overall F1 − Score of 0.890. The method proved to be
robust, with a mere 4.7% difference in the overall F1 − Score
between the largest (E = 50%) and smallest (E = 10%) error
density values. Furthermore, it demonstrated promising per-
formance in detecting errors at both distances 1 and 2.

The authors of [34] claimed to have achieved an
F1 − Score of 0.726 for real-word error correction; however,
we were unable to replicate this result in our evaluations. We
subjected all models to a large number of test instances to
evaluate their practical performance. In the case of Perspell,
it achieved a maximum F1 − Score of 0.653 for detecting
real-word errors with an error density of 10% (E = 10%).
However, Perspell encountered difficulties in detecting real-
word errors within distance 2 due to its exclusive reliance
on confusion sets and the presence of a large number of
potential candidates. This suggests that Perspell’s effective-
ness in detecting errors at distance 2 is somewhat limited. In
our tests, Vafa Spell-checker delivered the least impressive
results, with a maximum F1 − Score of just 0.182 when the
error density was set to 10%. Our findings suggest that it
struggled to detect real-word errors at both distances 1 and
2. Performance of GPT models is competitive but yet behind
PERCORE, with GPT-3.0 achieving an F1-Score of 0.871
and GPT-2.0 at 0.805 for the same error density. This high-
lights the strength of PERCORE in leveraging context and
phonetic similarity for error detection, matching closely with
GPT-3.0's advanced contextual understanding capabilities.

We evaluated the proficiency of all models in rectify-
ing real-word errors. As shown in Table 7, our suggested
method excels in correcting real-word errors at various
distances and densities, outperforming the other models.
The peak F1 − Score of 0.905 is attained when the error
density is set to 10% and the Persian Soundex algorithm
is employed. Conversely, the lowest F1 − Score of 0.851
is achieved with an error density of 50%, where the model
relies solely on the contextual score from the pretrained
model. The 5.4% difference is justifiable given the sub-
stantial number of corrections made. The results for cor-
recting context-errors at distance 2 are also commendable,

indicating that our suggested method is both robust and
accurate in rectifying detected context-errors. GPT-3.0
recorded an F1-Score of 0.886 in real-word error correc-
tion, while GPT-2.0 scored 0.810. Although GPT-3.0 pre-
sents a formidable capability in generating contextually
appropriate corrections, PERCORE + Soundex surpasses
it, suggesting that for the specific challenges of Persian
spelling correction, the incorporation of phonetic simi-
larity provides an edge. The Perspell correction software
attains its optimal F1 − Score of 0.344 for correcting real-
word errors when the error density is set to 10%. However,
its performance significantly deteriorates when the error
density escalates to 50%, leading to a 2.6% reduction in
F1 − Score . This implies that Perspell often fails to sub-
stitute detected word errors with the correct candidate,
particularly when correcting real-word errors at distance 2.

Among the six models, Vafa Spell-checker exhibits the
least impressive performance, with a peak F1 − Score of
0.310 achieved at an error density of 10%. Its performance
further declines when correcting context-errors at distance 2.

In summary, the results of our study affirm the effective-
ness of the proposed approach in both correcting non-word
errors and accurately detecting and correcting real-word
errors within Persian texts. Our approach demonstrates a
notable improvement over traditional baseline models, offer-
ing a more nuanced understanding and handling of the Per-
sian language's unique characteristics. By integrating con-
textual analysis with phonetic considerations, our system
achieves a balanced performance that addresses common
challenges in spelling correction tasks.

6 Discussion

This research has made considerable advancements in the
field of spelling correction for the Persian language, spe-
cifically addressing the automatic detection and correc-
tion of two major spelling errors: non-word and real-word
errors. A four-stage architecture was developed, which not
only preprocesses and normalizes free-running Persian text
but also generates error corpora with artificially induced
errors of different types at the desired density level. This
architecture is capable of auto-detecting and correcting
real-word and non-word errors with high precision, mark-
ing a significant improvement over earlier Persian spelling
correction models.

The proposed approach leverages a state-of-the-art lan-
guage representation model fine-tuned for the Persian lan-
guage spelling correction task. The model uses contextual
scores for both error detection and correction. The integra-
tion of the developed Persian Soundex phonetic matching
algorithm with the contextual score from the language
model significantly increases the correction success rate.

 International Journal of Computational Intelligence Systems (2024) 17:114 114 Page 20 of 23

The robustness of our model was tested under various error
densities, demonstrating its resilience even under high error
density values. To make a fair comparison, three baselines
were imitated and developed, all trained with the same high-
quality, manageable samples as the language representation
model. According to the evaluations, our method outper-
formed all the baselines with outstanding results, achieving
F1-Scores of 0.890 and 0.905 in the detection and correction
of real-word errors, respectively. For non-word error cor-
rection, our model also exhibits promise with an F1-Score
of 0.891.

While GPT models exhibit commendable performance,
their proficiency in addressing the nuanced complexities
of Persian spelling errors reveals inherent limitations. This
observation highlights the superiority of incorporating spe-
cialized phonetic algorithms alongside contextual analysis
within our proposed model. Specifically, GPT-2.0, despite
its efficacy, demonstrates a noticeable shortfall in precisely
detecting real-word errors compared to GPT-3.0. This dis-
crepancy can be attributed to GPT-2.0's relatively smaller
model size and its less sophisticated grasp of the intricate
linguistic patterns that characterize Persian text.

The application of GPT-3.0, especially via its API ser-
vice, necessitates a careful evaluation of cost and real-time
usability concerns. The model's per-request pricing structure
poses a potential financial burden on applications necessitat-
ing high-frequency interactions, thereby impacting devel-
opers with limited budgets and smaller entities. Moreover,
despite efforts to minimize latency, the inherent delay in
processing API requests might compromise user experience
in scenarios where immediate feedback is essential.

To navigate these challenges, a hybrid methodology,
leveraging lightweight, local models for initial processing
supplemented by selective use of the GPT-3.0 API for more
complex inquiries, emerges as a pragmatic solution. This
approach not only seeks to reduce operational expenses
but also to improve system responsiveness, facilitating a
smoother interaction for users.

One clear limitation of our evaluations was that it is
dedicated to detection and correction of non-word and
real-word errors and may fail in handling grammatical
errors. This is an area that could be explored in future
research.

Another limitation encountered during this study was
dealing with cases where our system was unable to identify
the correct replacement word. After ranking the candidates
based on contextual scores and Soundex code comparison,
the model selects the top word in the ranked correction
candidates list. However, this may not always align with
the user’s intended word.

For instance, consider the sentence “تحدید راستای در
-The system accu .(in order to limit the contract) ”قرارداد
rately identified the context error word, (“تحدید” /tæhdid/

‘limit’). The correction is (“تمدید” /tæmdid/ ‘extend’), but
among the most probable candidates are: (“تمدید” /tæmdid/
‘extend’), (“تجدید” /tædʒdid/ ‘extend’) and (“تشدید” /tæʃdid/
‘intensify’). The intended correction is second on the list,
but due to close contextual scores of the first and second
entries, either could be chosen as correct. The model also
compares Soundex similarity of candidates to the error.
Persian Soundex code for error is “1411”, while for can-
didate words(“تمدید” /tæmdid/ ‘extend’), (“تجدید” /tædʒdid/
‘extend’) and (“تشدید” /tæʃdid/ ‘intensify’) it’s “1911”,
“1311” and “1011” respectively. Given that the difference
between Soundex code for error and candidates is limited
to one unit, the model leverages contextual score to select
best correction candidate. As first candidate has higher
contextual score, it replaces context error.

To mitigate this issue, we propose incorporating ortho-
graphic features of Persian alphabet into our model. This
could be achieved by developing an exclusive Persian
Shapex algorithm that considers orthography of letters.
For instance, characters such as “چ“, ”ج“, ”ح”, and “خ” are
very similar in terms of orthography, so we could group
them together and assign them with same code. This meth-
odology could help address problems in the identification
of probable candidates.

Furthermore, we found that the model was more likely
to misdetect errors when the artificially generated error
was semantically related to the context words. This is
likely due to the lack of genuine error corpora in Persian.
However, this issue could be mitigated by checking gener-
ated errors against the list of N-grams in the error genera-
tion algorithm.

The practical implications of our research findings sug-
gest that our proposed spelling correction model could be
implemented in real-world applications to enhance text
processing systems in Persian language. This opens up new
avenues for improving text-based communication systems,
educational platforms, and digital content creation tools that
cater to Persian language users.

7 Conclusions

In this study, we introduced a novel approach for detect-
ing and correcting both non-word and real-word errors in
Persian text. Our method, which leverages a state-of-the-art
language representation model fine-tuned for the Persian
language spelling correction task, has demonstrated supe-
rior performance compared to previous models. It achieved
F1-Scores of 0.890 and 0.905 in the detection and correction
of real-word errors respectively, and an F1-Score of 0.891
for non-word error correction.

Moreover, our approach is robust to variations in error
density and dataset size, effectively handling a wide range of

International Journal of Computational Intelligence Systems (2024) 17:114 Page 21 of 23 114

real-world errors. The integration of the developed Persian
Soundex phonetic matching algorithm with the contextual
score from the pre-trained model significantly increases the
correction success rate.

We believe that our method represents a significant
advancement in the field of spelling error detection and cor-
rection for Persian text. By improving the quality of Persian
text on the internet and other digital media, our approach has
the potential to make a meaningful impact on the Persian-
speaking community.

In our future work, we aim to leverage the capabilities of
large language models to address the complex challenge of
correcting multiple errors within a single sentence. By inte-
grating the structured semantic framework of ontologies like
FarsNet with the dynamic, contextual prowess of large lan-
guage models, we plan to significantly enhance our model's
precision and adaptability. This approach, complemented by
the incorporation of orthographic similarity features through
the Persian Shapex algorithm and new strategies for gram-
matical error correction, aims to advance the robustness and
applicability of our method in Persian language processing.

Author Contributions All authors have made substantial contributions
to the conception and design of the research, as well as the drafting and
reviewing the manuscript.

Funding The research did not receive any specific funding.

Data Availability The dataset supporting this article are from previ-
ously reported studies and datasets (Hamshahri corpus), which have
been cited. The data are available at: https:// dbrg. ut. ac. ir/ hamsh ahri/

Declarations

Conflict of Interest The author(s) declare(s) that there is no conflict of
interest regarding the publication of this paper.

Ethical Approval Not Applicable.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Wilcox-O’Hearn, A., Hirst, G.Budanitsky, A.: International con-
ference on intelligent text processing and computational linguis-
tics. pp. 605–616. Springer (2008)

 2. Hirst, G., Budanitsky, A.: Correcting real-word spelling errors by
restoring lexical cohesion. Nat. Lang. Eng. 11, 87–111 (2005)

 3. Bassil, Y., Alwani, M.: Ocr context-sensitive error correction
based on google web 1t 5-gram data set. arXiv preprint arXiv:
1204. 0188 (2012)

 4. Deng, L., Huang, X.: Challenges in adopting speech recognition.
Commun. ACM. ACM 47, 69–75 (2004)

 5. Hartley, R.T., Crumpton, K.: Quality of OCR for degraded text
images. arXiv preprint cs/9902009 (1999)

 6. Jurafsky, D., James, H., Martin, J.: Speech and Language Process-
ing: An Introduction to Natural Language Processing, Computa-
tional Linguistics, and Speech Recognition, 2nd edn. Prentice-
Hall, New Jersey (2008)

 7. Atkinson, K.: (GNU Aspell) Retrieved from http:// aspell. net
(2006)

 8. Damerau, F.J.: A technique for computer detection and correction
of spelling errors. Commun. ACM. ACM 7, 171–176 (1964)

 9. Idzelis, M., Galbraith, B.: (Retrieved 2019/10/10, from http://
jazzy. sourc eforge. net (2005)

 10. Levenshtein, V.I.: Soviet Physics Doklady, vol. 10. pp 707–710.
Soviet Union (1966)

 11. Dashti, S.M.S., Fakhrahmad, S.M., Sadreddini, M.H.Golkar, A.:
Toward a Thesis in Automatic Context-Sensitive Spelling Correc-
tion (2014)

 12. Mays, E., Damerau, F.J., Mercer, R.L.: Context based spelling
correction. Inf. Process. Manag.Manag. 27, 517–522 (1991)

 13. Samanta, P.Chaudhuri, B.B.: Proceedings of the 25th conference
on computational linguistics and speech processing. pp 211–220.
Rocling (2013)

 14. Wilcox-O'Hearn, L.A.: Detection is the central problem in real-
word spelling correction. arXiv preprint arXiv: 1408. 3153 (2014)

 15. Dashti, S.M., Khatibi Bardsiri, A., Khatibi Bardsiri, V.: Correcting
real-word spelling errors: a new hybrid approach. Digit. Schol-
arsh. Humanit. 33, 488–499 (2018)

 16. Dashti, S.M.: Real-word error correction with trigrams: correcting
multiple errors in a sentence. Lang. Resour. Eval.Resour. Eval. 52,
485–502 (2018)

 17. Pande, H.: Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics: Volume
2, Short Papers. Pp. 170–174 (2017)

 18. Hu, Y., Jing, X., Ko, Y., Rayz, J.T.: 2020 IEEE 19th International
Conference on Cognitive Informatics & Cognitive Computing
(ICCI* CC). pp. 144–149. IEEE (2020)

 19. Lee, J.-H., Kim, M., Kwon, H.-C.: Deep learning-based con-
text-sensitive spelling typing error correction. IEEE Access 8,
152565–152578 (2020)

 20. Sun, R., Wu, X., Wu, Y.: An Error-Guided Correction Model for
Chinese Spelling Error Correction. arXiv preprint arXiv: 2301.
06323 (2023)

 21. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dha-
riwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A.: Lan-
guage models are few-shot learners. Adv. Neural. Inf. Process.
Syst. 33, 1877–1901 (2020)

 22. Radford, A., Narasimhan, K., Salimans, T.Sutskever, I.: Improving
language understanding by generative pre-training. (2018)

 23. AlOyaynaa, S.Kotb, Y.: ITM Web of Conferences, Vol. 56. p.
04009. EDP Sciences (2023)

 24. Loem, M., Kaneko, M., Takase, S., Okazaki, N.: Exploring Effec-
tiveness of GPT-3 in Grammatical Error Correction: A Study on
Performance and Controllability in Prompt-Based Methods. arXiv
preprint arXiv: 2305. 18156 (2023)

 25. Ji, T., Yan, H.Qiu, X.: Proceedings of the 2021 conference on
empirical methods in natural language processing. pp. 3544–3551
(2021)

https://dbrg.ut.ac.ir/hamshahri/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1204.0188
http://arxiv.org/abs/1204.0188
http://aspell.net
http://jazzy.sourceforge.net
http://jazzy.sourceforge.net
http://arxiv.org/abs/1408.3153
http://arxiv.org/abs/2301.06323
http://arxiv.org/abs/2301.06323
http://arxiv.org/abs/2305.18156

 International Journal of Computational Intelligence Systems (2024) 17:114 114 Page 22 of 23

 26. Liu, S., Yang, T., Yue, T., Zhang, F., Wang, D.: Proceedings of
the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). pp. 2991–3000
(2021)

 27. Zhang, R., Pang, C., Zhang, C., Wang, S., He, Z., Sun, Y., Wu,
H., Wang, H.: Findings of the Association for Computational Lin-
guistics: ACL-IJCNLP 2021. pp. 2250–2261 (2021)

 28. Jayanthi, S.M., Pruthi, D., Neubig, G.: Neuspell: a neural spelling
correction toolkit. arXiv preprint arXiv: 2010. 11085 (2020)

 29. Tran, K., Nguyen, A., Vo, C., Nguyen, P.: 2022 9th NAFOSTED
Conference on Information and Computer Science (NICS) 223–
229. IEEE (2022)

 30. Wang, X., Liu, Y., Li, J., Miljanic, V., Zhao, S., Khalil, H.:
Towards contextual spelling correction for customization of end-
to-end speech recognition systems. IEEE/ACM Trans Audio,
Speech, Lang Process 30, 3089–3097 (2022)

 31. Zhu, C., Ying, Z., Zhang, B., Mao, F.: Findings of the Association
for Computational Linguistics: ACL 2022. pp. 1244–1253 (2022)

 32. Liu, S., Song, S., Yue, T., Yang, T., Cai, H., Yu, T., Sun, S.: Find-
ings of the Association for Computational Linguistics: ACL 2022.
pp. 3008–3018 (2022)

 33. Salhab, M., Abu-Khzam, F.: AraSpell: A Deep Learning Approach
for Arabic Spelling Correction (2023)

 34. Dastgheib, M.B., Fakhrahmad, S.M., Jahromi, M.Z.: Perspell: a
new Persian semantic-based spelling correction system. Digit.
Scholarsh. Humanit. 32, 543–553 (2017)

 35. Ghayoomi, M., Assi, S.M.: Proceedings of the Australasian Lan-
guage Technology Workshop 2005. pp. 57–63 (2005)

 36. Kashefi, O., Sharifi, M., Minaie, B.: A novel string distance metric
for ranking Persian respelling suggestions. Nat. Lang. Eng. 19,
259–284 (2013)

 37. Mosavi Miangah, T.: FarsiSpell: a spell-checking system for Per-
sian using a large monolingual corpus. Lit. Linguist. Comput. 29,
56–73 (2014)

 38. Naseem, T., Hussain, S.: A novel approach for ranking spelling
error corrections for Urdu. Lang. Resour. Eval.Resour. Eval. 41,
117–128 (2007)

 39. Shamsfard, M.: Challenges and open problems in Persian text
processing. Proc. LTC 11, 65–69 (2011)

 40. Shamsfard, M., Jafari, H.S., Ilbeygi, M.: Proceedings of the Sev-
enth International Conference on Language Resources and Evalu-
ation (LREC'10) (2010)

 41. Yazdani, A., Ghazisaeedi, M., Ahmadinejad, N., Giti, M., Amjadi,
H., Nahvijou, A.: Automated misspelling detection and correction
in Persian clinical text. J. Digit. Imaging 33, 555–562 (2020)

 42. Ghayoomi, M., Momtazi, S.Bijankhan, M.: International Journal
on ALP. Citeseer (2010)

 43. Treiman, R.: Phonology and spelling. In: Handbook of Children’s
Literacy, pp. 31–42. Springer (2004)

 44. Shaalan, K., Siddiqui, S., Alkhatib, M., Abdel Monem, A.: Chal-
lenges in Arabic natural language processing. In: Computational
Linguistics Speech and Image Processing for Arabic Language,
pp. 59–83. World Scientific (2019)

 45. Gottlieb, N., Chen, P.: Language planning and language policy in
East Asia: an overview. Language planning and language policy.
pp. 1–20 (2013)

 46. Arcodia, G.F.: Chinese: A language of compound words. Selected
proceedings of the 5th Décembrettes: Morphology in Toulouse.
pp. 79–90 (2007)

 47. Gou, W., Chen, Z.: Think twice: a post-processing approach for
the Chinese spelling error correction. Appl. Sci. 11, 5832 (2021)

 48. Farshbafian, A., Asl, E.S.: A metafunctional approach to word
order in Persian language. J. Lang. Linguist. Stud. 17, 773–793
(2021)

 49. Seraji, M., Megyesi, B., Nivre, J.: Eight International Conference
on Language Resources and Evaluation (LREC 2012), 23–25 May
2012, Istanbul, Turkey. European Language Resources Associa-
tion. pp. 2245–2252 (2012)

 50. Miangah, T.M., Vulanović, R.: The ambiguity of the relations
between graphemes and phonemes in the Persian orthographic
system. Glottometrics 50, 9–26 (2021)

 51. Modarresi Ghavami, G.: Vowel harmony and vowel-to-vowel
coarticulation in Persian. Lang. Linguist. 6, 69–86 (2010)

 52. Sedighi, A.: Persian in Use: An Elementary Textbook of Language
and Culture. Leiden University Press (2015)

 53. Mozafari, J., Kazemi, A., Moradi, P., Nematbakhsh, M.A.: PerAn-
Sel: a novel deep neural network-based system for Persian ques-
tion answering. Comput. Intell. Neurosci.. Intell. Neurosci. 2022,
1–21 (2022)

 54. Ghomeshi, J.: The additive particle in Persian: a case of morpho-
logical homophony between syntax and pragmatics. In: Advances
in Iranian linguistics, pp. 57–84. John Benjamins Publishing Com-
pany, Amsterdam (2020)

 55. Bonyani, M., Jahangard, S., Daneshmand, M.: Persian handwritten
digit, character and word recognition using deep learning. Int. J.
Doc. Anal. Recognit. (IJDAR) 24, 133–143 (2021)

 56. Rasooli, M.S., Bakhtyari, F., Shafiei, F., Ravanbakhsh, M., Calli-
son-Burch, C.: Automatic Standardization of Colloquial Persian.
arXiv preprint arXiv: 2012. 05879 (2020)

 57. Farahani, M., Gharachorloo, M., Farahani, M., Manthouri, M.:
Parsbert: Transformer-based model for Persian language under-
standing. Neural. Process. Lett. 53, 3831–3847 (2021)

 58. Dehkhoda, A.A.: Dehkhoda dictionary. Tehran: Tehran University.
p. 1377 (1998)

 59. Peterson, J.L.: A note on undetected typing errors. Commun.
ACM. ACM 29, 633–637 (1986)

 60. Huang, Y., Murphey, Y.L., Ge, Y.: 2013 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM). pp. 267–
274. IEEE (2013)

 61. Kukich, K.: ACM Annual Computer Science Conference: Pro-
ceedings of the 1993 ACM conference on Computer science, Vol.
16 (1993)

 62. Islam, A., Inkpen, D.: Proceedings of the 18th ACM conference on
Information and knowledge management. pp. 1689–1692 (2009)

 63. Faili, H., Ehsan, N., Montazery, M., Pilehvar, M.T.: Vafa spell-
checker for detecting spelling, grammatical, and real-word errors
of Persian language. Digit. Scholarsh. Humanit. 31, 95–117
(2016)

 64. Pennington, J., Socher, R., Manning, C.D.: Proceedings of the
2014 conference on empirical methods in natural language pro-
cessing (EMNLP). pp. 1532–1543 (2014)

 65. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Dis-
tributed representations of words and phrases and their composi-
tionality. Advances in neural information processing systems 26
(2013)

 66. Mikolov, T., Yih, W.-T., Zweig, G.: Proceedings of the 2013 con-
ference of the north american chapter of the association for com-
putational linguistics: Human language technologies. pp. 746–751
(2013)

 67. Goldberg, Y.: A primer on neural network models for natural
language processing. J. Artif. Intell. Res.Artif. Intell. Res. 57,
345–420 (2016)

 68. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: Pre-train-
ing of deep bidirectional transformers for language understanding.
arXiv preprint arXiv: 1810. 04805 (2018)

 69. Sarzynska-Wawer, J., Wawer, A., Pawlak, A., Szymanowska,
J., Stefaniak, I., Jarkiewicz, M., Okruszek, L.: Detecting formal
thought disorder by deep contextualized word representations.
Psychiatry Res. 304, 114135 (2021)

http://arxiv.org/abs/2010.11085
http://arxiv.org/abs/2012.05879
http://arxiv.org/abs/1810.04805

International Journal of Computational Intelligence Systems (2024) 17:114 Page 23 of 23 114

 70. Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek,
G., Guzmán, F., Grave, E., Ott, M., Zettlemoyer, L., Stoyanov, V.:
Unsupervised cross-lingual representation learning at scale. arXiv
preprint arXiv: 1911. 02116 (2019)

 71. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena,
M., Zhou, Y., Li, W., Liu, P.J.: Exploring the limits of transfer
learning with a unified text-to-text transformer. J. Mach. Learn.
Res. 21, 1–67 (2020)

 72. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R.,
Le, Q.V.: Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. Advances in neural information processing
systems 32 (2019)

 73. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O.,
Lewis, M., Zettlemoyer, L., Stoyanov, V.: Roberta: A robustly
optimized bert pretraining approach. arXiv preprint arXiv: 1907.
11692 (2019)

 74. Wang, W., Bao, F., Gao, G.: Learning morpheme representation
for Mongolian named entity recognition. Neural. Process. Lett.
50, 2647–2664 (2019)

 75. Bijankhan, M., Sheykhzadegan, J., Bahrani, M., Ghayoomi, M.:
Lessons from building a Persian written corpus: Peykare. Lang.
Resour. Eval.Resour. Eval. 45, 143–164 (2011)

 76. AleAhmad, A., Amiri, H., Darrudi, E., Rahgozar, M., Oroum-
chian, F.: Hamshahri: a standard Persian text collection. Knowl.-
Based Syst..-Based Syst. 22, 382–387 (2009)

 77. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,
Devin, M., Ghemawat, S., Irving, G., Isard, M.: Osdi, Vol. 16. pp.
265–283. Savannah, GA, USA (2016)

 78. Ketkar, N.Ketkar, N.: Introduction to keras. Deep learning with
python: a hands-on introduction. pp. 97–111 (2017)

 79. Holmes, D., McCabe, M.C.: Proceedings. International Confer-
ence on Information Technology: Coding and Computing. pp.
22–26. IEEE (2002)

 80. Nye, G.E.: The phonemes and morphemes of modern Persian: A
descriptive study. University of Michigan (1955)

 81. Sedighi, A., Shabani-Jadidi, P.: The Oxford Handbook of Persian
Linguistics. Oxford University Press (2018)

 82. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation
of word representations in vector space. arXiv preprint arXiv:
1301. 3781 (2013)

 83. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever,
I.: Language models are unsupervised multitask learners. OpenAI
Blog 1, 9 (2019)

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781

	PERCORE: A Deep Learning-Based Framework for Persian Spelling Correction with Phonetic Analysis
	Abstract
	1 Introduction
	2 Related Works
	2.1 Linguistic Challenges in Persian Automatic Spelling Correction

	3 Materials and Methods
	3.1 Pre-processing Step
	3.2 Damerau–Levenshtein Distance
	3.3 Error Generation
	3.3.1 Error Density
	3.3.2 Error Generation Algorithm

	3.4 Contextual Embeddings
	3.4.1 PERCORE’s Language Representation Model
	3.4.2 Data
	3.4.2.1 Model Architecture

	3.4.3 Fine-Tuning for Spelling Correction Task

	3.5 Persian Soundex
	3.6 Error Detection Module
	3.6.1 Non-word Error Detection
	3.6.1.1 Real-Word Error Detection

	3.7 Error Correction Module
	3.7.1 Non-word Error Correction Process
	3.7.2 Real-Word Error Correction Process

	4 Evaluation and Results
	4.1 Dataset
	4.2 Evaluation Metrics
	4.3 Experiments and Fine-Tuning System Parameters
	4.3.1 Fine-Tuning Error Generation Algorithm
	4.3.2 Preparing Datasets for Full Evaluation

	4.4 Baseline Models
	4.4.1 Perspell
	4.4.2 Yazdani, Et Al. Model
	4.4.3 CBOW Model
	4.4.4 Vafa Spell-Checker
	4.4.5 GPT-2.0 for Persian Spelling Correction
	4.4.6 GPT-3.0 for Persian Spelling Correction

	5 Results and Analysis
	5.1 Non-Word Error Correction Evaluation
	5.2 Real-Word Error Detection and Correction Evaluation

	6 Discussion
	7 Conclusions
	References

