
International Journal of Computational Intelligence Systems (2024) 17:43
https://doi.org/10.1007/s44196-024-00430-x

RESEARCH ART ICLE

Optimizing Placement and Scheduling for VNF by a Multi-objective
Optimization Genetic Algorithm

Phan Duc Thien1,2 · Fan Wu1 ·Mahmoud Bekhit3,4 · Ahmed Fathalla5 · Ahmad Salah6,7

Received: 4 September 2023 / Accepted: 3 February 2024
© The Author(s) 2024

Abstract
Virtual network functions (VNFs) have gradually replaced the implementation of traditional network functions. Through
efficient placement, the VNF placement technology strives to operate VNFs consistently to the greatest extent possible within
restricted resources. Thus, VNF mapping and scheduling tasks can be framed as an optimization problem. Existing research
efforts focus only on optimizing the VNFs scheduling or mapping. Besides, the existing methods focus only on one or two
objectives. In this work, we proposed addressing the problem of VNFs scheduling and mapping. This work proposed framing
the problem of VNFs scheduling and mapping as a multi-objective optimization problem on three objectives, namely (1)
minimizing line latency of network link, (2) reducing the processing capacity of each virtual machine, and (3) reducing the
processing latency of virtual machines. Then, the proposed VNF-NSGA-III algorithm, an adapted variation of the NSGA-III
algorithm, was used to solve this multi-objective problem. Our proposed algorithm has been thoroughly evaluated through a
series of experiments on homogeneous and heterogeneous data center environments. The proposed method was compared to
several heuristic and recent meta-heuristic methods. The results reveal that the VNF-NSGA-III outperformed the comparison
methods.

Keywords Heuristic algorithms · Mapping and scheduling · Multi-objective optimization · NSGA-III · Virtual network
functions · VNFs

B Fan Wu
wufan@hnu.edu.cn

B Ahmed Fathalla
fathalla_sci@science.suez.edu.eg

Phan Duc Thien
phanducthien82@hnu.edu.cn

Mahmoud Bekhit
mahmoud.bekhit@acu.edu.au

Ahmad Salah
ahmad@hnu.edu.cn

1 College of Information Science and Engineering, Hunan
University, Changsha 410082, China

2 Nam Dinh University of Technology Education, Nam Dinh,
Vietnam

3 University of Technology of Sydney, Sydney, Australia

4 Australian Catholic University, Sydney, Australia

5 Department of Mathematics, Faculty of Science, Suez Canal
University, Ismailia, Egypt

6 College of Computing and Information Sciences, University
of Technology and Applied Sciences, Ibri, Sultanate of Oman

1 Introduction

Network functions virtualization (NFV) technology decou-
ples the existing network equipment, which is reliant on
hardware, into distinct hardware and software components.
Therefore, it utilizes software-based network functions on
a high-performance universal server using virtualization
technology [1]. NFV-related technologies include various
elementary technologies, such as virtualization, Virtual Net-
work Function (VNF) placement, Service Function Chaining
(SFC), and resourcemanagement technologies. There a great
demand to advance the research on how to map and sched-
ule VNFs efficiently. The VNF placement technology aims
to operate VNFs with stable performance within the lim-
ited resources through efficient placement. This is achieved
through the use different approaches such as optimization
algorithms, Integer Linear Programming (ILP), greedy algo-

7 Faculty of Computers and Informatics, Zagazig University,
Zagazig, Egypt

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s44196-024-00430-x&domain=pdf
http://orcid.org/0000-0002-3411-9750

 43 Page 2 of 18 International Journal of Computational Intelligence Systems (2024) 17:43

rithm, and dynamic programming algorithm, which have
been previously employed in the computing field.

Recent research has tackled the VNF placement [2, 3]
and scheduling subproblems [4, 5]. However, most studies
address these issues separately, potentially compromising
strict service deadlines. Notably, works such as Refs. [6] and
[7] focus on the broaderVNF layout and scheduling problem.
Gholipoor et al. [6] emphasize placing new VNFs with-
out considering the reusability of deployed ones, possibly
incurring additional costs. In addition, Li et al. [7] overlook
communication delays in planning, risking service deadline
violations. In Ref. [8], the author considered the transmis-
sion and VNF chain processing delays using a GA-based
algorithm to optimize the distribution coefficient and enhanc-
ing virtual link transmission speeds. Luizelli et al. reduced
virtual switching costs by deploying sub-chains on physical
servers [9]. However, these solutions address single factors
in the VNF planning process which is lacking a compre-
hensive approach. Consequently, these methods may incur
high-performance penalties due to exponentially increasing
computational costs in each iteration and for each additional
decision parameter.

Thus, although the planning and placement optimization
of VNFs has been extensively researched, there are still sig-
nificant gaps in the research field. Most existing research
focuses on single and bi-objective optimization [10, 11],
which may not fully capture the complexity and trade-offs
inherent in network design. Furthermore, many of these stud-
ies do not fully consider the dynamic nature of network traffic
and the need for flexible and adaptive solutions. There is a
motivation to consider more objectives during the searching
task for the optimal planning and placement optimization of
VNFs due to the complex nature of this problem.

The motivation of this work is to formulate the two prob-
lems of mapping VNFs and then scheduling these VNFs as
a multi-objective problem with three objectives, namely (1)
minimizing line latency over network links, (2) reducing the
processing capacity of each virtual machine (VM), and (3)
reducing the processing latency of theVMs. Then, it was pro-
posed to utilize the well-known NSGA-III method to solve
this multi-objective optimization problem as a combinatorial
problem, where the three objectives are to be minimized. In
the proposed work, tasks were formulated as binary and dis-
crete variables. Then, it was proposed to adapt the NSGA-III
algorithm for the VNFs mapping and scheduling problem.
Experiments on homogeneous and heterogeneous data cen-
ter environments were used to assess the performance of the
offered solutions. The significant contributions of the pro-
posed work can be summarized as follows:

1. We proposed framing the problem of finding the optimal
VNFs mapping and scheduling finding as a multi-

objective problem with three goals, namely minimizing
line latency over network links, reducing the processing
time of different VMs and the processing latency of all
VMs.We utilized an adapted NSGA-III method to solve
this multi-objective problem; it is called VNF-NSGA-
III. To our knowledge, this is the first work to consider
these three objectives during searching for the optimal
VNFs mapping and scheduling.

2. Our proposed method was evaluated through a set of
comprehensive experiments. The obtained results show
the proposed VNF-NSGA-III algorithm outperformed
themethods of comparison on the three objective values.
The experiments include different environments such as
homogeneous and heterogeneous data centers.

The remainder of this article is organized as follows:
Sect. 2 discusses the literature foundations and overview of
the VNF. Section3 presents and discusses the problem defi-
nition. Section4 proposes an adaptive VNF-NSGA-III tech-
nique for scheduling the VNFs problem as a multi-objective
optimization problem. Section5 discusses the simulation and
experiment results. Section6 concludes the paper.

2 Background and RelatedWork

In this section, wewill introduce a background of the NSGA-
III algorithm which is the proposed method utilized to
address the problem at hand. Then, the existing methods
which addressed the problem of VNFsmapping and schedul-
ing will be exposed.

2.1 Background

Optimization is vital field in artificial intelligence which
successfully addressed various problems in several domains
[12]. Multi-objective optimization problems exist widely in
real-world applications [13–15] where the number of objec-
tives in the optimization model is more than two objectives.

Deb and his colleagues recently announced the NSGA-
III [16], the next and improved version of NSGA-II. It has
been explicitly proposed for multi-objective optimization
(i.e., with more than three objectives). In addition, NSGA-III
presents an alternative technique using a point-based solution
reference instead of the NSGA-II method, called crowded
distance, to maintain a uniform distribution of multiple solu-
tions. The following section will briefly present NSGA-III
and its advantages in solving multi-objective optimization
problems.

Denote the values of the first, second, and third objectives
in a three-objective problem as x, y, and z, respectively. The
ideal point in minimization is (0,0,0), the normalized values

123

International Journal of Computational Intelligence Systems (2024) 17:43 Page 3 of 18 43

A reference point

(0,1,0) y

(0,0,0)

(1,0,0)

(0,0,1)

z

x

A reference line

A Solution

Ideal point

Fig. 1 Illustration of NSGA-III reference 3D points

of (x,y,z), with values ranging from 0 to 1. The best reference
points for each target are (0,y,z), (x,0,z), and (x, y, 0), while
the worst examples are (1,y,z), (x,1,z), and (x,y,1). The dis-
tance between the two worst situations is divided into four
portions in Fig. 1, displaying the reference points of three-
objective optimization. As a result, 15 reference points are
generated in this scenario utilizing NBI. Furthermore, a ref-
erence line connects the ideal point and a reference point
logically. Hence, the solution closest to the reference line
will be allocated to the corresponding point along that line
to assign a solution to each reference point.

Before the selection step in each generation, parents pro-
duce offspring with the same quantity, N , through crossover
and mutation operations. The combination between par-
ents and offsprings, usually of size 2N , are sorted by
means of a fast nondominated-sorting algorithm. In case of
the size of nondominated solutions having N those solu-
tions are selected for the next generation, otherwise, a The
niche-preservation operation is executed through an iterative
process, linking a solution with the shortest relative dis-
tance to reference points. This procedure is reiterated until
a satisfactory population is obtained. In cases where multi-
ple solutions share the same distance, random selection is
applied.

Despite the fact that NSGA-III was designed for multi-
objective issues with more than three objectives [16], it has
generally been applied to three-objective problems in the lit-
erature [16–21]. It was also compared to NSGA-II, which
is another popular evolutionary multi-objective optimization
algorithm (EMO) [17]. In multi-objective optimization, the
performance supremacy of both variants is still contested, as
there are some circumstances where NSGA-II outperforms
NSGA-III [17].

The NSGA-III algorithm employs a set of reference
points to preserve solution diversity, diverging from the

NSGA-II algorithm, which utilizes the crowding distance
operation. Figure2 shows an example of the NSGA-III and
NSGA-II algorithms’ outcomes in selecting a population in a
two-objective optimization problem. In Fig. 2, the brown cir-
cles denote selected solutions, while white circles indicate
rejected options. The NSGA-II algorithm chooses solution 4
in Fig. 2a, whereas the NSGA-III algorithm rejects it. In con-
trast, the NSGA-III algorithm, not the NSGA-II algorithm,
selects solution two in Fig. 2b. That shows that the NSGA-
II algorithm is highly diversified while NSGA-III is highly
convergent.

As previously noted, the NSGA-III algorithm performs
well in both types ofmathematical problems [16, 17]. Inmost
cases, NSGA-III generated nondominated solutions linked
to all reference points, even when the issues involved linear,
convex, concave, and multimodal distributions. However, in
scheduling problems, the quality of solutions of the NSGA-
III algorithm, in terms of convergence and diversity, still has
some drawbacks because the number of nondominated solu-
tions is not always satisfied [18, 19].

2.2 RelatedWork

Effectively deploying network services via a VNF chain is a
complex task involving challenges such as network function
mapping, traffic routing, and service scheduling to fulfill user
requirements [22]. While recent studies have concentrated
on tackling these issues, most tend to address only a specific
sub-problem among the mentioned challenges.

The VNFmapping sub-problem has been explored in var-
ious studies in the literature, such as Refs. [23], [24], [25],
[26], [27], and [28]. For instance, Oljira et al. [27] addressed
the virtual mobile core network function placement issue in
NFV-based core networks, formulating it as a mixed integer
linear programming (MILP) problem to minimize resource
usage while considering virtualization overhead for specific
latency requirements. Woldeyohannes et al. [28] formulated
the VNF placement problem as a multi-objective integer lin-
ear programming problem, optimizing admitted flows, node
and link utilization, and latency requirements, proposing a
heuristic for efficient problem-solving. Ruiz et al. [23] intro-
duced a genetic algorithm to address design problems related
toVNF topology, VNF chain, and virtual topology in 5G net-
works, reducing active CPUs through node combination in
multi-access edge computing (MEC) for improved energy
efficiency. Liu et al. [29] studied the dynamic VNF place-
ment problem, aiming to maximize network operator profits
by deciding whether to migrate deployed VNFs or deploy
new ones effectively, employing a column generation algo-
rithm. In addition, some studies, such as Refs. [30], [31], and
[32], consider VNF reuse or sharing in the placement prob-
lem tominimize resource costs. Despite these efforts, none of
the mentioned studies addresses the comprehensive planning

123

 43 Page 4 of 18 International Journal of Computational Intelligence Systems (2024) 17:43

Fig. 2 The NSGA-II and
NSGA-III algorithms’ selection
of the solution techniques

1

2 3

4

5

6

7

Crowding distance
of solution 4

Crowding distance
of solution 2

y

x

(a) The NSGA-II algorithm

y

x

5

6

7

1

2 3

4

Ref. point

Ref. line

(b) The NSGA-III algorithm

for VNFs. Numerous studies address the VNF scheduling
problem, such as Refs. [33] and [34].

The authors in Ref. [33] introduced an energy-conscious
method for mapping and scheduling services, which is for-
mulated as an Integer Linear Programming (ILP) problem.
Their contribution consists of a genetic-based heuristic algo-
rithm designed to prioritize resolution tasks, with a particular
focus on meeting deadlines and optimizing server con-
solidation. The authors of Ref. [34] provided a dynamic
priority-based system for scheduling Virtual Network Func-
tions (VNFs), taking into account the changing nature of the
network. The scheduling takes place following the execution
of correlated VNFs, based on revenue and delay budget. The
problem is formulated as a MILP, incorporating constraints
like SFC request VNF order, changing link availability in
the STN topology, and VNF-related correlation handling.
Some studies integrate machine learning models into VNF
scheduling [35–37], enhancing flexibility as user require-
ments evolve. Li et al. [37] model the problem as an MDP,
utilizing RL algorithms to find optimal schedules with a spe-
cific reward function for latency-guaranteed VNFs. In Ref.
[36], RL covers discrete and continuous actions, minimiz-
ing VNF costs under end-to-end QoS constraints through
a multi-agent solution, albeit requiring more iterations for
cooperative learning.

Fewauthors concurrently addressVNFplanning andmap-
ping, often focusing on resolving two goals simultaneously.
In a recent study, Yi Xiang et al. [38] explored con-
strained multi-objective optimization to balance constraints
and objectives, proposing a model with multiple conditions.
They considered various problem types and applied suitable
mechanisms to address relationships between rules and goals
(e.g., constraint priority, goal priority, or switching between
them). Jiugen Shi et al. [39] tackled minimizing VNF imple-
mentation costs and accounting cost rules by constructing a

hybrid ILP (MILP) and providing a two-way algorithm in
Ref. [39]. The authors in Refs. [40, 41] addressed the VNF
scheduling problem by trading off resource allocation across
the network. Mahmoud Gamal et al. [42] utilized genetic
algorithms to map and schedule heterogeneous incoming
requests of virtual network functions for near-optimal con-
vergence. Similarly, two superheuristicmethods based on hill
climbing and simulated annealing algorithms are proposed
in Ref. [43]. These two methods are built to minimize the
total energy used during the placement of virtual network
functions, an energy-aware approach.

However, these studies only address one or two objec-
tives of VNF mapping and planning and come at the cost of
increased costs and processing time. To solve three or more
goals simultaneously, the algorithms in the documents above
still have limitations [44]. This requires choosing appropri-
ate methods and algorithms to solve multiple plans for VNF
scheduling and mapping simultaneously.

3 Mathematical Problem Formulation

In this section, the mathematical model for determining the
appropriate mapping and scheduling for the received service
requests is presented. The optimum VNFs scheduling onto
physical nodes, on the other hand, is beyond the scope of this
study. The proposed model is a development of the models
provided in Refs. [8, 42, 45].

The proposed model uses the symbols in Table 1 to
describe the variables and parameters in the mathematical
formulas and algorithms. The proposed model has three
objectives in order to optimize the scheduling problem and
map the placement of the VNFs.

123

International Journal of Computational Intelligence Systems (2024) 17:43 Page 5 of 18 43

Table 1 Math symbols Symbol Description

V Set of virtual machine nodes

ck Processing capacity of k-th virtual machine

E Set of virtual links

tck,l Transmission capacity which occurred at each VL connecting the VMs

F Set of unique VNFs established in the cloud

S Sequence of the incoming service requests is indicated

di, j Bandwidth demand to process the j-th VNF of the i-th incoming service request

Rk,l
i, j Traffic flow of the j-{th} VNF of the arriving service request si passing through (k, l)-th link

βi, j Transmission starting time of the fi, j and the fi, j+1

3.1 SystemModel

In the proposed model, it is considered that the NFV net-
work composes of a graph, undirected, G = (V, E). The
V = {vk |k = 1, 2, ..., |V|} specifies a group of virtual
machines. The E = {(k, l)|k, l = 1, 2, ..., |V|, k �= l} estab-
lishes a network of virtual links (VLs), linking the VMs.
Moreover, a collection of one-of-a-kindVNFs created within
the cloud system is defined by F = { f1, f2, ..., f|F |}. Every
VM can run a group of different VNFs defined by V Fk for
k = 1, ..., |V|.

The incoming service requests list is indicated by S =
[s1, ..., s|S|], where every received request si ∈ S for i =
1, 2, ..., |S| includes an ordered list of VNFs represented by
fi, j for i = 1, 2, ..., |S| and j = 1, 2, ..., |si |, where fi, j ∈
F . fi, j is the j-th VNF of the i-th incoming service request
(si). Given that ck for k = 1, 2, ..., |V| determines the pro-
cessing capacity of the k-thVM, the physicalmachine (PM)’s
memory and processing power, which hosts the VM, can be
utilized to calculate processing capacity. Moreover, let tck,l
for k = 1, 2, ..., |V| and l = 1, 2, ..., |V| defines the trans-
mission capacity which occurred at each VL, where the VL
link two different VMs. The di, j determines the bandwidth
requirement for processing the j-th VNF of the i-th arriv-
ing service request for i = 1, 2, .., |S| and j = 1, 2, .., |si |.
Finally, Rk,l

i, j describes the flow of traffic of the i-th VNF
of the coming request si traveling across the (k, l)-th link
for i = 1, 2, .., |S|, j = 1, 2, .., |si |, k = 1, 2, .., |V|, and
l = 1, 2, .., |V|

In this paper, the topology of the network is including
the VLs which is connecting the VMs is assumed to be
time-invariant. In addition, it is assumed that each service
requests si for i = 1, 2, ..., |S| carries a varied a set of VNFs
on it.

3.2 Objectives

3.2.1 Minimizing the Transmission Delay

This objective aims to optimally reduce the transmission
delay which is faced due to transferring service si between
two different VMs on the corresponding link (k, l) (where
k, l ∈ |V| and k �= l). The transmission delay can be denoted
as

di, j
tck,l−Rk,l

i, j

for the j-th VNF of the i-th service request on

the (k, l) link. The βi, j variable for i = 1, 2, ..., |S| and
j = 1, 2, , ..., |si | − 1 is utilized to identify the transmission
time for fi, j and the fi, j+1, respectively, between two VMs,
where the fi, j is the i-th service request (i.e., si) and the j-th
VNF of this si .

The first objective is expressed in Eq.1 as follows:

MinZ1(X) =
|S|∑

i=1

|si |−1∑

j=1

⎛

⎝βi, j +
|V|∑

k=1

xki, j ·
|V|∑

l=1

di, j

tck,l − Rk,l
i , j

⎞

⎠

(1)

where tck,l for (k, l)|k, l = 1, 2, ..., |V| defines the trans-
mission capacity which occurred at each VL connecting the
VMs, di, j for i = 1, 2, .., |S| and j = 1, 2, .., |si | defines the
requested bandwidth to run theVNFnumber j which belongs
to the service request number i , Rk,l

i, j for i = 1, 2, .., |S|,
j = 1, 2, .., |si |, (k, l)|k, l = 1, 2, ..., |V| represents the traf-
fic flow of the VNF number j which belongs to the service
request number i transmitted through (k, l)-th link and xki, j
is a binary variable that determines whether the VNF number
j which belongs to the service request number i can run on
the k-th VM. Formally, xki, j is calculated using Eq.2:

xki, j =

⎧
⎪⎨

⎪⎩

1 If VNF number J belongs to

si is run by a VMk

0 otherwise

(2)

123

 43 Page 6 of 18 International Journal of Computational Intelligence Systems (2024) 17:43

3.2.2 Minimizing the Processing Capacity

This objective aims to distribute the service requests si rela-
tively to VMs according to the VMs computational capacity.
As the bandwidth request di, j of running the VNF number
j which belongs to the service request number i in different
VMS can be different. Moreover, the shortage and oversup-
ply of the VM processing power are not acceptable.

Finding the properVMtohandle theVNFnumber j which
belongs to the service request number i in accordance with
the bandwidth demand di, j of the arriving service requests
and the computation capacity status of each VM is then an
important task to complete. Then, this objective is formulated
to solve this task and minimize the total processing capacity
for eachVMwhile ensuring that the total number of incoming
service requests is implemented in order. The currentmodel’s
objective does not report the average percentage between the
number of accepted service requests and the sum of VMs’s
capacities. Finally, this objective is expressed with the help
of Eq.3 as follows:

MinZ2(X) =
|V |∑

k=1

⎛

⎝ck −
|S|∑

i=1

|si |∑

j=1

di, j · xki, j
⎞

⎠ (3)

where ck for k = 1, 2, ..., |V| defines the processing capac-
ity of the VM number k, the processing capacity can be
calculated based on memory and computing capabilities of
the PM hosting each VM, di, j for i = 1, 2, .., |S| and
j = 1, 2, .., |si | defines the bandwidth demand to run he
VNF number j which belongs to the service request number
i , and xki, j is a variable to show whether the VNF number j
which belongs to the service request number i can run on the
k-th VM.

3.2.3 Minimizing the Processing Delay

While the service requests are arriving to be processed on
separate VMs, it is possible that a processing delay will arise
throughout the operation of handling the service requests.
This objective aims to solve this problem and minimize the
processing delay for the arrival service requests on VMs. As
a result of this procedure, incoming service requests will be
processed swiftly, and the system’s quality will be improved.
The definition of the beginning time of running the VNF
number j which belongs to the service request number i as
αi j . This objective is formally expressed with the help of
Eq.4 as follows:

MinZ3(X) =
|S|∑

i=1

|si |∑

j=1

⎛

⎝αi, j +
|V |∑

k=1

xki, j · qki, j
⎞

⎠ (4)

where xki, j is a variable that indicates whether the j-th VNF

of service request si can run on the k-th VM, qki, j represents
a processing delay for the VNF number j which belongs to
the service request number i while it is being running on the
k-th VM, αi j is the beginning time of the processing for the
VNF number j which belongs to the service request number
i .

3.3 The List of the ProposedModels’ Constraints

Different constraints have been proposed in this model to
ensure that VNF service requests are mapped and scheduled
and are feasible and ready to apply.

1. Every j-th VNF for j = 1, 2, ..., |si | of the received
service request si for i = 1, 2, ..., |S| must run on at
least one VM. Formally, this constraint is presented as
follows:

∑

k

xki j ≥ V (5)

2. Every j-th VNF for j = 1, 2, ..., |si | of the received
service request si for i = 1, 2, ..., |S| must run at most
N VMs.Formally, this constraint is presented as follows:

∑

k

xki j ≤ 1 (6)

3. The total VM capacity ck for k = 1, 2, ..., |V| must not
exceed the data volume (in bits or packets) di, j for the
VNF number j which belongs to the service request
number i for i = 1, 2, .., |S| run on the VM number k.
Formally, this constraint is presented as follows:

∑

k

xki j · di, j ≤ ck (7)

4. For i = 1, 2, ..., |S| traveling across the (k, l)-th link,
the traffic flow Rk,l

i, j for k shall not be more the link
capacity tck,l . Formally, this constraint is presented as
follows: Rk,l

i, j (t)

∑

k

∑

l

xki, j · Rk,l
i, j < tck,l (8)

5. This constraint seeks to process all of the VNFs of the
same service request in the same sequence which they
were received. The VNF number j which belongs to the
service request number i for i = 1, 2, ..., |S| must start
running on the k-th VMafter the previous (j−1)th VNF
of the same si finalized its work:

123

International Journal of Computational Intelligence Systems (2024) 17:43 Page 7 of 18 43

S1 = {f6,f3,f4,f5,f1}

S2 = {f4,f2,f3,f5,f1,f2,f5}

S3 = {f2,f1,f5}

S4 = {f6,f3}

S1 = { }

f2, f3 f2, f4, f6

f1, f2 f3, f5 f4 f3, f6

f5· f1

S1 = {f6,f3,f4,f5,f1}

VM1 VM2

VM3 VM4 VM5

VM6 VM7

6

3

4

5 1

Fig. 3 An example of a potential mapping for s1 on an instance of network structure

|S|∑

i=1

|si |∑

j=2

⎛

⎝βi, j−1 +
|V |∑

k=1

xki, j−1 ·
|V |∑

l=1

di, j

tck,l − Rk,l
i , j

⎞

⎠ ≤ αi j

(9)

6. After the VNFs of the exact service requests have com-
pleted their processing on the VMs, this restriction aims
to send them in the correct order. After the j-th VNF
has completed running on the VM nubmer k, the traffic
from the j-thVNF for the arrived service request si must
transfer in order from this k-th VM to the next l-th VM.
Put another way, theVNF number (j+1)must not begin
transmitting until the VNF number j which belongs to
the service request number i finished its running on the
VM number k. Formally, this constraint is presented as
follows:

|S|∑

i=1

|si |−1∑

j=1

⎛

⎝αi, j +
|V |∑

k=1

xki, j · qki, j ≤ βi, j

⎞

⎠ (10)

3.4 An Example of How toMap and Schedule a Set of
Service Requests

Figures 3 and 4 provide an illustration of the problem effec-
tively. There are seven VMs in the network, which support
various VNF functionalities (e.g., 1. Load Balancing 2. Fire-
wall, 3. Virtual Private Network (VPN) 4. Video Transcoder,

f2,2f1,1

f3,3

f4,1

1 2 3 4 5 6 7 8 9

f3,2

f3,1

f2,1

f2,3

f2,4 f2,5

f2,6

f2,7

f1,2

f1,3

f1,5

f1,4

f4,2

S3S2S1 S4

Pr
oc

es
si

ng
de

la
y

Tr
an

sm
is

si
on

de
la

y

Time (t)

VMs

VM1

VM2

VM3

VM4

VM5

VM6

VM7

VM8

Fig. 4 A graphical illustration of mappings and scheduling for a
sequence of the received service requests

5. Network Address Translation (NAT), and 6. Proxy). In
Fig. 3, each item S1, S2, S3, and S4 is an example of a
sequence of VNF requests to be executed. In each sequence,
S1, S2, S3, and S4 contain a list of different virtual network
functions that the user expects the system to execute in the
correct order. Here we will describe in detail the process-
ing of VNFs in S1 request chain as shown in Figs. 3. At the
time t = 0, a set of inbound service requests s1, ..., s4 come
requesting processing in these VMs, as illustrated in Figs. 3.

123

 43 Page 8 of 18 International Journal of Computational Intelligence Systems (2024) 17:43

Adistinct set ofVNFs are arranged differently in each request
for service.

Certain VMs will process these VNFs while others will
not be since the VNFs are distributed to execute on VMs
in a randomly distributed manner. According to Fig. 3, the
first VNF of s1 (i.e., f6) is handled in V M2, and then the
next of VNFs to the end VNFs of s1 (i.e., f3, f4, f5, f1) are
each processed in V M1, followed by V M4, V M6 and V M7,
respectively. In this scenario, it is anticipated that each VM
can execute a single VNF at once.

As illustrated in Fig. 4, a transmission delay for a set of
VNFs may occur during their transfer between two different
VMs.ThefirstVNFof s2 (i.e., f4) arrives at t = 0 in the cloud
simultaneously with the other VNFs of other requests, and
this VNF can be running in either VM2 or VM4, depending
on the configuration.

When this function f4 is assigned to V M2, as illustrated
in Fig. 4, it must wait for a one-time slot before it can be
processed (since V M2 is still processing the first VNF of s1
at the time of assignment). However, it is possible to assign
the function to V M4 in order to prevent this delay.

A processing delay for these VNFs may also arise during
their processing on VMs, as seen in Fig. 4. Figure4 shows
the assignment schedule for the second VNF f2 of s2, which
is allocated to the V M2 needs to wait for a one-time window
before it can begin processing. There are three objectives in
this paper that may be used to optimize all of the problems
listed in Fig. 4, which are defined in Eqs. 1, 3, and 4.

4 The Proposed Algorithm

In the previous section, we described the VNF mapping and
VNF scheduling problem as a multi-objective optimization
problem. Therefore, we choose the NSGA-III algorithm to
solve the problem. We start by describing the main steps
of the algorithm. Then we present some adjustments to
solve the three optimization problems minimizing the trans-
mission delay, the processing capacity, and the processing
delay. In the following subsections, the proposed algorithm
is explained in more details.

4.1 Main Steps

The proposed algorithm starts by initializing random ini-
tial solutions. To balance both convergence and diversity
of Pareto solutions in accordance with the problem require-
ments, before the selection step in each generation, parents
create their offspring with the same number of N by using
crossover and mutation operations. The parent–child union
is usually 2 × N in size and sorted using a fast non-sorting
algorithm. In case the size of the solutions is not selected for
N then those solutions are selected for the next generation;

otherwise, a Niche conservation operation is performed. This
is an iterative process of associating a solution, having the
shortest relative distance, with reference points. The proce-
dure is repeated until a sufficient number of populations are
obtained. If multiple solutions have the same distance, then
a random selection will be adopted.

The detailed steps are as follows:

1. Step 1: Set random initial values for the algorithm’s
parameters including V, ck, ε, tck,l , S, di, j , R

k,l
i, j , βi, j ,

and the stopping condition.
2. Step 2: Minimize the transmission latency of service

requests when moving from one VM to another, based
on Eqs. 1 and 2.

3. Step 3: Finding the suitable virtual machine to execute
the VNF number j of si , considering di, j of the received
requests and each VM’s current processing capacity sta-
tus.

4. Step 4: While service request si is being processed on
the k-th VM, minimizing the running time for the j-th
VNF is a priority.

5. Step 5: Return the set of valid mapping and scheduling,
which are represented as a set of solutions for everyVNF
of the input service request

{
X1, ..., XN

}

Detailed descriptions of steps 2, 3, and 4 will be exposed
in Sects. 4.2.1, 4.2.2, and 4.2.3, respectively. In the following
subsection, we will discuss the proposed algorithm to solve
specific goals, and then wewill analyze and evaluate the time
complexity of the proposed algorithm.

4.2 Algorithms for VNFMapping andVNF
Scheduling Problems

In this study, we adapted the NSGA-III algorithm to map
and schedule VNFs. VNFs mapping and scheduling goals
are handled by minimizing transmission latency, reducing
processing time on each VM, and reducing the total capacity
of the used VMs. Thereby effectively exploiting available
resources, reducing the cost of creating and moving VMs,
and solving the problem of high power consumption in data
centers.

After initializing the proposed algorithm’s parameters, the
VMs data, the VNF list, the number of requests will be
loaded into the algorithm. Checking input data and editing
non-standard data will prevent the system from encounter-
ing unnecessary errors during execution. VNF scheduling
andmapping processwill go through different stages, namely
(1) distributingVNF across VMs based on theVM’s process-
ing capacity, (2) arranging virtual network functions on each
VM, and (3) scheduling VNF on VMs. At the VNF schedul-
ing stage on the VM, the algorithmwill initialize the variable
that stores the number of scheduled requests gen = 0. The

123

International Journal of Computational Intelligence Systems (2024) 17:43 Page 9 of 18 43

algorithm will cycle through the VMs in turn and check if
there is still virtual network functionality or not. The algo-
rithm will check the current virtual machine’s ability to
handle VNF, update the processing time if the VM responds,
and it will update the transmission delay corresponding to
each target. After each turn, the system will update the num-
ber of scheduled requests by increasing gen+ = 1. VNFs
scheduling on the virtual server will be done until the list of
virtual network functions to be scheduled is exhausted. The
number of scheduling requestswill correspond to the network
size in our experiment. At the end of theVNF scheduling pro-
cess, the fitness value is calculated by Eq.11 corresponding
to each network size.

In our study, based on the priority of the objectives, the
importance of the first objective is 40%, the importance of the
2nd objective is 30%, and the importance of the 3rd objective
is 30% that we choose the value of the weights in Eq.11:

r es = 0.4 ∗ obj1 + 0.3 ∗ obj2 + 0.3 ∗ obj3 (11)

where obj1, obj2, and obj3 are the values of the respective
objectives.

Wecalled themulti-objective optimization adaptedNSGA-
III algorithm for solving theVNFscheduling asVNF-NSGA-
III. The flowchart of the proposed VNF-NSGA-III algorithm
is depicted in Fig. 5. The system will check the processing
capacity of VMs for network functions in the queue and
update the transmission delay value and total machine capac-
ity. VM needs to be used according to Eqs. 1, 3, and 4. This
process is repeated until the stopping condition of the algo-
rithm is reached.

4.2.1 An Algorithm for Minimizing the Transmission Delay

The details of the algorithm to find minimum transmission
delay when transferring from one VM to another are pre-
sented in Algorithm 1. We used xki, j to define the j-th VNF
of arriving request si can execute on the k-th VM node and
βi, j to identify the transmission starting time of the fi, j and
the fi, j+1, respectively, from one VM to another.

The S represents the order of the received service requests,
V is the set ofVMsnodes, di, j defines the required bandwidth
to process the j-th VNF of the i-th coming request.

VNF-NSGA-III
Initilization

Set:
O: Number of offspring
D: Reference direction
P: The population size
n_gen: Number of iteration

Set:
V: Number of VMs
S: Number Requests
F: Number of VNFs
Number of objectives
Number of constrains

Start

run = 0

run > No. of offsprings

Return best solution

End

Yes

No

Minimize

gen = 0

gen > n_gen

run = run + 1

Update List Solution

Yes

No Update solution as Soln
Eq. 5, 6, 7

Sort VNF on solution

i = 1

i < len (Soln)

Update the value of the objective
Eq. 1, 3, 4

Update solution processing time

i = i + 1

gen = gen + 1

Return solution

Yes

No

Add network function processing
order to the solution

VNF-NSGA-III
Initilization

Set:
O: Number of offspring
D: Reference direction
P: The population size
n_gen: Number of iteration

Set:
V: Number of VMs
S: Number Requests
F: Number of VNFs
Number of objectives
Number of constrains

Start

run = 0

run > No. of offsprings

Return best solution

End

Yes

No

Minimize

gen = 0

gen > n_gen

run = run + 1

Update List Solution

Yes

No Update solution as Soln
Eq. 5, 6, 7

Sort VNF on solution

i = 1

i < len (Soln)

Update the value of the objective
Eq. 1, 3, 4

Update solution processing time

i = i + 1

gen = gen + 1

Return solution

Yes

No

Add network function processing
order to the solution

Fig. 5 A flowchart of the proposed VNF-NSGA-III algorithm

123

 43 Page 10 of 18 International Journal of Computational Intelligence Systems (2024) 17:43

Algorithm 1 Minimize the transmission delay algorithms
Result: Reduce the incoming service request’s transmission delay for

each VNF.
initialization

for i ← 1 to |S| do
for j ← 1 to |si | − 1 do

for k ← 1 to |V| do
if the j-th VNF of the si can run on the k-th VM then

xki, j = 1

end
else

xki, j = 0

end
Sum(xki, j)

end
for l ← 1 to |V| do

Sum(di, j/(tck,l − Rk,l
i, j))

end

βi, j + Sum(xki, j) * Sum(di, j/(tck,l − Rk,l
i, j))

end
end

Time complexity analysis for Algorithm 1: For a given sys-
tem state, the task of finding the lowest transmission delay
consists of two steps. The first step calculates the total num-
ber of VMs capable of handling VNF on demand, with a
computational complexity of O(|V|). Then calculate the total
transmission delay for the link when transferring VNF from
one VM to another, the computational complexity is O(|V|).
Therefore, the total computational complexity of being is
O(|V2|). Note that Algorithm 1 is executed only once for a
given state during the entire scheduling process.

4.2.2 An Algorithm for Minimize the Processing Capacity

In this algorithm, we used ck for k = 1, 2, ..., |V| to define
the processing capacity of k-th VM, the memory and com-
putational power of the PM that runs every VM can be used
to calculate processing capacity.

Algorithm 2Minimizing the processing capacity algorithm.
Result: Minimizing the running power of VMs
initialization

for k ← 1 to |V| do
Sum(ck)

end
for i ← 1 to |S| do

for j ← 1 to |si | − 1 do
Sum(xki, j * di, j)

end
end
Sum(ck) - Sum(xki, j * di, j)

In Algorithm 2, the notation S represents the sequence of
the received service requests, si represents theVNFnumber j
of the service request number i , V represents the set of VMs
nodes, and di, j defines the required bandwidth to execute
VNFnumber j of the service request number i of the received
request.

Time complexity analysis for Algorithm 2:
With the goal of minimizing processing power, Algo-

rithm 2 performs two steps. First, it calculates the total
processing power of VMs, the complexity is O(V). Second,
the algorithm calculates in turn the power needed to process
VNF on each VM; the time complexity of this step is O(|S|
* |si |). Thus, the overall time complexity of Algorithm 2 is
O(V + |S| * |si |).

4.2.3 An Algorithm for Minimizing the Processing Delay

Algorithm 3Minimizing the processing delay algorithms.
Result: Minimizing the processing delay for the arrival service requests

on VMs
initialization

for k ← 1 to |V| do
Sum(xki, j * q

k
i, j)

end
for i ← 1 to |S| do

for j ← 1 to |si | − 1 do
Sum(αi, j)

end
end
Sum(αi, j) + Sum(xki, j * q

k
i, j)

In Algorithm 3, qki, j denotes a processing delay that
occurred for the j-th VNF of the service request si while
the service request was being processed on the k-th VM.
Similar to Algorithm 2, the complexity of Algorithm 3 is
O(V) + O(|S| * |si |) as well.

Overall time complexity analysis of the proposed algo-
rithm:With the requirement to optimize all three constraints:
minimizing line latency of every link and minimizing pro-
cessing capacity for all of the VM in addition to minimizing
processing latency at all VM, all of the three algorithmsmust
be implemented in the programming process to schedule the
VNFs. Hence, the overall time complexity of the proposed
algorithm is O(|V2| + V + |S| * |si |).

5 Simulation and Experiment Results

This section illustrates the evaluation process of the proposed
algorithm against various well-known algorithms on differ-
ent evaluation parameters for different environments such as
homogeneous and heterogeneous data center.

123

International Journal of Computational Intelligence Systems (2024) 17:43 Page 11 of 18 43

Table 2 Table parameters of algorithms

Parameter Small Medium Large

Number of VMs 10 20 30

Number of requests 100 200 300

Number of VNFs 5 5 5

5.1 Setup

To execute the optimization procedure depicted in Fig. 5,
the proposed method leverages the Pymoo framework [46],
which incorporates NSGA-III. Pymoo was specifically cho-
sen for its ability to visualize lower- and upper dimensional
data and assess solution quality from NSGA-III through per-
formance metrics [16]. Furthermore, Pymoo offers multiple
multi-criteria decision-making tools that can be applied post-
convergence of NSGA-III to the Pareto front, facilitating
the selection of the optimal solution in Fig. 5. In addition,
it supports the design and development of custom problems
and algorithms. For the proposed method, the formulated
multi-objective optimization problem (equations in Sect. 3)
has been written in Python using the Pymoo framework. The
NSGA-III algorithm and compare the results with heuristic-
based algorithms. The utilized dataset in this work was
generated according to actual scenarios deploying virtual net-
work functions on the network and is attached to the article.
To ensure the fairness of the results, the parameters are set to
be the same between algorithms and are shown in Table 2.
Our simulations are performed on machines with a 3.3 GHz
CPU (Intel Xeon W-1250) and 16 GB RAM.

5.2 Dataset

The evaluation of the proposed method considers three sce-
narios which are small, medium, and large networks. In the
experiments, it is assume that different network services need
a set of VNFs for simplicity and generality (in our test, each
network service would require 5 VNFs). Since solving the
scheduling problem is achievable, then, the proposedmethod
assumed that each VNF can be processed at least by one VM
node and that each VM node is capable of serving 2 to 3
VNFs. VNFs are randomly integrated into NFV nodes at
all three network sizes; thus, for each network service, the
number of VNFs is a random integer between 2 and 5. The
processing time for each VNF is a random integer between
1 and 5. In the proposed experiment, the population size was
set to 50, and the number of repetitions was set to 300. Thus,
it would take 15,000 iterations to get the best solution.

The capacity matrix of VNFs (small)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1
1 1 0 1 0
0 1 1 0 1
1 0 1 1 0
0 1 0 1 1
0 0 1 1 1
1 1 1 0 0
1 1 0 1 0
0 1 0 1 1
1 0 1 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

5.3 Experimental Results and Discussion

The effectiveness of the proposed adaptation of the NSGA-
III optimization algorithm for VNF placement is demon-
strated through experimental evaluation, surpassing that of
recent meta-heuristic methods and conventional heuristic
approaches. The evaluation was performed on networks of
diverse scales, encompassing small, medium, and large net-
works. Minimizing the line latency of the network link,
diminishing the processing capacity of each VM, and
decreasing the processing latency of all VMs comprised the
evaluation criteria.

The proposed method is evaluated using several points.
First, the proposed method VNF-NSGA-III was compared
against a set of basic heuristics over three different problem
sizes. The results of this comparison are listed in Table 3.
Table 3 results demonstrate that the proposed optimiza-
tion method outperforms all the other heuristics in terms
of the objective values. The performance gap on the objec-
tive value increases as the problem size increases. In other
words, the performance of the heuristic algorithms degrades
as the problemsize increases.On the other hand, the proposed
method’s performance is stable relative to the problem size.
For instance, for the small-size network size, the achieved
improvements of the proposedmethodwere 103%, 59%, and
44% in comparison to the First-Fit, Next-Fit, and Random-
Fit algorithms, respectively. For the medium-size network,
the achieved improvements of the proposed method were
288%, 127%, and 152% relative to the First-Fit, Next-Fit,
and Random-Fit algorithms, respectively. Finally, the per-
formance gap for the large-size network was similar to the
other small and medium-sized networks.

In scenarios involving small-sized networks, the proposed
VNF-NSGA-III algorithm that was modified substantially
enhanced all of the three objectives. For example, the pro-
posed VNF-NSGA-III method’s resulted in a reduction of
line latency (Obj-1) by approximately 56.83%, from 966.00
in the First-Fit method to 417.00. In a similar vein, the reduc-
tion in processing capacity (Obj-2) and processing latency
(Obj-3) signifies respective enhancements of 34.11% and

123

 43 Page 12 of 18 International Journal of Computational Intelligence Systems (2024) 17:43

48.83%. Notably, the fitness value, which represents a syn-
thesis of all objectives, exhibited a substantial increase of
50.84% in performance, rising from 902.17 to 443.77.

In scenarios involving medium-sized networks, the pro-
posedVNF-NSGA-IIImethod consistently outperformed the
alternative methods. In comparison to the Next-Fit method,
the algorithm reduced line latency (Obj-1) bymore than 80%,
demonstrating its scalability and efficacy in more complex
network environments.

When applied to scenarios involving large-scale networks,
the benefits of the proposed VNF-NSGA-III method became
even more evident. In contrast to the First-Fit method, the
line latency (Obj-1) was decreased by approximately 81.05
percent, and the processing latency (Obj-3) was enhanced
by more than 768.33 percent. The significant decrease in
the Fitness value from 13222.19 to 2855.74, representing an
enhancement of 78.41%, highlights the algorithm’s ability to
withstand large-scale VNF deployments.

The execution durations for all network sizes suggest that
although the proposed VNF-NSGA-III method necessitates
a greater computational effort, the quality improvements
in optimization more than compensate for the additional
time commitment. The efficacy of the algorithm validates
its viability for practical implementation in VNF placement
assignments.

While Table 3 shows the three objectives combined in
one value, the three objective values are depicted separately
in Fig. 6 and the combined objective value as well. Fig-
ure6 clearly emphasizes that the proposed VNF-NSGA-III
method yielded the best results for each objective regardless
of the network size. Of note, the best-performing heuristic
was the First-Fit.

5.3.1 Analysis of Algorithm Performance with Varying VNF
Requests

The second point of comparison is to understand the effect of
the number of requests, the number of GA generations, and
the population size on the objectives’ values of the proposed
methods. This effect of the number of requests on the three
objective values is depicted in Fig. 7.

The proposed VNF-NSGA-III method’s execution results
in relation to the fluctuating number of VNF requests are
depicted in Fig. 7. Each of the performancemetrics illustrated
in Fig. 7a through Fig. 7dwas assessed during the experimen-
tal phase.

The fitness function value is illustrated in Fig. 7(a),
demonstrating a non-linear rise with the augmentation of ser-
vice requests. The curve indicates that the objective function
cost of the algorithm increases in parallel with the network
traffic, which signifies a corresponding rise in resource uti-
lization or decline in performance efficiency.

Figure7b illustrates the delay in transmission. The uti-
lization of this metric is critical when evaluating the net-
work’s real-time capabilities. The exponential growth pattern
depicted in the graph indicates that the network encounters
escalating delays in response to a surge in service requests.
This surge may be a result of increased traffic congestion or
processing times.

Figure7c illustrates the required total processing capacity
of theVNFs. There is a direct correlation between the number
of service requests and the required processing resources, as
indicated by the upward trend. The graph illustrates a com-
paratively linear correlation until a specific point, at which
point the capacity reaches a plateau. This plateau may sug-
gest the algorithm has efficiently allocated resources or has
reached a state of resource saturation.

Lastly, Fig. 7d depicts the Processing Delay Time. As the
quantity of service requests increases, the curve displays a
noticeable upward slope. The observed pattern suggests that
the quantity of VNF requests substantially influences the
processing latency. This can be attributed to various factors,
including computational tension and queuing delays within
the virtualized environment.

The aggregate of these outcomes serves as evidence of
the algorithm’s capacity to scale and adapt to fluctuating net-
work requirements. The analysis of the graphs’ development
patterns offers valuable insights into the algorithm’s perfor-
mance across various load conditions. These patterns draw
attention to potential optimization areas, specifically in the
domains of transmission delay management and processing
capacity under scenarios of high demand. Then, the effect
of the number of generations and the population size on the
proposed method performance is depicted in Figs. 8 and 9,
respectively.

5.3.2 Performance Evaluation over Different number of
Generations

The execution results of the proposed VNF-NSGA-III
method as the number of generations is altered are illustrated
in Fig. 8. Every subfigure ranging from Fig. 8a to Fig. 8d
illustrates one particular aspect of the performance of the
algorithm as the evolutionary process advances.

The fitness function value is illustrated in Fig. 8a across
generations.Thegraph illustrates an initial significant decrease,
followed by a gradual recovery of stability as the generational
count rises. This implies that the algorithm rapidly locates
a solution that is nearly optimal, and subsequent iterations
make only minor adjustments to the solution.

For the same number of generations, the Transmission
Delay Time is depicted in Fig. 8b. A substantial reduction in
the metric during the initial phase signifies the expeditious
optimization of transmission latencies. Nevertheless, as time
passes, the rate of descent decreases, which suggests that the

123

International Journal of Computational Intelligence Systems (2024) 17:43 Page 13 of 18 43

Fig. 6 A comparison of the
three objectives’ values between
the proposed algorithm and
other algorithms

(a) Small-size network

(b) Medium-size network

(c) Large-size network

123

 43 Page 14 of 18 International Journal of Computational Intelligence Systems (2024) 17:43

Table 3 Simulation results Network size Result First-Fit Next-Fit Random-Fit VNF-NSGA-III

Small-size Obj_1 966.00 766.00 668.00 417.00

Obj_2 296.25 191.25 195.25 195.25

Obj_3 1423.00 1146.00 1053.00 728.00

Fitness 902.17 707.57 641.67 443.77

Times (s) 0.02 0.02 0.01 198.55

Medium-size Obj_1 4404.00 2487.00 2766.00 882.00

Obj_2 592.13 438.63 505.13 417.63

Obj_3 5968.00 3522.00 3899.00 1605.00

Fitness 3729.64 2182.99 2427.64 959.59

Times (s) 0.06 0.06 0.04 566.89

Large-size Obj_1 16232.00 4857.00 5833.00 3085.00

Obj_2 1185.31 865.81 926.31 505.81

Obj_3 21246.00 6960.00 8422.00 4900.00

Fitness 13222.19 4290.54 5137.69 2855.74

Times (s) 0.22 0.22 0.12 2567.98

optimization benefits obtained from subsequent generations
will diminish.

The Total Processing Capacity utilized by the algorithm is
illustrated in Fig. 8c. Similar to the preceding metrics, an ini-
tial sharp decline is observed.As the algorithmapproaches an
optimal solution, this decrease gradually diminishes, result-
ing in negligible fluctuations in the processing capacity
demands of subsequent generations.

Lastly, the processing delay time as a function of the num-
ber of generations is illustrated in Fig. 8d. Consistent with the
other subfigures of Fig. 8, where substantial initial gains in
delay reduction are succeeded by a plateau effect, the down-
ward trend continues. As depicted in the graph, while the
algorithm optimizes processing delays rapidly, little progress
is made after numerous generations.

The trends identified in these plots serve as an indica-
tion of the algorithm’s optimization efficacy. The exponential
growth observed in the initial iterations serves as evidence of
the algorithm’s ability to identify viable solutions rapidly.
Nevertheless, as the evolutionary process progresses, the
incremental benefits decrease. This characteristic occurs
when evolutionary algorithms approach the optimal solution
space.

The results of this study highlight the significance of
incorporating the number of generations into the algorithm’s
execution in order to strike a balance between solution
quality and computational time. Furthermore, the dimin-
ishing improvements indicate the possibility of a threshold
beyond which further generations fail to produce substantial
enhancements in performance.

5.3.3 Impact of Population Size on the Proposed
Algorithm’s Performance

The impact of different population sizes on the performance
of the algorithm is illustrated in Fig. 9. The performancemet-
rics for these metrics are as follows: Processing Delay Time,
Fitness Function Value, Transmission Delay Time, and Total
Processing Capacity.

The fitness function value is illustrated in Fig. 9(a),
demonstrating that it fluctuates in response to an increase
in population size. The graph’s varying characteristics indi-
cate that although larger populations might provide a greater
variety of solutions, they also introduce fitness variability as
a result of a more expansive search space.

Figure9b presents the transmission delay time, emphasiz-
ing a consistent pattern of greater delay as the population size
increases. This may be the result of the algorithm dedicat-
ing more time to assessing an increased quantity of potential
solutions, consequently resulting in extended transmission
durations.

The proposed algorithm’s total processing capacity is
illustrated in Fig. 9c, which illustrates a non-linear correla-
tion with the overall size of the population. The data from the
graph shows that the processing capacity fails to demonstrate
a consistent upward or downward trend as the population size
changes. This indicates that the capacity requirement of the
algorithm is significantly based on the particular population
under evaluation.

As the population size increases, the processing delay
time is depicted in Fig. 9d, which concludes the illustration.
The observed escalation in processing delays is consistent
with the hypothesis that larger populations necessitate greater
computational resources and time.

123

International Journal of Computational Intelligence Systems (2024) 17:43 Page 15 of 18 43

Fig. 7 The algorithm execution results when changing the number of
VNF requests

Fig. 8 The proposed algorithm results on different number of genera-
tions

123

 43 Page 16 of 18 International Journal of Computational Intelligence Systems (2024) 17:43

Fig. 9 The results of the proposed algorithm on different population
sizes

Collectively, these results illustrate the complicated impact
that the size of the population has on the efficacy of algo-
rithms. Although larger populations can facilitate a more
comprehensive solution for space exploration, they may also
result in longer processing periods and a greater demand
for computational resources. It is essential to strike a bal-
ance between population size and computational efficiency
in order to maximize search effectiveness.

The outcomes demonstrate that the proposed model is
capable of effectively addressing the multi-objective opti-
mization problem of VNF placement. The proposed VNF-
NSGA-III algorithm, which has been utilized to include
improved decision-making heuristics, presents a potentially
effective strategy for handling the complex requirements of
virtualized networks of the next generation. Further research
could be devoted to optimizing the algorithm in an effort to
further decrease execution times without compromising or
enhancing optimization results.

6 Conclusions

In thiswork, the complexproblemof virtual network function
placement was addressed, which is crucial for the operation
of network services in resource-constrained environments.
The novelty of our approach lies in the formulation of VNF
placement as a multi-objective optimization problem, aim-
ing to minimize the processing capacity required by virtual
machines, the latency across network links, and the process-
ing latency of VMs. This formulation captures the essence of
network efficiency and is a significant leap from traditional
methods that target limited objectives. The VNF-NSGA-III
algorithm, which is a modified version of the widely rec-
ognized NSGA-III algorithm, has been validated through
a set of practical experiments. The performance evalua-
tion demonstrates that VNF-NSGA-III outperforms various
heuristic and contemporary meta-heuristic approaches. The
results demonstrate the effectiveness of VNF-NSGA-III in
achieving awell-balanced optimization across all of the three
objectives, thus offering a comprehensive solution to the
VNF placement challenge.

In the future, investigating the use of dynamic parameteri-
zation in theNSGA-III framework showspotential for further
research. This has the potential to facilitate the creation of
highly flexible algorithms that can effectively adapt to imme-
diate changes in network conditions. Furthermore, there is
potential to expand the parallelization of the NSGA-III algo-
rithm. These advancements have the potential to greatly
decrease the amount of time it takes to perform computa-
tions, thus increasing the practicality of the algorithm for
large-scale network scenarios. Furthermore, the techniques
suggested in this research can be extended to tackle addi-
tional multi-objective optimization issues that are inherent in

123

International Journal of Computational Intelligence Systems (2024) 17:43 Page 17 of 18 43

network function virtualization (NFV). Expanding the range
of use, the principles of VNF-NSGA-III can be utilized to
optimize different aspects of NFV infrastructure, thereby
enhancing the resilience and flexibility of modern networks.

Acknowledgements We express our gratitude to the anonymous
reviewers for their invaluable input on the quality of the work and their
constructive suggestions for enhancing the presentation.

Author Contributions Methodology preparation and implementation
were performed by PT, FW, MB, and AF. Data collection and analysis
were performed by PT, FW, MB, and AF, and AS. The first draft of the
manuscript was written by PT, AF, and AS. All the authors participated
in writing and reviewing the final version of the manuscript. All the
authors read and approved the final manuscript.

Funding This work is partly funded by the Program of the National
Natural Science Foundation of China (Grant no. 62172151).

Availability of data andmaterials The data used in this work are avail-
able through a reasonable request from the corresponding author.

Declarations

Conflict of interest The authors declare no competing interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Chowdhury, N.M.K., Boutaba, R.: A survey of network virtualiza-
tion. Comput. Netw. 54(5), 862–876 (2010)

2. Promwongsa, N., Abu-Lebdeh, M., Kianpisheh, S., Belqasmi, F.,
Glitho, R.H., Elbiaze, H., Crespi, N., Alfandi, O.: Ensuring relia-
bility and low cost when using a parallel vnf processing approach to
embeddelay-constrained slices. IEEETrans.Netw. ServiceManag.
17(4), 2226–2241 (2020)

3. Miyamura, T., Misawa, A.: Joint optimization of optical path pro-
visioning and vnf placement in vcdn. Opt. Switching Netw. 49,
100740 (2023)

4. Fang, J., Zhao, G., Xu, H., Tu, H., Wang, H.: Reveal: Robustness-
aware vnf placement and request scheduling in edge clouds.
Computer Networks, 109882 (2023)

5. HARA, T., SASABE, M., SUGIHARA, K., KASAHARA, S.:
Resource-efficient and availability-aware service chaining and vnf
placement with vnf diversity and redundancy. IEICE Transactions
on Communications (2023)

6. Gholipoor, N., Saeedi, H., Mokari, N., Jorswieck, E.A.: E2e qos
guarantee for the tactile internet via joint nfv and radio resource

allocation. IEEE Trans. Netw. Service Manag. 17(3), 1788–1804
(2020)

7. Li, J., Shi, W., Yang, P., Shen, X.: On dynamic mapping and
scheduling of service function chains in sdn/nfv-enabled networks.
In: 2019 IEEE Global Communications Conference (GLOBE-
COM), pp. 1–6 (2019). IEEE

8. Qu, L., Assi, C., Shaban, K.: Delay-aware scheduling and resource
optimization with network function virtualization. IEEE Trans.
Commun. 64(9), 3746–3758 (2016)

9. Luizelli,M.C., Raz,D., Sa’ar,Y.:Optimizing nfv chain deployment
through minimizing the cost of virtual switching. In: IEEE INFO-
COM 2018-IEEE Conference on Computer Communications, pp.
2150–2158 (2018). IEEE

10. Khebbache, S., Hadji, M., Zeghlache, D.: A multi-objective non-
dominated sorting genetic algorithm for vnf chains placement. In:
2018 15th IEEE Annual Consumer Communications & Network-
ing Conference (CCNC), pp. 1–4 (2018). IEEE

11. Leivadeas,A.,Kesidis, G., Ibnkahla,M., Lambadaris, I.: Vnf place-
ment optimization at the edge and cloud. Future Internet 11(3), 69
(2019)

12. Saber, S., Salem, S.: An improved light spectrum optimizer for
parameter identification of triple-diode pv model (2023)

13. Fathalla, A., Li, K., Salah, A.: Best-kff: a multi-objective pre-
emptive resource allocation policy for cloud computing systems.
Cluster Comput 25(1), 321–336 (2022)

14. Bekhit, M., Fathalla, A., Eldesouky, E., Salah, A.: Multi-objective
vnf placement optimization with nsga-iii. In: International Confer-
ence on Advances in Computing Research, pp. 481–493 (2023).
Springer

15. El-Ashmawi, W.H., Salah, A., Bekhit, M., Xiao, G., Al Ruqeishi,
K., Fathalla, A.: An adaptive jellyfish search algorithm for packing
items with conflict. Mathematics 11(14), 3219 (2023)

16. Deb, K., Jain, H.: An evolutionary many-objective optimiza-
tion algorithm using reference-point-based nondominated sorting
approach, part i: solving problems with box constraints. IEEE
Trans. Evol. Comput. 18(4), 577–601 (2013)

17. Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: Performance
comparison of nsga-ii and nsga-iii on various many-objective test
problems. In: 2016 IEEE Congress on Evolutionary Computation
(CEC), pp. 3045–3052 (2016). IEEE

18. Ciro, G.C., Dugardin, F., Yalaoui, F., Kelly, R.: A nsga-ii and
nsga-iii comparison for solving an open shop scheduling problem
with resource constraints. IFAC-PapersOnLine 49(12), 1272–1277
(2016)

19. Wangsom, P., Lavangnananda, K., Bouvry, P.: The application of
nondominated sorting genetic algorithm (nsga-iii) for scientific-
workflow scheduling on cloud. In: The 8th Multidisciplinary
International Conference on Scheduling: Theory and Applications
(MISTA 2017), pp. 269–287 (2017)

20. Tavana, M., Li, Z., Mobin, M., Komaki, M., Teymourian, E.:
Multi-objective control chart design optimization using nsga-iii
and mopso enhanced with dea and topsis. Expert Syst. Appl. 50,
17–39 (2016)

21. Bi, X., Wang, C.: An improved nsga-iii algorithm based on objec-
tive space decomposition for many-objective optimization. Soft
Comput. 21(15), 4269–4296 (2017)

22. Nita,M.-C., Pop, F., Voicu, C., Dobre, C., Xhafa, F.:Momth:multi-
objective scheduling algorithm of many tasks in hadoop. Cluster
Comput. 18(3), 1011–1024 (2015)

23. Ruiz, L., Barroso, R.J.D., DeMiguel, I., Merayo, N., Aguado, J.C.,
De La Rosa, R., Fernández, P., Lorenzo, R.M., Abril, E.J.: Genetic
algorithm for holistic vnf-mapping and virtual topology design.
IEEE Access 8, 55893–55904 (2020)

24. Martín-Pérez, J., Bernardos, C.J.:Multi-domain vnfmapping algo-
rithms. In: 2018 IEEE International Symposium on Broadband

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 43 Page 18 of 18 International Journal of Computational Intelligence Systems (2024) 17:43

Multimedia Systems and Broadcasting (BMSB), pp. 1–6 (2018).
IEEE

25. Cao, J., Zhang, Y., An,W., Chen, X., Sun, J., Han, Y.: Vnf-fg design
and vnf placement for 5g mobile networks. Sci. China Inform. Sci.
60, 1–15 (2017)

26. Yue, Y., Cheng, B., Wang, M., Li, B., Liu, X., Chen, J.: Through-
put optimization and delay guarantee vnf placement for mapping
sfc requests in nfv-enabled networks. IEEE Trans. Netw. Service
Manag. 18(4), 4247–4262 (2021)

27. Oljira, D.B., Grinnemo, K.-J., Taheri, J., Brunstrom, A.: A model
for qos-aware vnf placement and provisioning. In: 2017 IEEECon-
ference on Network Function Virtualization and Software Defined
Networks (NFV-SDN), pp. 1–7 (2017). IEEE

28. Woldeyohannes, Y.T., Mohammadkhan, A., Ramakrishnan, K.,
Jiang, Y.: Cluspr: Balancing multiple objectives at scale for nfv
resource allocation. IEEE Trans. Netw. Service Manag. 15(4),
1307–1321 (2018)

29. Liu, J., Lu, W., Zhou, F., Lu, P., Zhu, Z.: On dynamic service
function chain deployment and readjustment. IEEE Trans. Netw.
Service Manage. 14(3), 543–553 (2017)

30. Jin, P., Fei, X., Zhang, Q., Liu, F., Li, B.: Latency-aware vnf
chain deployment with efficient resource reuse at network edge.
In: IEEE INFOCOM 2020-IEEE Conference on Computer Com-
munications, pp. 267–276 (2020). IEEE

31. Ren, H., Xu, Z., Liang, W., Xia, Q., Zhou, P., Rana, O.F., Galis,
A., Wu, G.: Efficient algorithms for delay-aware nfv-enabled mul-
ticasting in mobile edge clouds with resource sharing. IEEE Trans.
Parallel Distributed Syst. 31(9), 2050–2066 (2020)

32. Ebrahimzadeh, A., Promwongsa, N., Afrasiabi, S.N., Mouradian,
C., Li, W., Recse, Á., Szabó, R., Glitho, R.H.: h-horizon sequen-
tial look-ahead greedy algorithm for vnf-fg embedding. In: 2021
IEEE Conference on Network Function Virtualization and Soft-
ware Defined Networks (NFV-SDN), pp. 41–46 (2021). IEEE

33. Assi, C., Ayoubi, S., El Khoury, N., Qu, L.: Energy-aware mapping
and scheduling of network flows with deadlines on vnfs. IEEE
Trans. Green Commun. Netw. 3(1), 192–204 (2018)

34. Maity, I., Vu, T.X., Chatzinotas, S.: D-schedule: Dependency-
aware vnf scheduling in satellite-terrestrial networks. In: 2023
IEEE International Conference on Communications Workshops
(ICC Workshops), pp. 1283–1288 (2023). IEEE

35. Li, J., Shi, W., Zhang, N., Shen, X.: Delay-aware vnf scheduling:
a reinforcement learning approach with variable action set. IEEE
Trans. Cognit. Commun. Netw. 7(1), 304–318 (2020)

36. Akbari, M., Abedi, M.R., Joda, R., Pourghasemian, M., Mokari,
N., Erol-Kantarci, M.: Age of information aware vnf scheduling in
industrial iot using deep reinforcement learning. IEEE J. Selected
Areas Commun. 39(8), 2487–2500 (2021)

37. Li, J., Shi, W., Zhang, N., Shen, X.S.: Reinforcement learning
based vnf scheduling with end-to-end delay guarantee. In: 2019
IEEE/CIC International Conference on Communications in China
(ICCC), pp. 572–577 (2019). IEEE

38. Xiang, Y., Yang, X., Huang, H., Wang, J.: Balancing constraints
and objectives by considering problem types in constrained multi-
objective optimization. IEEE Transactions on Cybernetics (2021)

39. Shi, J., Wang, J., Huang, H., Shen, L., Zhang, J., Xu, H.: Joint
optimization of stateful vnf placement and routing scheduling in
software-defined networks. In: 2018 IEEE Intl Conf on Parallel &
Distributed Processing with Applications, Ubiquitous Computing
& Communications, Big Data & Cloud Computing, Social Com-
puting & Networking, Sustainable Computing & Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom), pp. 9–14 (2018).
IEEE

40. Zhang, Y., He, F., Sato, T., Oki, E.: Network service scheduling
with resource sharing and preemption. IEEE Trans. Netw. Service
Manag. 17(2), 764–778 (2019)

41. Schneider, S., Dräxler, S., Karl, H.: Trade-offs in dynamic resource
allocation in network function virtualization. In: 2018 IEEEGlobe-
com Workshops (GC Wkshps), pp. 1–3 (2018). IEEE

42. Gamal, M., Abolhasan, M., Lipman, J., Ni, W., : Mapping and
scheduling of virtual network functions using multi objective opti-
mization algorithm. In: 2019 19th International Symposium on
Communications and Information Technologies (ISCIT), pp. 328–
333 (2019). IEEE

43. Mosaiyebzadeh, F.: Energy-efficient virtual network function
placement based on metaheuristic approaches. PhD thesis, Uni-
versidade de São Paulo

44. Salem,S.:An improvedbinaryquadratic interpolationoptimization
for 0-1 knapsack problems (2023)

45. Mijumbi, R., Serrat, J., Gorricho, J.-L., Bouten, N., De Turck, F.,
Davy, S.: Design and evaluation of algorithms for mapping and
scheduling of virtual network functions. In: Proceedings of the
2015 1st IEEE Conference on Network Softwarization (NetSoft),
pp. 1–9 (2015). IEEE

46. Blank, J., Deb, K.: pymoo:Multi-objective optimization in python.
IEEE Access 8, 89497–89509 (2020)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Optimizing Placement and Scheduling for VNF by a Multi-objective Optimization Genetic Algorithm
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Mathematical Problem Formulation
	3.1 System Model
	3.2 Objectives
	3.2.1 Minimizing the Transmission Delay
	3.2.2 Minimizing the Processing Capacity
	3.2.3 Minimizing the Processing Delay

	3.3 The List of the Proposed Models' Constraints
	3.4 An Example of How to Map and Schedule a Set of Service Requests

	4 The Proposed Algorithm
	4.1 Main Steps
	4.2 Algorithms for VNF Mapping and VNF Scheduling Problems
	4.2.1 An Algorithm for Minimizing the Transmission Delay
	4.2.2 An Algorithm for Minimize the Processing Capacity
	4.2.3 An Algorithm for Minimizing the Processing Delay

	5 Simulation and Experiment Results
	5.1 Setup
	5.2 Dataset
	5.3 Experimental Results and Discussion
	5.3.1 Analysis of Algorithm Performance with Varying VNF Requests
	5.3.2 Performance Evaluation over Different number of Generations
	5.3.3 Impact of Population Size on the Proposed Algorithm's Performance

	6 Conclusions
	Acknowledgements
	References

