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Abstract
The traditional automobile driving simulation system has the problems of low calculation efficiency and lack of realism. 
The traditional automobile driving simulation system with low computational efficiency and lack of realism limits the learn-
ing effect. Through virtual reality technology, vehicle driving can be simulated. By optimizing the algorithm of simulating 
vehicle driving simulation system, the preference of testers for driving style is investigated and the driver's preference style 
is determined. Finally, through the automatic driving simulation test method based on genetic algorithm, the key scenes 
can be divided into 11 different types, and the Euclidean distance of these 11 types is analyzed. Most drivers prefer a more 
conservative autonomous driving style. When analyzing 11 key scenario types, the Euclidean distance between scenario 2 
and scenario 3 is the smallest, which is 33 m, and the maximum Euclidean distance between scenario 6 and scenario 11 is 
91 m. The difference between scene 2 and scene 3 is the smallest, while the difference between scene 6 and scene 11 is the 
largest, and there are differences between each scene. Through virtual reality technology and algorithm optimization, the 
performance and user experience of driving simulation system are improved.

Keywords Virtual Reality Technology · Computer simulation · Autonomous driving · Vehicle driving simulation system · 
Questionnaire survey

Abbreviations
TORCS  The open racing car simulator
VTORCS  Visual open racing car simulator
AI  Artificial Intelligence
MIL  Model in the loop
SIL  Software in the loop
VIL  Vehicle in the loop
IO  Input/Output
LiDARs  Light Detection and Ranging
UI  User Interface

1 Introduction

Traditional vehicle driving simulation systems have many 
problems, such as low computational efficiency, insufficient 
realism, and limited learning effectiveness [1, 2]. Optimiz-
ing the algorithm of computer simulation vehicle driving 
simulation system based on virtual reality technology can 
improve the performance and user experience of the sim-
ulation system, and achieve a more efficient and realistic 
driving learning environment. This paper emphasizes the 
importance of a virtual driving simulation system in a driver 
training simulator. By improving the fidelity and personal-
ized experience, the training effect can be improved, so that 
drivers can better adapt to real road conditions, thus enhanc-
ing driving skills and improving safety. At present, there are 
still significant safety issues in the process of automatic to 
manual vehicle control conversion. Developing models and 
computer simulations for automatic vehicle control transi-
tions can help designers alleviate these issues, but only if 
accurate models are used. McDonald A D identified articles 
describing automatic vehicle takeover or driver modeling 
research through systematic methods and believed that the 
driver’s response between manual emergency situations and 
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automatic takeover is similar, with delays [3]. Li L proposed 
a type of human driving system that enables autonomous 
vehicles to make decisions like humans. This method used a 
convolutional neural network model to detect, recognize and 
extract the input road scene information captured by vehicle 
sensors. After that, on the basis of these abstractions, the 
decision system calculated the specific commands to con-
trol the vehicle. The experimental results demonstrated the 
effectiveness and robustness of this method [4]. Based on the 
methods of deep learning and reinforcement learning, Li D 
studied vision-based automatic driving. Li D decomposed 
the visual-based lateral control system into perception mod-
ules and control modules. To improve data efficiency, a deep 
reinforcement learning environment VTORCS (visual open 
racing car simulator) based on the open racing car simulator 
(TORCS) was proposed. By using an open racing simulator, 
people can train intelligent agents using images or inputs 
measured by various physical sensors, or evaluate perception 
algorithms on the simulator. Li D believed that the percep-
tion module can show good performance, and the controller 
can well control the vehicle to travel along the track center 
under the condition of visual input [5]. As an emerging and 
rapidly developing field, autonomous vehicle has attracted 
extensive attention due to their futuristic driving experi-
ence. Although the rapid development of deep sensors and 
machine learning methods has greatly promoted research 
on autonomous driving, existing autonomous vehicles do 
encounter some unavoidable accidents in road testing. The 
main reason is the misunderstanding between the auto drive 
system and human drivers.

As a method, vehicle driving virtual reality can create a 
calm and focused experience for passengers and autonomous 
vehicle occupants one day. Paredes P E conducted research 
on understanding the effects of car motion and determining 
parameters such as simulation length to avoid physical dis-
comfort. Quantitative and qualitative insights indicated that 
calm in car virtual reality applications are very suitable for 
automotive environments [6]. Lack of trust or acceptance 
of technology is a fundamental issue that may hinder the 
spread of autonomous driving. Technological advancements, 
such as the full-size windshield display of augmented reality 
assistive devices, may help provide users with better sys-
tem understanding. Wintersberger P raised the question of 
whether augmented reality assistance is possible to increase 
user acceptance and trust by communicating system deci-
sions. To prove this hypothesis, Wintersberger P conducted 
two driving simulator studies, and the quantitative results 
showed that adding other invisible traffic objects (such as 
dense fog) or displaying upcoming driving movements 
while sitting backwards are feasible methods to improve 
user acceptance and trust. The application of augmented 
reality, especially with the emergence of more powerful, 
lightweight, or integrated devices, is a great opportunity for 

autonomous driving and has high potential [7]. To achieve 
the goal of complete automation, it is important to under-
stand the working principle of AI (Artificial Intelligence) in 
the auto drive system. Ma Y investigated current practices by 
analyzing the main applications of AI in supporting autono-
mous driving, to understand how to use AI and what are the 
challenges and issues related to implementation. Based on 
the exploration of current practice and technological pro-
gress, potential opportunities for the integration of AI with 
other emerging technologies were further proposed [8]. The 
progress of AI has really stimulated the development and 
deployment of autonomous vehicle in the transportation 
industry. Driven by big data generated by various sensing 
devices and advanced computing resources, AI has become 
an important part of autonomous vehicle to sense the sur-
rounding environment and make appropriate decisions in 
motion. In the past, the solutions mainly focused on model 
design and autopilot conversion. However, the lack of accu-
rate model may lead to inevitable accidents, and the misun-
derstanding between automatic driving system and human 
drivers is still the main safety problem. This paper makes 
up for these shortcomings through virtual reality technology 
and algorithm optimization, and proposes an improved simu-
lation system to improve performance and user experience.

This article optimized the design of a computer simula-
tion vehicle driving simulation system based on virtual real-
ity technology through computer simulation vehicle driving 
simulation system and virtual reality technology algorithm 
optimization. Through virtual reality technology and algo-
rithm optimization, this paper improves the performance 
and user experience of a computer-simulated vehicle driv-
ing simulation system. Through a questionnaire survey, the 
driver's preference is studied, the key scenes are classified 
by genetic algorithm, and the scene differences are analyzed 
by Euclidean distance. It is found that most drivers prefer a 
conservative autopilot style. The contribution of this paper 
is to propose a personalized simulated driving learning envi-
ronment, improve the system performance by optimizing the 
algorithm, and deeply analyze the driving style preferences 
among different scene types, so as to provide strong guid-
ance for the future development of automatic driving system.

2  Methods

2.1  Optimization of Virtual Scene Generation 
Algorithm

By improving the virtual scene generation algorithm, a new 
method for constructing 3D models is proposed, which can 
improve the rendering speed and fidelity of 3D models. 
The main research content includes optimizing the load-
ing and rendering process of scene models to achieve fast 
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and realistic scene construction. In the past, its practicality 
was questioned due to its high cost and technical difficul-
ties. In recent years, with the continuous development of 
computer technology and the continuous improvement of 
hardware facilities, virtual driving technology has gradually 
entered people’s lives. Due to the increasing dependence of 
unmanned driving experiments on virtual simulation scenar-
ios, the traditional scenario counting method based on expert 
experience can no longer meet the actual testing needs [9]. 
The automatic generation of scenes based on digital virtual 
simulation has the advantages of scene diversity, high dan-
ger, strong interpretability, and high generation efficiency. 
It is of great significance for improving the safety and reli-
ability of autonomous driving experiments and is currently 
a research hotspot in the field of vehicle intelligent control 
[10, 11].

To obtain the motion trajectory of objects in the scene, 
it is necessary to have a clear understanding of the object’s 
coordinate system. Compared to the world coordinate sys-
tem in the scene, the car model is relatively independent. To 
facilitate control and output data, a local coordinate system 
can be constructed on the car. The motion of the car can be 
understood as moving or rotating around the X, Y, and Z 
axes, respectively, and synthesized, as shown in Fig. 1.

The local coordinate system of the car established in 
Fig. 1 is fixed on the car. When the car model moves rela-
tive to the world coordinate system in the virtual scene, it 
can be seen as a combination of the following movements: ① 
longitudinal movement of the car forward and backward; ② 
the left and right lateral movement of the car; ③ the inclina-
tion of the car; ④ the roll motion of a car.

Among these four actions, only the first one is caused by 
changes in the coordinate system of the vehicle throughout 
the entire scene. The other three movements are completed 

by the car rotating around each axis of the local coordinate 
system [12]. Therefore, for the convenience of observation, 
this article fixed the observation viewpoint on the rear of the 
vehicle and used the same local coordinates.

Use virtual reality technology to create a realistic driv-
ing simulation environment, including virtual roads, traffic 
signs, vehicle models and so on. Recruit participants for the 
driving simulation test. In the experiment, the driving behav-
ior data of participants were recorded, including accelera-
tion, braking, steering and so on. At the same time, virtual 
reality technology is used to collect their reaction data in 
different situations, such as reaction time and behavior in 
case of emergency.

By analyzing the collected driving behavior data, the 
driving algorithm of the simulation system is optimized, and 
the parameters of the simulation environment are adjusted 
in real time according to the preferences of participants. 
The automatic driving strategy is coded into genes, and the 
fitness function is designed according to the performance 
index. Through the evolution of genetic algorithm, the auto-
matic driving strategy is continuously improved.

2.2  Vehicle Physical Model Optimization

The occurrence of traffic safety accidents not only has a sig-
nificant impact on individuals but also relates to the safety 
and stability of the entire society. In terms of optimization 
algorithms for car physical models, the focus is on improv-
ing the realism and stability of car driving simulation [13, 
14]. The main research content includes improving car 
motion models, car collision detection algorithms, car han-
dling models, etc., which can improve the accuracy of car 
motion simulation and improve car driving safety.

Fig. 1  Automotive local coordi-
nate system
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The main safety hazards of driving a car are: the impact 
on the surrounding environment is ignored before the car 
starts, and the driver’s driving position in the car limits the 
range of vision. Therefore, before the car starts, the driver 
needs to have a certain understanding of the surrounding 
environment of the vehicle. Observing the car before driv-
ing can better grasp the distance between the car and fixed 
objects around it, so that there would be no scratches or 
collisions [15]. Motor vehicles do not maintain appropriate 
spacing while driving, resulting in most traffic accidents, 
while rear-end collisions are caused by drivers not maintain-
ing a safe distance while driving. In the process of vehicle 
operation, if the appropriate distance cannot be maintained, 
the safe Braking distance of the vehicle would be lost. Espe-
cially at night, if the driver is stimulated by the light emitted 
by the target car, it would directly affect the driver’s vision, 
leading to traffic accidents. The uneven speed of vehicles is 
also the main cause of vehicle collisions, especially rear-end 
accidents. Generally speaking, this situation is more com-
mon among inexperienced novice drivers [16, 17]. They 
have just started driving their vehicles, so when faced with 
various conditions on the road, they are prone to panic and 
feel very nervous. It is easy to focus on the process of driv-
ing the vehicle and neglect the safe distance between them 
and the vehicles ahead, especially in complex road surfaces 
and situations with a large number of vehicles, which can 
lead to traffic safety accidents.

In addition, the technical safety issues of automobiles 
are also an important factor leading to automobile safety 
accidents. Cars are a type of transportation that requires 
attention to maintenance and repair. Regular maintenance 
and repair can improve their safety in use. Different models 
and brands of vehicles meet different technical standards, 
so maintenance and repair should be carried out according 
to the characteristics of the vehicle [18]. For the collision 
process of a car, it can be divided into three parts, and the 
specific stage diagram can be shown in Fig. 2.

To accurately reflect the driving condition of a car in 
the event of a traffic accident, it is necessary to analyze the 
parameters such as driving speed and front wheel angle. 
Hyundai Motor Company has adopted a technology called 
Ackerman steering technology. The Ackermann steering 
technology can be shown in Fig. 3.

Before the emergence of this technology, cars often used 
single hinge chain steering, which can achieve consistent 
inner and outer steering trajectories, but also has certain 
drawbacks. The Ackermann steering system can effectively 
overcome the shortcomings of a single articulated steering 
system and steer the car by reducing the turning radius of 
the inner tire compared to the outer tire [19].

2.3  Optimization of Intelligent Driving Algorithms

Autonomous driving technology in automobiles is a new 
way to improve traffic efficiency and alleviate traffic con-
gestion, and is also one of the key technologies to achieve 
intelligent transportation. Due to the certain risks associated 
with the driving behavior of drivers, unmanned driving tech-
nology needs to be widely applied on the premise of safety 
and stability. Research has shown that to ensure the reliabil-
ity of autonomous vehicles and enable them to cope with 
various situations on the road network, at least hundreds of 
millions, or even billions of kilometers of testing mileage 
are required, which is clearly impossible to achieve solely 
through real vehicle testing [20]. On this basis, the article 
proposed an intelligent driving simulation system based on 
a multi-objective programming method. The main research 
contents include improving the road planning algorithm, 
establishing the traffic flow model, designing the interac-
tive traffic flow model, and building a more intelligent road 
traffic system.

Improvement of road planning algorithm: The A* (A 
Star) algorithm is the most representative heuristic search 
algorithm. According to the needs of path planning and 
actual tasks, adjustments need to be made to indicators such 
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as path length, planning efficiency, and the number of inflec-
tion points.

The establishment of interactive traffic flow models and 
design: The research and development of unmanned driving 
systems include the development of software and hardware, 
system design and decomposition, testing and validation, 
etc. Due to the differences in requirements at each stage, 
simulation systems are often based on different platforms, 
resulting in issues such as time asynchrony and data incom-
patibility. For this reason, a set of technical system can be 
built to realize the combination of offline and real-time, 
software simulation and Hardware-in-the-loop simulation, 
virtual simulation and real vehicle test, so as to meet the 
life cycle requirements of the unmanned driving system. 
For the test objects at different stages, the automatic driving 
simulation test schemes are also different, including model 
in the loop (MIL), software in the loop (SIL), Hardware 
in the loop (HIL) and vehicle in the loop (VIL). Although 
the hardware and Input/Output Interface (IO) interfaces of 
actual vehicles have gradually been introduced, which can 
make the simulation closer to the performance of real vehi-
cles under low-cost and small-scale conditions, the driving 
environment always requires simulation [21]. The model of 
the autonomous driving environment sensor can be shown 
in Fig. 4.

Common environmental sensors in unmanned driving 
systems include various types of cameras, millimeter-wave 
radars, LiDARs (Light Detection and Ranging), positioning 
devices, and wireless communication devices. Their mod-
eling must be based on basic physical laws to simulate [22]. 
Environmental sensors typically consist of a detection device 
and a signal processing device, each of which can output a 
detected signal.

2.4  User Experience Optimization

Improving user interaction and feedback systems can 
enhance user experience and learning outcomes. The 

specific content includes improving user interface design, 
interactive devices, and feedback mechanisms, and allow-
ing users to participate more intuitively and conveniently in 
driving simulations, thereby improving efficiency [23]. The 
user interface design is shown in Fig. 5.

Under autonomous driving conditions, the driver is both 
an operator and a decision-maker, while the vehicle controls 
the brakes and throttle based on the driver’s perception and 
judgment of the surrounding environment. Therefore, the 
driver has expectations for every step of the car’s movement.

For the auto drive system, the current driver’s identity 
is the co-driver. At this time, the driver in the car is no 
longer the driver who performs various operations on the 
vehicle. The driver’s role now is like a coach when learn-
ing the driver’s license. The driver would not participate 
in the decision-making and operation of the vehicle at all. 
The driver is more likely to experience as a supervisor. The 
changes brought about by autonomous driving can be seen 
in Table 1.

On this basis, combined with methods such as user 
interviews, expert surveys, and questionnaire surveys, the 
influencing factors on the user experience of autonomous 
vehicles are studied [24]. On this basis, scientific decisions 
are made at various research and development stages by 
refining user requirements to ensure the achievement of the 
final design goals and continuous updates and updates are 
carried out.

In this paper, virtual reality technology is used to opti-
mize the algorithm of computer simulation vehicle driving 
simulation system. First, the fidelity and rendering speed 
are improved by improving the virtual scene generation 
algorithm. Then, the key scenes are classified by genetic 
algorithm to investigate the driving style preference of the 
experimenters. Finally, Euclidean distance is used to ana-
lyze the differences between different scene types. Methods 
Focus on improving system authenticity, intelligent deci-
sion-making ability and user experience, and provide a basis 
for personalized driving learning.

Model of vehicle

Environment model

Algorithms for Environment 

Perception and fusion

Decision planning and 

Control algorithms
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Signal processing unit

Sensor

Detection unit

Sensor model Autonomous driving algorithm

Simulation test platform
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Fig. 4  Model of autonomous driving environment sensors
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The algorithm optimization process in this paper includes 
improving the virtual scene generation algorithm, optimiz-
ing the vehicle physical model algorithm, intelligent driving 
algorithm and user experience algorithm. By improving the 
virtual scene generation algorithm, 3D model rendering is 
accelerated and improved. The optimization of the vehicle’s 
physical model algorithm aims to improve the realism and 
stability of driving simulation. The optimization of intelli-
gent driving algorithms emphasizes improving the autono-
mous decision-making and intelligent interaction ability of 
the system. The optimization of the user experience algo-
rithm focuses on improving user interface design, interac-
tive equipment and feedback mechanism to enhance user 
participation and convenience. This series of optimization 
has deepened the performance and user experience of the 
driving simulation system through virtual reality technology.

3  Results

3.1  Simulation of Autonomous Driving Scenarios

A six-degree-of-freedom driving simulation device is estab-
lished, including seat, steering wheel, pedal, virtual real-
ity headset and so on. Ensure that the device can provide a 

realistic driving simulation experience, including road vibra-
tion, acceleration feedback, etc. Participants are required to 
complete the obstacle avoidance test on the simulated driv-
ing device according to their normal driving habits. The test 
includes obstacle avoidance behavior when encountering 
obstacles, such as avoiding obstacles or slowing down to 
avoid. Record the data during driving, such as speed, accel-
eration, steering angle, etc. According to the data recorded 
during driving, such as acceleration, braking force and steer-
ing angle, the driving performance of participants is quan-
titatively evaluated.

In the test, participants need to perform obstacle avoid-
ance behaviors in the face of obstacles, including avoiding 
obstacles or slowing down. Data records during driving 
include parameters such as speed, acceleration and steering 
angle. By analyzing the recorded data such as acceleration, 
braking force and steering angle, the driving performance 
of participants is quantitatively evaluated.

The simulated driving test was conducted by participants 
on a six degree of freedom simulated driving device, requir-
ing them to complete obstacle avoidance tests according to 
normal driving habits. Driving style should comply with the 
following two points: 1) Driving style varies depending on 
individual or group; 2) Driving style is a habit that should 
be a more stable driving behavior. There are generally three 

Fig. 5  User interface design

Table 1  Changes brought about by autonomous driving

Manual driving Autonomous driving

User identity Operator, Decision maker Helper, Supervisor
Angle of evaluation How well the vehicle responds to user commands How close the vehicle dynamic control is to the driver control
User expectations Clearly understand the vehicle’s next steps They don’t know what to do next, so they need to pass it to 

the user through the User Interface (UI)



International Journal of Computational Intelligence Systems           (2024) 17:34  Page 7 of 14    34 

ways to drive: “radical”, “conservative”, and “average”. In 
terms of driving style, it is mainly measured by subjective 
statement scales and driving performance.

In terms of driving behavior characteristics, several 
indicators were selected, including average speed, average 
acceleration/deceleration, maximum acceleration, mini-
mum deceleration, maximum speed, and standard devia-
tion of acceleration. Automatic driving scene simulation 
refers to the use of Vehicle dynamics simulation software to 
build a two-way four lane highway scene. In the simulation 
scenario, the background vehicle was driving at a constant 
speed of 78 km/h, and the simulated vehicle was autono-
mous. It approached the vehicle in front at a higher speed 
and switched to overtaking after reaching certain conditions. 
Figure 6 shows the driver’s direct forward view of the simu-
lated vehicle.

The vehicle model, trajectory planning, motion control 
and driver model of automatic driving are all carried out 
in the Vehicle dynamics simulation software. This experi-
ment provided two types of autonomous driving modes and 
compared the differences in four aspects: different average 
vehicle speeds, different lane-changing times, lane-changing 
trajectory curves, and maximum lateral acceleration. The 
differences between the two driving styles of autonomous 
driving design are shown in Table 2.

The average speed of the aggressive driving style is 
92.3 km/h, while the average speed of the conservative driv-
ing style is 78 km/h. This shows that drivers with aggres-
sive driving style are more inclined to drive at higher speed, 
and may pay more attention to reaching their destinations 
quickly, while conservative drivers pay more attention to 
safety and stability, so the speed is slower. Curvature indi-
cates the degree of turning when a vehicle changes lanes. 
Drivers with aggressive driving style tend to have a sharper 
curve when changing lanes, while conservative drivers pre-
fer a smooth curve. Drivers with aggressive driving style are 
more inclined to high-speed and rapid driving behavior, and 
are more willing to bear higher lateral acceleration, while 
conservative drivers pay more attention to safety, stability 

and caution, with slower speed and need more time to make 
driving decisions.

Autonomous driving adopted rule-based decision-making 
and used time to collision (TTC) to represent the initial lane 
change time:

The trajectory planning adopted the connection of two 
arcs, and the curvature of the trajectory varied due to dif-
ferent driving modes. In the vehicle Dynamic simulation 
software, the driver’s single-point forward-looking model 
was established, and the target tracking control was realized. 
The trajectory maps of different driving styles are shown in 
Fig. 7.

Figure  7a shows a set of radical experiments, while 
Fig.  7b shows a set of conservative experiments. Five 
individuals were arranged on a driving simulator to con-
duct aggressive and conservative experiments, each lasting 
approximately 3 min. Before and after the experiment, a 
questionnaire survey was conducted on five participants to 
evaluate their subjective trust. The content of the autono-
mous driving assessment scale mainly includes the reliabil-
ity, ability, predictability, comprehensibility, familiarity, pur-
pose/motivation, and overall level of autonomous driving. 
The survey results are shown in Table 3.

The researchers gave the testers a questionnaire before 
and after the experiment. The results showed that four test-
ers trusted a more conservative style autonomous driving, 

(1)TTC = Δx∕Δv

Fig. 6  Driving perspective of 
simulated vehicles

Table 2  Differences between the two styles in autonomous driving

Parameters Aggressive 
driving style

Conservative 
driving style

Average vehicle speed 92.3 km/h 78 km/h
Start lane change time 3.6 s 15.9 s
Curvature of lane-changing trajectory 0.036 0.0109
Maximum lateral acceleration 4.36 m/s2 2.61 m/s2
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while one tester trusted a more aggressive style autonomous 
driving.

3.2  Scene Generation Under Autonomous Driving

In this paper, the longest road was selected from the M map 
in the simulation platform for testing, and the road scene was 
generated to realize the long-distance test of the auto-drive 
system. On this basis, a genetic algorithm-based autono-
mous driving simulation test method was adopted to con-
duct simulation tests on autonomous driving vehicles, and 
the simulation test results were evaluated. In each case, the 
vehicle was set as the primary vehicle and connected to the 
unmanned driving system. A collision detector was installed 
on the main vehicle to monitor the safety of unmanned vehi-
cles. Based on the driving trajectory of secondary vehicles 
and the design defects of unmanned driving systems, the 
detected safety violations were classified.

By comparing the automated driving simulation test 
method based on a genetic algorithm with the existing 
advanced automated driving simulation scene generation 
technology, it was proved that the automated driving simu-
lation test method based on a genetic algorithm is effective 
and progressiveness. The baseline method selected in this 

paper was an open-source automatic driving test technology 
based on a search method and a software toolkit for formal 
analysis of AI-based network physical system.

Open source search-based autonomous driving testing 
technology that uses genetic algorithms to evolve the motion 
of secondary vehicles to expose their safety violations. The 
software toolkit for formal analysis of AI (AI) based network 
physical system can generate test scenarios by optimizing 
sampling in the feature space, so as to discover the properties 
of the system that violate the defined rules (the rules defined 
here are to avoid collision with secondary vehicles). On this 
basis, the performance evaluation results of the genetic algo-
rithm-based autonomous driving simulation testing method 
and two benchmark testing methods under the same working 
conditions were compared, and their effectiveness in gener-
ating key scenarios, efficiency in generating and operating, 
impact on autonomous driving, and differences in generating 
key scenarios were analyzed. Through the automated driving 
simulation test method based on a genetic algorithm, the key 
scenarios can be divided into 11 different types. Type 1 is 
shown in Fig. 8.

Figure 8 shows type 1: collision between main and sec-
ondary vehicles. When the main vehicle moved along the 
track, the secondary vehicle would enter the front of the 

Fig. 7  Trajectory maps of different driving styles (a) Radical style. (b) Conservative style

Table 3  Post experiment 
questionnaire survey results

Title Tester1 Tester2 Tester3 Tester4 Tester5

Number of obstacles hit B A C B A
How easy it is to drive to the finish line C A D B C
Think of your driving skills C B B D C
Before that drive strategy D A F D E
In this experiment A B D A B
After familiarization with the experiment, 

compared to the state before the experiment
B A D A B

The driving style before that A and E A and F B and C E and F A and E
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main vehicle in a short period of time, and then broke, 
resulting in a rear collision accident of the auto drive system. 
Through analysis, it was found that due to the inability of the 
main vehicle’s warning module to alert the overtaking inten-
tion of the secondary vehicle, the main vehicle did not slow 
down in a timely manner during driving, resulting in a rear-
end collision with the vehicle. Type 2 is shown in Fig. 9.

Figure 9 shows type 2: side collision between the main 
vehicle and the secondary vehicle. After analysis, it was 
found that the secondary vehicle was occupying the main 
driving lane. Although the main driving perception module 
can detect the position of the secondary vehicle, it cannot 
accurately identify the size of the secondary vehicle, result-
ing in scratches. Type 3 is shown in Fig. 10.

Figure 10 shows type 3: the main vehicle was driving 
along the lane separation line, and the secondary vehi-
cle collided with the adjacent vehicle due to deceleration. 

Through analysis, the prediction module made incorrect 
predictions about the trajectory of the secondary vehicle 
and identified the trajectory of the secondary vehicle in the 
lane on the right side of the main vehicle. Based on the 
current speed of the second train, a prediction was made 
on whether the second train can achieve lane changing. 
However, the speed of the second car suddenly decreased, 
so when the second car reached the main driver’s lane, 
it is already late, and a collision would occur. Type 4 is 
shown in Fig. 11.

Figure 11 shows type 4: collision caused by overtaking of 
the main vehicle. Through analysis, the main vehicle percep-
tion module perceived that the next vehicle ahead was sta-
tionary, and the planning module re-planed the current path. 
After receiving the overtaking command, the control module 
performed overtaking, and the original stationary state in 
the secondary vehicle changed to a lane change. However, 
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From the car

Main vehicle From the car

Fig. 8  Key scenarios for type 1
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Fig. 9  Key scenarios for type 2
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Fig. 10  Key scenarios for type 3
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the collision occurred due to the failure to update the path 
planning in a timely manner. Type 5 is shown in Fig. 12.

Figure 12 shows type 5: two secondary vehicles collided 
while changing lanes to the front of the main vehicle road 
at the same time, next to the main vehicle. Through analy-
sis, it was found that although the decision-making module 
correctly recognized the motion trajectory of the secondary 
vehicle based on the perception of the main vehicle, it did 
not accurately identify the size of the vehicle. Therefore, 
although the vehicle slowed down, it still collided with one 
of the secondary vehicles. Type 6 is shown in Fig. 13.

Figure 13 shows type 6: the main vehicle collided with 
the secondary vehicle during deceleration and cutting during 
the following process. Through analysis, it was found that 
the perception module of the driver’s vehicle detected that 
the vehicle ahead was changing lanes. The prediction mod-
ule determined whether the vehicle ahead can complete the 
lane change process quickly based on the current vehicle’s 
driving speed, direction, etc., while the planning module 
failed to update the vehicle’s driving trajectory in a timely 
manner, resulting in vehicle collisions. Type 7 is shown in 
Fig. 14.

Figure 14 shows type 7: two secondary vehicles driving 
in front of the main vehicle. Secondary vehicle 1 was located 

in the lane adjacent to the main vehicle, while secondary 
vehicle 2 was located in the same lane as the main vehicle. 
When secondary vehicle 1 was inserted between secondary 
vehicle 2 and the main vehicle, a collision occurred. After 
analyzing the main vehicle, the perception module mistook 
the two secondary vehicles for one and identified a part of 
secondary vehicle 1 and 2 as the same, resulting in a colli-
sion. Type 8 is shown in Fig. 15.

Figure 15 shows type 8: when the main vehicle was fol-
lowing and the previous secondary vehicle was constantly 
changing lanes, a collision occurs. Through the analysis of 
the dynamic changes of secondary vehicles, it was found that 
the prediction model of the main vehicle cannot accurately 
predict secondary vehicles when the dynamic changes of 
the vehicles were significant. At the same time, due to the 
inability of the positioning module to accurately determine 
the position of the secondary vehicle, the planning module 
cannot timely draw the distance from the previous vehicle, 
resulting in collisions between the main vehicle due to insuf-
ficient avoidance time. Type 9 is shown in Fig. 16.

Figure 16 shows type 9: three cars were moving for-
ward on the same lane, with the main car behind them. 
The secondary vehicle 1 following in the middle tempo-
rarily changed lanes, resulting in a collision between the 
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Fig. 12  Key scenarios for type 5
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Fig. 13  Key scenarios for type 6
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Fig. 14  Key scenarios for type 7
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main vehicle and the secondary vehicle. According to 
the analysis, the perception module of the main vehicle 
could perceive the foremost secondary vehicle 2 due to 
being obstructed by secondary vehicle 1, but it also did 
not maintain a distance from secondary vehicle 1. So, if 
the secondary vehicle changes lanes and the speed of the 
secondary vehicle is faster than the speed of the secondary 
vehicle, a collision would occur when the speed of the sec-
ondary vehicle slows down. Type 10 is shown in Fig. 17.

Figure 17 shows type 10: three cars collide with each 
other repeatedly while driving in a straight line on the 
same lane. After analysis, it was found that this was 
because the car did not maintain sufficient safety distance. 
Therefore, during the emergency braking of the second car 
1, although the main car had already detected the emer-
gency braking of the previous second car 1, the braking 

distance between the main car and the previous car was too 
small, resulting in a collision. Type 11 is shown in Fig. 18.

Figure 18 shows type 11: the main vehicle attempted 
to overtake the secondary vehicle 2, but collided with the 
secondary vehicle 1 on the left lane. According to analy-
sis, when the main vehicle operation planning module re-
planned the overtaking route, the secondary vehicle 1 on 
the adjacent lane accelerated due to the perception module 
not updating in a timely manner, resulting in delayed path 
planning and ultimately a collision.

3.3  Scenarios Under Autonomous Driving

Based on the eleven key scenarios generated in the previ-
ous text, this article analyzed these eleven key scenarios 
using Euclidean distance. In Euclidean distance, the larger 
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Fig. 15  Key scenarios for type 8
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the distance, the greater the difference in key scene types. 
Figure 19 shows the Euclidean distance analysis between 
key scenarios of each type and their respective types. The 
horizontal axis represents the key scenarios of each type, 
and the vertical axis represents the Euclidean distance (m).

Through the Euclidean distance results in Fig. 19, it 
can be analyzed that there was a minimum Euclidean dis-
tance of 33 m between type 2 and type 3, which also indi-
cated that the scene difference between type 2 and type 
3 was the smallest; there was a maximum Euclidean dis-
tance of 91 m between type 6 and type 11, indicating that 
the scene difference between type 6 and type 11 was the 
greatest. The average Euclidean distance between differ-
ent types of scenes was 73.225 m. Through the Euclidean 
distance between different scenes, it can also be concluded 
that there were differences and no completely consistent 
scenes among different scene types. Through genetic 
algorithm and Euclidean distance analysis, it is revealed 
that most drivers prefer a conservative automatic driving 

style, which provides substantial guidance for system 
optimization.

4  Discussion

It is very important to create a computer simulation vehicle 
driving simulation system through virtual reality technology 
and algorithm optimization. The system not only provides 
a highly realistic driving experience but also can person-
alize and simulate the driving style to meet the needs of 
different drivers. Different drivers have obvious differences 
in driving styles, and these styles are relatively stable for a 
period of time. This provides a strong support for the per-
sonalized customization of the automatic driving system, 
and the automatic driving strategy can be adjusted accord-
ing to the driver's preferences and habits. By using genetic 
algorithm and Euclidean distance analysis, we successfully 
classified different driving scenarios and found that most 

Fig. 19  Euclidean distance between different key scenarios
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drivers prefer a conservative autonomous driving style. This 
provides guidance for the development of automatic driving 
system in the future, which can better adapt to the diverse 
driving situations in the real world and improve safety and 
performance. Through virtual reality technology and algo-
rithm optimization, this paper successfully improves the 
performance of computer-simulated vehicle driving simu-
lation system. It is found that most drivers prefer a con-
servative autonomous driving style, which provides guid-
ance for future system development. This paper provides 
personalized driving experience with high fidelity through 
collaborative optimization of virtual reality technology and 
algorithm. Compared with the previous studies, this study 
deeply explores the driver's preference and stable driving 
style, and provides a new perspective for the development 
of automatic driving system. The successful application of 
genetic algorithm and Euclidean distance analysis makes 
the scene classification more accurate and provides empiri-
cal support for system adjustment. This research result is 
expected to promote the development of automatic driving 
system in a direction closer to the individual needs of drivers 
and improve safety and performance in diversified driving 
situations.

5  Conclusions

This article analyzed and introduced the algorithm opti-
mization of the simulated vehicle driving simulation 
system. Under the algorithm optimization of the simu-
lated vehicle driving simulation system, by introducing 
the optimization of virtual scene generation algorithm, 
vehicle physical model optimization, intelligent driving 
algorithm optimization, and user experience optimization, 
it was understood that when improving the virtual scene 
generation algorithm, the main purpose is to improve 
the scene rendering speed and realism. When optimizing 
vehicle physical model algorithms, the main purpose is to 
improve the authenticity and stability of driving simula-
tion. When optimizing intelligent driving algorithms, the 
main purpose is to enhance the autonomous decision-mak-
ing and intelligent interaction capabilities of the driving 
simulation system. When optimizing user interaction and 
feedback mechanisms, the main goal is to improve user 
experience and learning outcomes. In the experimental 
analysis section of the article, it was found that among 
the two styles of radical and conservative driving, people 
tend to prefer the conservative style of autonomous driv-
ing. In the genetic algorithm-based autonomous driving 
simulation testing method, key scenarios were divided 
into 11 different types and analyzed for these 11 types of 
scenarios. At the end of the article, Euclidean distance 

analysis was also conducted on key scenarios, and it was 
found that there is this difference between scenarios. In 
this paper, the computer simulation vehicle driving system 
is improved by virtual reality technology and algorithm 
optimization, and the automatic driving simulation test is 
carried out by genetic algorithm, and 11 key scenarios are 
analyzed. The results show that most drivers prefer a con-
servative autopilot style. This study provides an in-depth 
understanding of the performance and user experience of 
driving simulation system and provides guidance for the 
development of automatic driving systems in the future. 
Compared with traditional research, this study deeply 
discusses the driver's preference and stable driving style, 
which provides a new perspective for the development of 
automatic driving systems. This paper provides innova-
tive ideas for the optimization of virtual reality technology 
and genetic algorithm in driving simulation systems. Its 
personalized driving experience and scene classification 
method provide empirical guidance for the development 
of the automatic driving system, which is expected to 
improve the adaptability of the system in diversified driv-
ing situations and promote the safety and performance of 
intelligent transportation systems. This research result lays 
a foundation for the practical application of autonomous 
driving technology in the future. The small number of peo-
ple surveyed in the article may affect the representative-
ness of the results. There is a lack of in-depth discussion 
on the specific implementation details of virtual reality 
technology and genetic algorithms. Future research can 
expand the sample size and explore the technical imple-
mentation methods in more detail.
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