
Vol.:(0123456789)

International Journal of Computational Intelligence Systems (2024) 17:30
https://doi.org/10.1007/s44196-023-00400-9

RESEARCH ARTICLE

A Lightweight Model for Malicious Code Classification Based
on Structural Reparameterisation and Large Convolutional Kernels

Sicong Li1 · Jian Wang1 · Yafei Song1 · Shuo Wang2 · Yanan Wang1

Received: 10 December 2023 / Accepted: 27 December 2023
© The Author(s) 2024

Abstract
With the advancement of adversarial techniques for malicious code, malevolent attackers have propagated numerous mali-
cious code variants through shell coding and code obfuscation. Addressing the current issues of insufficient accuracy and
efficiency in malicious code classification methods based on deep learning, this paper introduces a detection strategy for
malicious code, uniting Convolutional Neural Networks (CNNs) and Transformers. This approach utilizes deep neural
architecture, incorporating a novel fusion module to reparametrize the structure, which mitigates memory access costs by
eliminating residual connections within the network. Simultaneously, overparametrization during linear training time and
significant kernel convolution techniques are employed to enhance network precision. In the data preprocessing stage, a
pixel-based image size normalization algorithm and data augmentation techniques are utilized to remedy the loss of texture
information in the malicious code image scaling process and class imbalance in the dataset, thereby enhancing essential
feature expression and alleviating model overfitting. Empirical evidence substantiates this method has improved accuracy
and the most recent malicious code detection technologies.

Keywords Malware variant detection · Convolutional neural network · Structurral reparameterisation · Large kernel
convolution · Image size normalisation

1 Introduction

Malicious code is software designed to carry out malicious
activities or launch attacks. According to the “Internet Secu-
rity Situation Analysis Report for the First Half of 2021”
published by the China National Internet Emergency Center
(CNCERT/CC) [1], approximately 23.07 million malicious
software samples were captured in the first half of 2021,
with a daily distribution frequency amounting to 5.82 mil-
lion instances. This involved about 208,000 malicious code
families, infecting approximately 4.46 million computer ter-
minals. Concurrently, the “China Internet Security Report
2022” released by Rising [2] indicated that 73.55 million
malicious codes were caught by the Rising “Cloud Security”
system in 2022, with virus infections occurring 124 million

times, including devices from individuals, companies, and
government agencies. The rapid propagation and variance of
the malicious code have severely impacted users' everyday
lives, jeopardizing our national cybersecurity and hinder-
ing the development of a communal digital future. Hence,
accurately and efficiently detecting and categorizing mali-
cious software and its varieties has become a focal point in
this field.

Traditional malicious software identification methodolo-
gies hinge on the match of a signature-based model. This
necessitates researchers manually extracting the signature
of the malicious software using expert knowledge and then
comparing these signatures with known ones stored in a
database. However, numerous variations of malicious soft-
ware have been generated with the evolution of obfusca-
tion and wrapping techniques. This circumstance renders
traditional detection methods less efficient and ineffective
at detecting and recognizing variations of malicious soft-
ware. To tackle the challenges faced by static analysis-based
malicious code detection methodologies, visualization-based
detection and classification techniques for malicious code
have emerged [3, 4]. These methods map malicious code as

 * Yafei Song
 yafei_song@163.com

1 Air and Missile Defense College, Air Force Engineering
University, Xi’an 710051, People’s Republic of China

2 Unit of 95285, Chinese People’s Liberation Army (PLA),
Guilin 541000, People’s Republic of China

http://orcid.org/0000-0003-0962-0671
http://crossmark.crossref.org/dialog/?doi=10.1007/s44196-023-00400-9&domain=pdf

 International Journal of Computational Intelligence Systems (2024) 17:30 30 Page 2 of 18

images based on the distinct texture features within the same
malicious code family and differing texture characteristics
between various code families. They extract texture fea-
tures of the malicious code image and use these elements to
detect and categorize malicious code samples. Visualization-
based malicious code analysis methodologies neither rely
on expert knowledge nor static decompilation procedures
and have been proven capable of detecting malicious code
variations effectively.

Since the method was proposed, a large number of
experts and scholars have researched on it and some pro-
gress has been made. The main focus is on using machine
learning and deep learning techniques to improve detection
accuracy and efficiency. Nataraj et al. [5] fused image and
signal features to describe the malicious code and used KNN
(K-Nearest Neighbor) as a classifier to identify the malicious
code. Kancherla et al. [6] to enhance the diversity of the
features incorporated Gabor features, Wavelet features and
intensity features are fused as total features and SVM (Sup-
port Vector Machines) classifier is trained to achieve mali-
cious code classification. Yashu Liu et al. [7] constructed
anti-confusion features by fusing GIST features and LBP
(Local Binary Pattern) features of malicious images to solve
the problem of degradation of classification performance
of the model in similar malicious images. The above stud-
ies applied machine learning to visualisation-based mali-
cious code detection methods, and although there is some
progress, they usually require manual extraction of features
from the data, and the detection efficiency is low.

With the advent of deep learning, Naeem et al. [8] pro-
posed a malware variant classification method. They first
converted malware files into grey-scale images and then
used global malicious and local collective mechanisms to
identify malware variants. Their paper describes the pro-
posed method in detail. The only shortcoming may be that
comprehensive empirical psychological results are not pro-
vided to demonstrate the performance of variant classifica-
tion. Mathew et al. [9] devised a method to classify malware
variants. Their method converts malware files into colour
images and introduces a local pyramid pool to handle vari-
ous input image sizes. Although in practice, their paper also
did not address variant classification performance, especially
the results of experiments on variant classification for vari-
ous levels of variability.

In recent years, with the advancement of computer vision
and deep learning technologies, deep learning algorithms,
represented by Convolutional Neural Networks (CNNs),
have made breakthrough progress in image classification
and feature recognition, becoming the mainstream architec-
ture for visual models. They have gradually been applied
to malicious code detection and classification fields. The
classic Convolutional Neural Network (ConvNet) [10], com-
posed of Conv, ReLU, and pooling, has achieved significant

success in image recognition. The advent of Inception [11],
ResNet [12], and DenseNet [13] have shifted a vast amount
of research interest towards intricately designed architec-
tures, escalating the model complexity. Recent architectures
are based on automatic [14] or manual [15] architectural
searches or searched compound scaling strategies [16].
Although many complex CNNs have improved in accuracy,
their disadvantages are significant: (1) Complex multi-
branch designs, for instance, residual additions in ResNet
and branch connections in Inception, make the model dif-
ficult to implement and customize, leading to slow infer-
ence speed and low memory utilization. (2) Certain com-
ponents, such as depthwise convolution in Xception and
MobileNets [17, 18] and channel shuffling in ShuffleNets
[19], increase memory access overhead and lack support
for various devices.

With the success of data-driven models in image classi-
fication, detection and segmentation tasks [20, 21], a range
of hybrid visual transformer models have emerged [22–25].
Different from convolution layers, the self-attention mecha-
nism of Vision Transformers offers a global context by
modeling long-distance dependencies. However, achieving
this global view often incurs high computational costs [26]
and increases memory access overhead [27], thus resulting
in significant latency overhead. To alleviate this challenge,
some studies [26, 28, 29] focus on mitigating the computa-
tional burden associated with self-attention layers. Design
approaches include replacing Patchify Stem with convolu-
tion layers [30], introducing early convolution stages [31],
or employing window attention [32] to implement implicit
hybrid models. The latest research has established explicit
hybrid structures that better facilitate information exchange
among tokens (or patches) [33–35]. In most hybrid struc-
tures, token mixing primarily depends on self-attention.

Inspired by recent work [27] utilizing reparametrized
skip-connections to reduce memory access costs, this
study introduces an architectural component called the
Rep Mixer into the model. This operator is a fully repara-
metrized token mixer, combining the advantages of con-
volution architectures and Transformers, supplanting
the self-attention layer to achieve computational latency
reduction. The jump connections are eliminated through
structural reparametrization. In addition, Rep Mixer also
employs deep convolution to carry out operations simi-
lar to the information space mixing of ConvMixer. To
enhance performance, various studies [17, 18, 36] have
incorporated deep convolution or group convolution, sub-
sequently resorting to 1 × 1 point convolution to factor
the k × k convolution. Despite this technique effectively
bolstering the model's overall operational efficiency, the
parameter decrease may result in a drop in model capacity.
To further ameliorate latency, the number of floating-point
operations (FLOPs), and parameter count, more recent

International Journal of Computational Intelligence Systems (2024) 17:30 Page 3 of 18 30

research [27, 37, 38] employs linear training time over-
parametrization to increase such a model's capacity. This
paper replaces all the dense k × k convolutions with their
decomposition version, that is, depthwise convolution fol-
lowed by pointwise convolution, and uses the linear train-
ing time over-parametrization proposed in [27] to enhance
the capacity of these layers. These additional branches are
only introduced during training and are reparametrized
during inference.

Additionally, in the design of the MDC-RepNet (Struc-
tural Reparameterization and Multi-scale Deep Convolu-
tional Classifier Network, MDC-RepNet), we have adopted
large kernel convolution to replace the early-stage Self-
Attention method. Although the Vision Transformer based
on self-attention demonstrates high accuracy, it is inefficient
in handling latency [26]. As a result, we introduce large
kernel convolutions in the Feed Forward Network (FFN)
layer and the patch embedding layer. Compared with other
Vision Transformer architectures, our MDC-RepNet has a
more negligible impact on overall latency while improving
performance.

Aiming at the problem of insufficient extraction accuracy
and low efficiency of current deep learning-based malicious
code classification methods, this paper proposes a malicious
code detection method combining CNN and Transformer,
compared with other deep learning-based malicious code
detection methods, the MDC-RepNet proposed in this paper
has the following advantages.

1. For the problem of data image texture information
loss, In the data preprocessing stage, pixel-filling based
image size normalization algorithm and data enhance-
ment techniques are used to improve the image texture
information loss and dataset category imbalance prob-
lem during malicious code image size deflation, respec-
tively, and to enhance the expression of key features and
alleviate the overfitting phenomenon of the model.

2. For the problem of slow detection speed, A deep neural
network is adopted as the framework, and the fusion
module is introduced to make its structure reparameter-
ised, which effectively reduces the memory access cost
by eliminating the jump connections in the network.

3. For the problem of poor classification accuracy, linear
training time over-parameterisation and large kernel
convolution technique are used to improve the network
accuracy.

4. Through the final experiments, it is proved that the
method in this paper has a stable improvement in both
accuracy and operation efficiency, which is better than
the latest malicious code detection technology.

In conclusion, MDC-RepNet is based on the Vision Trans-
formers architecture, leveraging structural reparametrization

to achieve lower memory access costs and higher efficiency,
realizing superior accuracy-latency balance.

2 Malicious Code Classification Method
Based on MDC‑RepNet

Our proposed malicious code detection scheme consists of
two core components: data preprocessing and the construc-
tion of the MDC-RepNet. During the data preprocessing
stage, it includes visualizing malicious code, normalizing
image size, and data augmentation techniques. The construc-
tion of the MDC-RepNet stage introduces the Rep Mixer
token-mixing operator. It employs a structural reparametri-
zation strategy to eliminate skip connections within the
network to reduce memory access costs. Simultaneously, it
utilizes over-parametrization during training time and exten-
sive kernel convolution techniques to enhance the model's
accuracy. The complete architecture is shown in Fig. 1.

2.1 Data Preprocessing

2.1.1 Malware Visualization

Malicious Code Visualisation is the conversion of malicious
code executables into greyscale images. Malware visuali-
sation does not require any feature engineering or domain
expert knowledge and is a simple and easy-to-use method
for malicious code analysis. The visualisation-based mali-
cious code analysis method can present the static structural
information of the malicious code through images, which
can quickly process a huge number of samples. And its abil-
ity to capture small changes between malicious code variants
while preserving the global structure will help in analysing
malicious code.

The process of malicious code visualization entails trans-
forming malicious code binary files into grayscale images, as
illustrated in Fig. 2. First, given a malicious code, a binary
file is read in groups of 8-bit unsigned integers. Each group
of binary numbers is then converted into a decimal integer.
Subsequently, the row width is determined according to the
PE file size and transformed into a two-dimensional array,
and the correspondence between the row width and the file
size is shown in Table 1. Finally, each element in the two-
dimensional array is considered as the grayscale value of the
image, mapping the two-dimensional array onto a grayscale
image—the partial conversion of malicious family samples
as depicted in Fig. 3.

The correspondence of the different parts of the malware
code binary file mapped to a grey scale image is shown in
Fig. 4. In Fig. 4, the text contains not only malware exe-
cutable code but also black blocks filled with zeros. The
data section contains information about initialised and

 International Journal of Computational Intelligence Systems (2024) 17:30 30 Page 4 of 18

uninitialised variables. The final rsrc section contains all
kinds of compiled and generated malicious code resources,
including the program's icons and so on.

2.1.2 Malware Image Size Normalization

In convolutional neural networks, the size of the weight
matrix in the fully connected layer is fixed, meaning the
feature size input into the fully connected layer must remain
consistent. If the input image sizes vary, the feature sizes
following convolution and pooling operations will also dif-
fer, leading to disparate feature sizes input into the fully

connected layer and rendering the fully connected layer inef-
fective. Thus, images input into the convolutional neural net-
work must be the same size. However, the sizes of visuals
created after visualizing malicious images are all different.
Consequently, it is necessary to normalize the size of the
malicious images after visualization.

We adopt the bilinear interpolation algorithm for image
size normalization to maintain the original texture features
of the malicious images after normalization as much as pos-
sible. This algorithm first selects four-pixel points directly
adjacent to the interpolation point of the malicious image,
then performs linear interpolation calculations twice in the
x direction, and finally performs linear interpolation in the
y direction to obtain the pixels of the interpolation point:

(1)f (x, y1) =
x2 − x

x2 − x1
f (x1, y1) +

x − x1

x2 − x1
f (x2, y1)

(2)f (x, y2) =
x2 − x

x2 − x1
f (x1, y2) +

x − x1

x2 − x1
f (x2, y2)

Fig. 1 Schematic diagram of the model structure

Fig. 2 Illustration of malware images visualization

Table 1 Image width for various file sizes

File size range Image
width

File size range Image width

1 < 10 KB 32 5 100–200 KB 384
2 10–30 KB 64 6 200–500 KB 512
3 30–60 KB 128 7 500–1000 KB 768
4 60–100 KB 256 8 > 1000 KB 1024

International Journal of Computational Intelligence Systems (2024) 17:30 Page 5 of 18 30

where f (x, y) is the pixel value of the interpolation point in
the malware image. (xi, yj) (i, j = 1, 2) are the four pixels near
the interpolation point in the malware image. Figure 5 shows
the malicious image of a sample in the Allaple.A family after
normalisation, by observation it can be seen that the basic
texture features of the malicious image after the bilinear
interpolation algorithm are well preserved.

2.1.3 Data Enhancement Techniques

In deep learning models, the effect of classification
is closely related to the quality of the dataset, and an

(3)f (x, y) =
y2 − y

y2 − y1
f (x, y1) +

y − y1

y2 − y1
f (x2, y2)

adequate and balanced dataset can not only improve the
classification accuracy of the model but also avoid the
overfitting phenomenon to a certain extent. When the num-
ber of samples in the dataset is small or the number of
samples in each category is unbalanced, data enhancement
techniques can be used to increase the number of samples
in a few categories, so as to suppress the impact of unbal-
anced samples on the model and improve the robustness
of the model. The common image data enhancement is
to generate new data by transforming the original image
data, such as: scaling, flipping, shifting, etc. To solve the
problem of an unbalanced number of samples of various
categories in the malicious code dataset, this paper uses
the image data augmentation technique function in python
to expand the samples of the dataset, and the parameter

Fig. 3 Samples of different malware family grayscale images

Fig. 4 Malicious code PE file
section and its correspond-
ing visualised image fragment
information

 International Journal of Computational Intelligence Systems (2024) 17:30 30 Page 6 of 18

settings of the data augmentation technique used in the
experiment are given in Table 2.

2.2 Feature Extraction and Classification

The design inspiration of MDC-RepNet comes from the
combination of CNN and Transformer. CNN is good at
extracting local features from images, while Transformer
can globally capture sequence information. MDC-RepNet
attempts to combine the advantages of both to achieve
stronger feature extraction and model representation capa-
bilities. The overall architecture of the MDC-RepNet is
shown in Fig. 6.

The starting point of MDC-RepNet is Stem, which uses
convolutional structures for feature extraction. During the
inference stage, the structure consists of 3 × 3 convolution,
3 × 3 depth convolution, and 1 × 1 convolution to extract
multi-scale features from the original image. To achieve
structural reparameterization, additional 1 × 1 convolution
or Identity branches are introduced during the training stage,
providing greater flexibility to the model and helping to opti-
mize its representation ability.

MDC-RepNet is divided into four stages, each of which
halves the resolution of the feature map and doubles the
number of channels. The first three stages use the same

internal structure, using the Rep Mixer in Fig. 6d for
token mixing. This structure aims to achieve feature reuse
across stages and dimensions, and improves the represen-
tational power of the model by reparameterizing the skip
connections.

The internal structure of the fourth stage is shown in
Fig. 6a, using attention as a token mixer. This design sacri-
fices inference speed to ensure higher accuracy. The atten-
tion mechanism allows the model to focus on key informa-
tion within the global scope, further improving the quality
of feature representation.

The ConvFFN architecture is used in each stage of MDC-
RepNet, which is different from traditional FFN. ConvFFN
combines deep separable convolutions (7 × 7) and feedfor-
ward networks to achieve more efficient feature extraction
and model representation. Deep separable convolutions
allow the model to learn more complex spatial features while
reducing computation, which helps improve model inference
speed and accuracy.

To achieve structural re-parameterization, MDC-RepNet
introduces a novel fusion module. This module aims to fuse
different levels of features from CNN and Transformer, lev-
eraging the advantages of both. During training, the fusion
module allows the model to adaptively adjust the feature
fusion method according to task requirements, optimizing
the model's performance. This design provides greater flex-
ibility for the model, enabling it to better adapt to various
visual tasks.

In summary, MDC-RepNet achieves powerful feature
extraction and model representation capabilities by cleverly
combining a CNN and a Transformer. the CNN is respon-
sible for extracting local features from an image, while the
Transformer captures global sequence information using a
self-attentive mechanism. This integration approach enables

64 × 64

128 × 128

256 × 256

Fig. 5 Bilinear interpolation method to deflate the malicious code image

Table 2 The parameter settings of data augmentation

Method Setting Method Setting

1 Rescale 1/255 5 Shear range 0.0
2 Width shift 0.0 6 Zoom range 0.0
3 Height shift 0.0 7 Horizontal flip False
4 Rotation range 0.0 8 Fill mode None

International Journal of Computational Intelligence Systems (2024) 17:30 Page 7 of 18 30

MDC-RepNet to simultaneously process both spatial and
sequence information of an image, resulting in excellent per-
formance in a variety of visual tasks. In addition, by intro-
ducing the novel fusion module and ConvFFN architecture,
MDC-RepNet further improves its feature extraction and
model representation capabilities.

2.2.1 Structural Reparameterization

Multi-branch network structures, boasting receptive fields
of varying scales, increase the network's width and param-
eter amount compared to tiling network structures. This is
conducive to enhancing network performance. However, as
the network becomes more branched, the memory consump-
tion during training and inference speed are significantly
affected. Therefore, Ding et al. [39] propose the notion of
structural reparametrization, which equivalently converts
complex multi-branch structures into a single-branch struc-
ture. In this way, a network with a multi-branch structure can
be selected during training to enhance network performance.
After training, the network can be converted into a single-
branch structure for inference. The converted single-branch
structure can maintain the original network's performance
while improving the network's running speed and reducing
memory consumption and the parameter count.

Figure 7 illustrates the transformation of the multi-
branch structure during training into a single-branch
structure for inference. Figure 7a presents a multi-branch

structure known as a basic block. Apart from the bottom-
most branch in the basic block, each branch comprises a
convolution layer and a Batch Normalization (BN) layer.
In contrast, the bottommost branch consists solely of a
BN layer. Fusing all branches in the basic block into a
single branch entails multiple fusion steps, including the
fusion of the BN layer with the convolution layer and the
fusion of convolution layers of different sizes, etc.

Fusion of the BN layer with the convolution layer. The
Conv. change and BN operation are represented as follows:

In the equations, x represents the input. Hence, after
passing through the convolution layer and BN layer, the
input x can be expressed as:

In the equations, � and b are the weights and bias before
merging, � and � are the translation and scaling parameters
obtained after training, �B and �B are the means and vari-
ances of all training data, respectively, � is a very small
constant to avoid division by zero.

(4)yconv = � ⋅ x + b

(5)
BN� ,�(yconv) = �

yconv − �B
√

�2
B
+ �

+ �

(6)BN� ,�(x) =
��

√

�B
2
+ �

x +
�

√

�B
2
+ �

(b − �B) + �

Fig. 6 Overall architecture of the MDC-RepNet

 International Journal of Computational Intelligence Systems (2024) 17:30 30 Page 8 of 18

From Eqs. (7) and (8):

where �̂� and b̂ are the weights and bias of the fused con-
volutional kernel, respectively. The convolutional layer can

(7)
�̂� =

𝛾𝜔
√

𝜎2
B
+ 𝜀

(8)
b̂ =

𝛾
√

𝜎2
B
+ 𝜀

(b − 𝜇B) + 𝛽.

(9)BN𝛾 ,𝛽(x) = �̂� ⋅ x + b̂

be fused with the BN layer by the above transformations to
reduce the computation amount during inference. The spe-
cific fusion method is:

(1) Fusion of 1 × 1 convolution with 3 × 3 convolution.
The 1 × 1 convolution is filled to 3 × 3 size using 0. Utilizing
the additivity of convolution, the convolution obtained from
the filling is added to the original 3 × 3 convolution to obtain
the fused 3 × 3 convolution.

(2) Fusion of 3 × 3 convolution and 7 × 7 convolution.
Similar to the fusion of 1 × 1 convolution and 3 × 3 convo-
lution, the 3 × 3 convolution is filled with zeros to a con-
volution of size 7 × 7 and then added to the original 7 × 7
convolution to obtain the fused 7 × 7 convolution.

Fig. 7 Processing flow for transforming a multi-branch structure into a single-branch structure

International Journal of Computational Intelligence Systems (2024) 17:30 Page 9 of 18 30

(3) Fusion of residual branches with BN layer. Residual
branching can be considered a convolution operation of the
original input data with a convolution kernel with unique
parameters. Using 1 × 1 convolution and making the param-
eter of the convolution kernel corresponding to the current
number of channels one and the parameter corresponding to
the rest of the channels 0, the output can be obtained as the
same as the input. This 1 × 1 convolution is fused with the
BN layer and then filled to a 5 × 5 convolution using zeros.

After fusing the convolutional layer with the BN layer
using the fusion method described above, the transforma-
tion of Fig. 7a to Fig. 7b can be realized, and the additivity
of the convolution can be utilized to transform Fig. 7b, c.
Up to this point, a multi-branch basic block during training
can be equivalently transformed into a single convolution
during inference.

2.2.2 Linear Train‑Time Overparameterization

To further improve the efficiency of parameter counts,
FLOPs, and delays, all the model's dense k × k convolu-
tions are replaced with their factorized versions, i.e., k × k
depth convolutions followed by 1 × 1 point convolutions.
However, the lower number of parameters resulting from
the factorization reduces the model's capacity. To increase
the capacity of the decomposition layer, a linear training
time over-parameterization is used, which means that the
model is trained using more parameters than are required.
Adding more parameters during the training process helps
to fit the training data better and thus improves the model's
performance. However, due to the increased computational
overhead of branching, training time overparameterization
leads to an increase in training time.

Over-parameterizing the model with additional param-
eters on a linear scale. The advantage is that although the
complexity of the model increases, the training time does not
increase dramatically because the scale of the model is lin-
ear, so the model can still be trained in a reasonable amount
of time. MDC-RepNet replaces only dense k × k convolu-
tions with their decomposed forms and over parameters as
described above. These layers are in the convolutional back-
bone, block embedding, and fully connected layers. Since
the computational cost of these layers is lower than the rest
of the network, overparameterizing these layers does not
result in a significant increase in training time.

2.2.3 Large Kernel Convolution

Compared with the sensory field of Self-Attention in
Vision Transformer architecture, the sensory field of Rep
Mixer is localized. However, the Vision Transformer based
on the Self-Attention mechanism has a higher computa-
tional overhead. Introducing deep large kernel convolution

in FFN and patch embedding layers is a computationally
efficient way to improve the sensory field in the early
stages without using Self-Attention by combining deep
large kernel convolution. MDC-RepNet introduces large
kernel convolution at the Patch Embedding layer and FFN.
The experimental model parameter settings are shown in
Table 3.

The architecture of the FFN and patch embedding layer
is shown in Fig. 5c. The FFN block has a similar struc-
ture to the ConvNet block with some key differences.
The MDC-RepNet architecture uses Batch Normalization
instead of Layer Normalization in the ConvNet block.
The BN layers can be fused with the previous layer dur-
ing inference, and, similar to the implementation of the
ConvNet block, no additional reshaping operations are
required to obtain a suitable tensor layout for the Layer
Norm.

Conv. FFN blocks are usually more robust than vanilla-
FFN blocks [40], as the sensory field increases, a sizeable
convolutional kernel helps to improve the robustness of the
model. Therefore, combining large convolutional kernels
is an effective way to improve model performance and
robustness.

Table 3 MDC-RepNet parameter settings

Stage Tokens Layer spec Settings

Stem H ×W Conv 3 × 3, stride = 2
3 × 3, stride = 2
48

1 H

4
×

W

4

Patch embed 7 × 7, stride = 2
48

MDC-Rep block Mixer Rep mixer
Exp 3
Blocks 2

2 H

8
×

W

8

Patch embed 7 × 7, stride = 2

96
MDC-Rep block Mixer Rep mixer

Exp 3
Blocks 2

3 H

16
×

W

16

Patch embed 7 × 7, stride = 2

192
MDC-Rep block Mixer Rep mixer

Exp 3
Blocks 4

4 H

32
×

W

32

Patch embed 7 × 7, stride = 2

384
MDC-Rep block Mixer Rep mixer

Exp 3
Blocks 2

 International Journal of Computational Intelligence Systems (2024) 17:30 30 Page 10 of 18

3 Experiments and analyses

3.1 Data Set and Experimental Environment

This experiment uses the Malimg dataset published by the
University of California Vision Research Laboratory for
model training and classification. The dataset contains a
total of 9435 malicious code sample data from 25 mali-
cious families, and the operating system in the model
training is Ubuntu version 22.04.2, running in CUDA 11.8
environment, using Pytorch1.11.0 deep learning frame-
work, and hardware configuration of Nvidia GeForce RTX
3080Ti.

The Malimg dataset is divided into two parts, the train-
ing set and the validation set, in a ratio of 9:1. Among
them, the training set is used for model training, and
the validation set is used for observing and evaluating
the model’s performance. The name of each family and
the distribution of the number of samples per family are
shown in Table 4.

3.2 Evaluation Indicators

3.2.1 Model Training Performance Evaluation Metrics

Four common rubrics in the field of malicious code clas-
sification: Accuracy, Precision, Recall, and F1-score are
selected to evaluate the model classification, which has been
widely used in related research [41–43]. The formulas are
as follows:

where TP is the actual class (meaning that malware is cor-
rectly categorized as malware), FN is the false negative class
(meaning that malicious code is incorrectly categorized as
regular code), FP is the false positive class (meaning that
regular code is incorrectly categorized as malicious code),
and TN is the actual negative class (meaning that regular
code is correctly categorized as standard code).

The performance of the model is presented using a visual
representation of the confusion matrix, and the values of

(10)Accuracy =
TP + TN

TP + TN + FP + FN

(11)Precision =
TP

TP + FP

(12)Recall =
TP

TP + FN

(13)F1 − score = 2 ×
Precision × Recall

Precision + Recall

Table 4 Details of malimg dataset

ID Family name Type Number of
malignant
samples

1 Adialer.C Dialer 122
2 Agent.FYI Backdoor 116
3 Allaple.A Worm 2949
4 Allaple.L Worm 1591
5 Alueron.gen!J Trojan 198
6 Autorun.K Worm:AutoIT 106
7 C2LOP.gen!g Trojan 200
8 C2LOP.P Trojan 146
9 Dialplatform.B Dialer 177
10 Dontovo.A TrojanDownloader 162
11 Fakerean Rogue 381
12 Instantaccess Dialer 431
13 Lolyda.AA1 PWS 213
14 Lolyda.AA2 PWS 184
15 Lolyda.AA3 PWS 123
16 Lolyda.AT PWS 159
17 Malex.gen!J Trojan 136
18 Obfuscator.AD TrojanDownloader 142
1 Rbot!gen Backdoor 158
20 Skintrim.N Trojan 80
21 Swizzor.gen!E TrojanDownloader 128
22 Swizzor.gen!I TrojanDownloader 132
23 VB.AT Worm 408
24 Wintrim.BX TrojanDownloader 97
25 Yuner.A Worm 800

Fig. 8 Confusion matrix for multi-categorization problems

International Journal of Computational Intelligence Systems (2024) 17:30 Page 11 of 18 30

TP, FP, TN, and FN for the multiclassification problem are
shown in Fig. 8 where Fi (i = 0,1,2…n) denotes the mali-
cious code family category.

3.2.2 Indicators for Evaluating the Speed of Model
Inference

The MDC-RepNet uses structural reparameterization to
optimize the rate of model operation in the inference phase.
Using a divided test set (10%) of about 944 images as exper-
imental data, the inference speed of MDC-RepNet versus
classical network models for predicting an unknown sample,
i.e., the time overhead incurred in categorizing each image
of malicious code, is calculated as a metric for determining
the inference speed of the model.

3.3 Analysis of Experimental Results

3.3.1 Hyperparameter Comparison Experiment

Limited by the characteristics of fully connected layers in
CNNs, the size size of the malignant code image input to
the model must be deterministic. In addition, the size of
the image put into the CNN will not only affect the size of
the model but also change the effectiveness of the model.
In order to obtain the most suitable input image size for the
model, this paper applies bilinear interpolation to normalize
the malicious code images to 32 × 32, 64 × 64, 128 × 128,
256 × 256, and 512 × 512. The performance of the model
is experimentally tested by inputting the malicious images
in the Malimg dataset into the model, and it can be ana-
lyzed in Table 5 to know that, after the size of the mali-
cious code image is increased from 32 × 32 to 256 × 256,
is an increase in accuracy from 86.65 to 99.57%, however,
when the image size continues to increase from 256 × 256
to 512 × 512, the accuracy decreases from 99.57 to 98.92%,
which indicates that the model is overfitting. Moreover, as
the image size increases, the number of parameters increases
gradually. This is because the more significant the image
size, the more convolution operations and parameters are
involved, which further increases the consumption of com-
puter resources and leads to longer model training time.

Then, after a comprehensive trade-off between the malicious
code classification accuracy and the number of parameters,
a 256 × 256 malicious code image is finally chosen as the
input to the model.

In deep learning, optimizers are algorithms that update
and find the optimal parameters of a model. For the purpose
of optimizing model parameters, in this paper, we conduct
comparative experiments on some optimizers Adagrad,
Adamax, Adam, NAdam, and AdamW that perform well
in classification tasks. Table 6 lists the performance graphs
of the above optimizers concerning the relevant metrics.
The experimental results show that AdamW outperforms
other optimizers regarding accuracy, precision, recall, and
F1-score. Therefore, in this paper, AdamW is selected as
the optimizer of MDC-RepNet for performing the malicious
code family classification task.

3.3.2 Experiments to Verify the Validity of Structural
Reparameterization

A structural reparameterization technique is used to decou-
ple and separate the training process and inference phase of
the MDC-RepNet. The multi-branch model is first trained,
then equivalently transformed into a one-way model, and
finally the model is deployed. In the prediction phase, the
actual model that has been transformed is run. To verify
the effectiveness of structural reparameterization, experi-
ments are set up to analyze the training and inference phases
quantitatively, and to evaluate the accuracy, FLOPs, infer-
ence speed, the number of parameters, and the model size
of the MDC-RepNet before and after the transformation, to
verify the actual effect of structural reparameterization. In
the model training, the number of samples selected for each
training batch size is set to 32, the number of Epoch is set to
30, the initial learning rate is set to 0.0001 using the AdamW
optimizer, the weight decay is 0.05, the peak learning rate
is 10–3, and the cosine scheduling is used to attenuate the
learning rate, and the loss function is the cross-entropy loss
function, the results are shown in Table 7.

The MDC-RepNet has the same recognition accuracy
before and after the conversion, the FLOPs, the number
of parameters, and the model volume are reduced by
about 10%, while the inference speed is reduced by about

Table 5 Experimental results on the effect of input image size on the
model

Input Accuracy (%) Recall (%) F1-score (%) Params (M)

32 × 32 86.65 86.65 86.64 0.31
64 × 64 95.32 95.32 95.30 0.35
128 × 128 98.47 98.47 98.47 0.50
256 × 256 99.57 99.58 99.57 1.11
512 × 512 98.92 98.90 98.91 2.58

Table 6 Comparative experimental results of different optimizers

Optimizer Accuracy (%) Precision (%) Recall (%) F1-score (%)

Adagrad 97.20 96.26 97.20 96.72
Adamax 97.57 96.71 97.57 97.63
Adam 98.23 98.20 98.23 98.21
NAdam 99.10 99.18 99.10 99.13
AdamW 99.57 99.56 99.58 99.57

 International Journal of Computational Intelligence Systems (2024) 17:30 30 Page 12 of 18

15–20%. The experimental results show that with the
increase of the model depth and width, the inference speed
of the model is reduced, and the recognition efficiency is
significantly improved.

To further verify the effectiveness of structural repa-
rameterization, the confusion matrices of the MDC-Rep-
Net before and after conversion are plotted to verify its
effectiveness more intuitively. The confusion matrices
before and after structural reparameterization are shown
in Fig. 9. Observing that the confusion matrices before
and after structural reparameterization are identical, it
can be learned that the recognition accuracy before and
after the conversion is also identical, and the network
can achieve a high recognition accuracy by training 30
Epochs. The results show that the MDC-RepNet before
and after structural reparameterization does not reduce
the recognition accuracy and affects the performance of
the model before conversion. Decoupling the training and
inference phases reduces the inference speed of the model
and reduces the time for malicious code image classifica-
tion and recognition.

3.3.3 MDC‑RepNet Ablation Synthesis Experiment

The MDC-RepNet introduces a large kernel convolution at
two locations, the patch embedding layer, and the FFN, to
improve the sensory field in the early stages without using
self-attention by combining the deep large kernel convolu-
tion. To verify the role of the large kernel convolution for the
whole network. Setting up the ablation experiment using the
large kernel convolution to replace the self-attention module
layer by layer, the experimental results are shown in Table 8.

RM indicates that the current stage uses RepMixer-FFN
blocks. SA indicates that the current stage uses Self-Atten-
tion-FFN blocks. The standard setup uses 3 × 3 factorization
convolution in the block embedding and backbone layers,
and 1 × 1 convolution in the FFN. In variants V4 and V5,
large kernel convolution (7 × 7) is used for the patch embed-
ding and FFN layers.

Comparison shows that V5 has an 11.2% increase in
model size, a 0.4% gain in accuracy, and a 2.3 × increase
in inference speed with V3. V2 is 20% larger than V4 and
achieves similar accuracy, while inference speed is 7.1%
higher than V4. Overall, large kernel convolution provides

Table 7 Validation experiments
on the validity of structural
reparameterization

Pt prediction time

Mould Accuracy (%) FLOPs (G) Pt (ms) Params (M) Model
Volume
(M)

MDC-Net 99.57 1.52 124 7.65 60.4
MDC-RepNet 99.57 1.36 104 4.29 46.1

(a) pre-conversion (b) post-conversion

A
di

al
er

.C
A

ge
nt

.F
Y

I
A

lla
pl

e.
A

A
lla

pl
e.

L
A

lu
er

on
.g

en
!J

A
ut

or
un

.K
C

2L
O

P.
P

C
2L

O
P.

ge
n!

g
D

ia
lp

la
tfo

rm
.B

D
on

to
vo

.A
Fa

ke
re

an
In

st
an

ta
cc

es
s

Lo
ly

da
.A

A
1

Lo
ly

da
.A

A
2

Lo
ly

da
.A

A
3

Lo
ly

da
.A

T
M

al
ex

.g
en

!J
O

bf
us

ca
to

r.A
D

R
bo

t!g
en

Sk
in

tri
m

.N
Sw

iz
zo

r.g
en

!E
Sw

iz
zo

r.g
en

!I
V

B
.A

T
W

in
tri

m
.B

X
Y

un
er

.A

Yuner.A
Wintrim.BX

VB.AT
Swizzor.gen!I

Swizzor.gen!E
Skintrim.N

Rbot!gen
Obfuscator.AD

Malex.gen!J
Lolyda.AT

Lolyda.AA3
Lolyda.AA2
Lolyda.AA1

Instantaccess
Fakerean

Dontovo.A
Dialplatform.B
C2LOP.gen!g

C2LOP.P
Autorun.K

Alueron.gen!J
Allaple.L
Allaple.A

Agent.FYI
Adialer.C

Tr
ue

 L
ab

el

Prediced Label

0.0

0.2

0.4

0.6

0.8

1.0

A
di

al
er

.C
A

ge
nt

.F
Y

I
A

lla
pl

e.
A

A
lla

pl
e.

L
A

lu
er

on
.g

en
!J

A
ut

or
un

.K
C

2L
O

P.
P

C
2L

O
P.

ge
n!

g
D

ia
lp

la
tfo

rm
.B

D
on

to
vo

.A
Fa

ke
re

an
In

st
an

ta
cc

es
s

Lo
ly

da
.A

A
1

Lo
ly

da
.A

A
2

Lo
ly

da
.A

A
3

Lo
ly

da
.A

T
M

al
ex

.g
en

!J
O

bf
us

ca
to

r.A
D

R
bo

t!g
en

Sk
in

tri
m

.N
Sw

iz
zo

r.g
en

!E
Sw

iz
zo

r.g
en

!I
V

B
.A

T
W

in
tri

m
.B

X
Y

un
er

.A

Yuner.A
Wintrim.BX

VB.AT
Swizzor.gen!I

Swizzor.gen!E
Skintrim.N

Rbot!gen
Obfuscator.AD

Malex.gen!J
Lolyda.AT

Lolyda.AA3
Lolyda.AA2
Lolyda.AA1

Instantaccess
Fakerean

Dontovo.A
Dialplatform.B
C2LOP.gen!g

C2LOP.P
Autorun.K

Alueron.gen!J
Allaple.L
Allaple.A

Agent.FYI
Adialer.C

Tr
ue

 L
ab

el

Prediced Label

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 9 Confusion matrix before and after structural reparameterization

International Journal of Computational Intelligence Systems (2024) 17:30 Page 13 of 18 30

a 0.9% accuracy gain on MDC-RepNet. Experimental results
show that using deep large-kernel convolution has similar
effects as using the self-attention mechanism while inducing
a slight increase in inference speed.

To further verify the enhancement effect of the multi-
branch structure and the introduction of the large kernel
convolution on the network representation ability, several
components of MDC-RepNet are removed by the network
ablation method, and the role of the components for the
whole network is analyzed. The two shortcut branches and
the large kernel convolutional block of MDC-RepNet are
used as components to test the recognition accuracy of the
model after combining with the main branch, respectively.
Ensuring that other parameters remain unchanged, the
results of the ablation analysis experiments are shown in
Table 9.

As can be seen from Table 8, when not including any of
the components, the accuracy decreases by 9.16% compared
to MDC-RepNet, but the inference speed increases dramati-
cally. When only one component is used, the accuracy rate
also decreases to different degrees compared to MDC-
RepNet, and the inference speed increases accordingly. The
results show that the multi-branch structure can increase the
network’s representation ability and improve the model's
recognition accuracy. After the introduction of large kernel
convolution, MDC-RepNet increased the accuracy by 3.1%

compared to the original network, and the inference speed
was the same, indicating that the introduction of large kernel
convolution did not increase any computational resources for
the inference stage.

3.3.4 Comparison with Other Deep Learning Models
in Image Classification Tasks

The study expects to improve the inference speed of the
model as much as possible and reduce the recognition time
of the image while ensuring higher recognition accuracy. In
this section, the model is trained and tested against classi-
cal networks (AlexNet, VGG series, and ResNet series) and
lightweight networks (DenseNet, MobileNetV2, and Shuffle-
NetV2), which are deep neural network models with excel-
lent performance in image classification tasks based on the
Malimg dataset. The results of the test of the aforementioned
network models are compared to the data shown in Table 10.

As can be seen from Table 9, the MDC-RepNet possesses
fewer FLOPs and faster inference speed with higher accu-
racy than the VGG16 network, the number of parameters
is about 5% of the latter, and the model volume is about
22% of the latter. Through structural reparameterization,
the MDC-RepNet adopts the one-way model architecture
of the VGG16-style network in the inference stage, and the
inference speed is about twice as fast as that of the latter.
The MDC-RepNet adopts the multi-branch structure as the
backbone network and discards the fully connected layer
of the VGG16-style network. The FLOPs are about 10% of
that of the latter, and the complexity of the model is reduced
dramatically.

Compared with the multi-branch structure ResNet series
network, MDC-RepNet has more evident advantages in
FLOPs, inference speed, number of parameters, and model
volume over the former group compared with the ResNet50
network. The MDC-RepNet borrows the residual module
from the ResNet series network, making it possible to train
the network deeper and making the network more complex
in terms of similar recognition results. The MDC-RepNet
borrows the residual module from the ResNet series net-
work, making it possible to train the network deeper and

Table 8 Large kernel
convolutional ablation
experiments

Variant Stages Params (M) Accuracy (%) Pt (ms)

1 2 3 4

Standard setting
 V1 RM RM RM RM 6.37 97.89 52
 V2 RM RM RM SA 10.82 98.92 60
 V3 RM RM SA SA 10.41 99.66 122

Large kernel convolutions (7 × 7)
 V4 RM RM RM RM 6.81 98.48 56
 V5 M RM RM SA 8.92 99.57 67

Table 9 MDC-RepNet ablation synthesis experiment

"90.41(9.16↓)" means that the accuracy is 90.41% without any com-
ponent, which is a decrease of 9.16% compared to MDC-RepNet,
"92.74(6.83↓)" means that the accuracy is 92.74% with only 1 × 1
shortcut branches only, the accuracy is 92.74%, which is 6.83% lower
than that of MDC-RepNet, and so on

1 × 1 Short-
cut Branch

BN Short-
cut Branch

MDC Branch Accuracy (%) Pt (ms)

90.41 (9.16↓) 163
√ 92.74 (6.83↓) 103

√ 94.28 (5.29↓) 138
√ √ 96.47 (3.10↓) 87
√ √ √ 99.57 86

 International Journal of Computational Intelligence Systems (2024) 17:30 30 Page 14 of 18

reduce the model complexity in the case of a similar recog-
nition effect with a lower number of parameters and faster
inference.

MobileNet and ShuffleNet networks are network architec-
tures designed for devices with limited computing resources,
which significantly reduce the computational overhead
while retaining a certain level of model accuracy, signifi-
cantly increase the inference speed, and greatly reduce the
FlOPs, the number of parameters, and the size of the model.
The MDC-RepNet is a high-efficiency model designed for
dedicated hardware or GPU, which pursues faster inference
speed and more memory-saving. Faster and more memory-
efficient, with less attention to the number of parameters and
FLOPs. MDC-RepNet improves the recognition accuracy by
1–2% compared to MobileNetV2 and ShuffleNetV2, but the
inference speed is not as fast as the two, and the number of
parameters and FLOPs are higher than the two. However,
it can be observed that compared with MobileNetV2, the
FLOPs are five times higher than the latter. However, the
inference speed is 71% of the latter, which shows that the
FLOPs do not entirely determine the inference speed, indi-
cating that the computational density of the MDC-RepNet
is higher.

To observe the combined classification accuracy and
detection time more intuitively, the accuracy and detection
time results of each model are plotted in Fig. 9. The Fig.
shows that the MDC-RepNet has the highest accuracy rate,
and it only takes 219 ms to predict an unknown sample,
which better realizes the balance between accuracy and
delay. In summary, the MDC-RepNet has a high accuracy
rate, a low number of parameters, and a high computational
density. This is because the MDC-RepNet efficiently cap-
tures both local and global information. The structural repa-
rameterization module obtains lower memory access costs
and higher efficiency by eliminating jump connections in
the network. At the same time, techniques such as large
kernel convolution are used to improve accuracy. This ulti-
mately reduces the number of parameters in the model and
decreases the amount of floating-point operations, improving
the model's speed.

To further observe and analyze the classification perfor-
mance of the models, Fig. 10 plots the classification details

of each model in each malicious family, and the results show
that the MDC-RepNet, through time-training over-para-
metrization and extensive kernel convolution techniques,
improves the above classical deep neural network model's
insufficient classification accuracy in some confusing mali-
cious families to varying degrees, and then improves the
overall classification accuracy, Accurately classify 25 fami-
lies on the Malimg dataset. Experiments prove that the mali-
cious code classification performance of this paper's model
outperforms other models (Fig. 11).

3.3.5 Comparison with Other Malicious Code Classification
Techniques

To verify that the proposed model can achieve satisfactory
performance and to further validate the model's malicious
code detection capability, this section compares MDC-Rep-
Net with existing malicious code detection methods based
on visual analysis based on the Malimg dataset. Table 11
summarises the performance metrics of each malicious
code detection method, from which we can see that MDC-
RepNet achieves an accuracy of 99.57% and a prediction
time of 67 ms, which is much lower than that of the existing

Table 10 Comparison of
experimental results of different
network models

Model Accuracy (%) FLOPs (G) Pt (ms) Params (M) Model volume (M)

AlexNet8 95.01 22.14 65 276.49 513.19
VGG16 96.91 15.91 51 131.37 214.00
ResNet50 97.94 6.52 75 32.75 96.07
DenseNet 99.07 3.16 118 28.44 126.30
MobileNetV2 97.63 0.31 124 2.51 9.07
ShuffleNet 98.41 0.15 131 1.48 5.23
MDC-RepNet 99.57 1.56 86 7.79 47.10

AlexNet8

VGG16
ResNet50

DenseNet

MobileNetV2

ShuffleNet

MDC-RepNet

94

95

96

97

98

99

100

Accuracy (%)
 Prediction Time (ms)

A
cc

ur
ac

y
(%

)

100

150

200

250

300

350

Pr
ed

ic
tio

n
Ti

m
e

(m
s)

Fig. 10 Comparison of classification accuracy and detection time of
each model

International Journal of Computational Intelligence Systems (2024) 17:30 Page 15 of 18 30

state-of-the-art research. Our model achieves better results
in terms of accuracy, precision and other evaluation metrics
than all existing research techniques.

The reason for this is related to the properties of convolu-
tion: in this paper, we use point-by-point convolution after
deep convolution, large kernel convolution instead of the
self-attention method to improve the model performance in
the early stage, and re-parameterisation and jump-over con-
nectivity in inference, which eliminates the time overhead
of the extra branches in the inference stage and improves the
classification accuracy without introducing the extra infer-
ence time to aggravate the computational burden. Thus the
model parameters from the training phase can be equiva-
lently used at inference time, resulting in lower memory

access costs and higher efficiency, achieving an accuracy-
latency balance.

4 Conclusion

This paper proposes a malicious code detection method that
combines CNNs and Transformers. The method takes deep
neural networks as a framework, adopts the modular design
idea, and introduces a new Token hybrid operator to make its
structure reparameterized, which reduces the memory access
cost by eliminating the jump connections in the network.
Meanwhile, this paper adopts techniques such as training
time over-parameterization and large kernel convolution to

Fig. 11 Classification details of each model in malicious families

 International Journal of Computational Intelligence Systems (2024) 17:30 30 Page 16 of 18

improve the accuracy. In the data preprocessing stage, this
paper uses pixel-filling-based image size normalization algo-
rithm and data enhancement techniques to improve the loss
of image texture information and dataset category imbalance
problem during malicious code image size deflation, respec-
tively, and to enhance the expression of critical features to
alleviate the overfitting phenomenon of the model. Finally,
the deep neural network model is trained to realize the clas-
sification of malicious code and its variants. Through experi-
ments, it is proved that the method in this paper has a stable
improvement in accuracy and operation efficiency, which is
better than the current malicious code detection technology.

In our future research, we will further investigate, design
and implement appropriate improvements to enhance the
performance and applicability of MDC-RepNet. We will try
to address some of the current limitations of MDC-RepNet
with respect to family confusion and continue to explore
new methods and techniques such as color deconvolution
techniques [59], dynamic multi-scale topology techniques
[60] and linguistic sequence-based evaluation methods [61,
62], etc., Combining the latest deep learning-based research
results [22, 24] to improve the research in the field of mal-
ware classification.

Author Contributions The authors confirm their contribution to the
paper as follows: SL: conceptualization, methodology, writing—origi-
nal draft, JW: software, validation, resources, YS: funding acquisition,
project administration, supervision, SW: writing—review and editing,
YW: review and proofreading.

Funding This research is supported by the National Natural Science
Foundation of China (61806219, 61703426, 61876189), the Natural
Science Foundation of Shaanxi Province (2021JM-226), the Young
Talent Fund of Association for Science and Technology in Shaanxi,
China (20190108, 20220106), and the Innovation Capability Support
Program of Shaanxi (2020KJXX-065).

Availability of Data and Material The data that support the findings
of this study are available from the corresponding author, Yafei Song,
upon reasonable request.

Declarations

Conflict of Interest There is no conflict of interest in this study.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. National Internet Emergency Response Center: First half of
China's Internet network security detection data analysis report

Table 11 Performance metrics of each malicious code classification method

Methods
[references]

Year Dataset Description Accuracy (%) Precision (%) Recall (%) F1-score (%) Pt (ms)

[44] 2011 Malimg GIST + KNN 97.18 – – – –
[5] 2016 Malimg SPAM 97.40 – – – –
[45] 2018 Malimg DRBA + CNN 94.50 96.60 88.40 – –
[46] 2019 Malimg LGMP + KNN 98.40 – 98.20 97.1 –
[47] 2019 Malimg NSGAII + CNN 97.60 97.60 88.40 – –
[48] 2019 Malimg CNN + LSTM 96.30 96.30 96.20 96.20 –
[49] 2019 Malimg CNN + BiGRU 96.30 91.80 91.50 91.60 –
[50] 2019 Malimg CSGM + KNN 98.40 – 98.20 97.10 –
[51] 2020 Malimg MxN + GLCM 98.58 98.04 98.06 98.05 –
[52] 2020 Malimg SWS + RF 98.65 98.86 98.63 98.74 –
[53] 2020 Malimg DCNN 98.79 98.79 98.47 98.46 –
[54] 2020 Malimg IMCFN 98.82 98.85 98.81 98.75 810
[55] 2021 Malimg DenseNet201 98.97 – – 98.88 –
[55] 2021 Malimg DEAM + Densenet 98.50 96.90 96.60 96.70 –
[56] 2021 Malimg Two-level ANN 99.13 – – – –
[57] 2021 Malimg MCFT-CNN 99.19 97.72 97.76 97.68 –
[58] 2022 Malimg DTMIC 98.93 99.00 99.00 99.00 –
Ours 2023 Malimg MDC-RepNet 99.57 99.56 99.58 99.57 67

http://creativecommons.org/licenses/by/4.0/

International Journal of Computational Intelligence Systems (2024) 17:30 Page 17 of 18 30

[EB/OL]. [2021–07–31]. First-half year cybersecurity report
2021.pdf (cert. org.cn) (Chinese) (2021)

 2. Rising Star. China Cybersecurity Report [EB/OL]. [2022–02–
03]. http:// it. rising. com. cn/d/ file/ it/ dongt ai/ 20230 203/ 2022b
aogao. pdf. (Chine se) (2022)

 3. Conti, G., Bratus, S., Shubina, A., et al.: Automated map-
ping of large binary objects using primitive fragment type
classification[J]. Digit. Investig. 7, S3–S12 (2010)

 4. Nataraj, L., Karthiketan, S., Jacob, G., et al. Malware images:
visualization and automatic classification [C]. In: Proceedings
of the 8th International Symposium on Visualization for Cyber
Security. ACM, New York, pp 1–7 (2011)

 5. Nataraj, L., Manjunath, B.S.: SPAM: signal processing to ana-
lyze malware[J]. IEEE Signal Process. Mag. 33, 105–117 (2016)

 6. Kancherla, K., Mukkamala, S.: Image visualization based
malware detection[C]. In: 2013 IEEE Symposium on Compu-
tational Intelligence in Cyber Security. Singapore: IEEE pp.
40–44 (2013)

 7. Liu, Y.S., Wang, Z.H., Yan, H.B., et al.: Method of anti-confu-
sion texture feature descriptor for malware images[J]. J. Com-
mun. 39(11), 44–53 (2018). ((in Chinese))

 8. Naeem, H., Guo, B., Naeem, M.R., et al.: Identification of mali-
cious code variants based on image visualization[J]. Comput.
Elect. Eng. 76, 225–237 (2019)

 9. Mathew, A.B., Kurian, S.: Identification of malicious code vari-
ants using SPP-net model and color images[C]. In: 2020 IEEE
15th International Conference on Industrial and Information
Systems (ICIIS). IEEE, pp. 581–585 (2020)

 10. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov,
D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper
with convolutions. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 1–9 (2015)

 11. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-
v4, inception-resnet and the impact of residual connections on
learning. In: Thirty-first AAAI conference on artificial intel-
ligence (2017). https:// doi. org/ 10. 1609/ aaai. v31i1. 11231

 12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for
image recognition. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 770–778 (2016)

 13. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.:
Densely connected convolutional networks. In: 2017 IEEE
conference on computer vision and pattern recognition, CVPR
2017, Honolulu, HI, USA, pages 2261–2269. IEEE Computer
Society, 2017 (2017)

 14. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolu-
tion for image classifier architecture search. Proc Aaai Conf Artif
Intell 33, 4780–4789 (2019)

 15. Radosavovic, I., Prateek Kosaraju, R., Girshick, R., He, K., Dollar,
P.: Designing network design spaces. In: Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition,
pp 1042810436 (2020)

 16. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convo-
lutional neural networks. In: International Conference on Machine
Learning, pp 6105–6114 (2019)

 17. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W.,
Weyand, T., Andreetto, M., Adam, H.: Mobilenets: efficient con-
volutional neural networks for mobile vision applications. arXiv
preprint arXiv: 1704. 04861 (2017)

 18. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.:
Mobilenetv2: inverted residuals and linear bottlenecks. In: Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition, pages 4510–4520 (2018)

 19. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: Shufflenet v2: practical
guidelines for efficient cnn architecture design. In: Proceedings
of the European conference on computer vision (ECCV), pages
116–131 (2018)

 20. Zhang, J., Lin, M., Pan, Y., Zeshui, Xu.: CRFTL: cache reallo-
cation-based page-level flash translation layer for smartphones.
IEEE Trans. Consum. Electron. 69(3), 671–679 (2023)

 21. Chen, Y., Lin, M., He, Z., Polat, K., Alhudhaif, A., Alenezi,
F.: Consistency-and dependence-guided knowledge distillation
for object detection in remote sensing. Expert Syst. Appl. 229,
120519 (2023)

 22. Xiuqin, Xu., Lin, M., Luo, X., Zeshui, Xu.: HRST-LR: a hes-
sian regularization spatio-temporal low rank algorithm for traf-
fic data imputation. IEEE Trans. Intell. Transp. Syst. 24(10),
11001–11017 (2023)

 23. Pan, Z., Zhuang, B., He, H., Liu, J., Cai, J.: Less is more: pay
less attention in vision transformers. In: AAAI (2022)

 24. Chen, H., Lin, M., Liu, J., Yang, H., Zhang, C., Zeshui, Xu.:
NT-DPTC: a non-negative temporal dimension preserved tensor
completion model for missing traffic data imputation. Inf. Sci.
653, 119797 (2024)

 25. Pan, Z., Cai, J., Zhuang, B.: Fast vision transformers with hilo
attention. In: Advances in Neural Information Processing Sys-
tems (NeurIPS) (2022)

 26. Marin, D., Rick Chang J.-H., Ranjan, A., Prabhu, A., Rastegari,
M. Tuzel, O.: Token pooling in vision transformers. arXiv pre-
print arXiv: 2110. 03860 (2021)

 27. Anasosalu Vasu, P. K., Gabriel, J., Zhu, J., Tuzel, O., Ranjan A.:
An improved one millisecond mobile backbone. arXiv preprint
arXiv: 2206. 04040 (2022)

 28. Wang, S., Li, B.Z., Khabsa, M., Fang, H., Ma, H.: Linformer:
self-attention with linear complexity (2020)

 29. Kitaev, N, Kaiser, L., Levskaya, A.: Reformer: the efficient
transformer. In: International Conference on Learning Repre-
sentations (2020)

 30. Xiao, T., Singh, M., Mintun, E., Darrell, T., Dollar, P., Girshick,
R.B.: Early convolutions help transformers see better. CoRR,
abs/2106.14881 (2021)

 31. Dai, Z., Liu, H., Le, Q.V., Tan, M.: Coatnet: marrying con-
volution and attention for all data sizes. Adv. Neural Inform.
Process. Syst. 34, 3965–3977 (2021)

 32. Chu, X., Tian, Z., Wang, Y., Zhang, B., Ren, H., Xiaolin, W.,
Xia, H., Shen, C.: Twins: revisiting the design of spatial atten-
tion in vision transformers. arXiv preprint arXiv: 2104. 13840
(2021)

 33. Guo, J., Han, K., Wu, H., Xu, C., Tang, Y., Xu, C., Wang, Y.: Cmt:
convolutional neural networks meet vision transformers. arXiv
preprint arXiv: 2107. 06263 (2021)

 34. d’Ascoli, S., Touvron, H., Leavitt, M., Morcos, A., Biroli, G.,
Sagun, L.: Convit: improving vision transformers with soft convo-
lutional inductive biases. In: Proceedings of the 38th International
Conference on Machine Learning (ICML) (2021)

 35. Haiping, W., Bin, X., Noel, C., Mengchen L., Xiyang, D., Lu,
Y., Lei, Z.: Cvt: introducing convolutions to vision transformers
(2021)

 36. Andrew, H, Mark, S., Grace, C., Liang-Chieh, C., Bo, C., Min-
gxing, T., Weijun, W., Yukun, Z., Ruoming, P., Vijay, V., et al.:
Searching for mobilenetv3. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1314–1324
(2019)

 37. Xiaohan, D., Yuchen, G., Guiguang, D., Jungong, H.: Acnet:
strengthening the kernel skeletons for powerful cnn via asym-
metric convolution blocks. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV) (2019)

 38. Xiaohan, D., Xiangyu, Z., Jungong, H., Guiguang, D.: Diverse
branch block: building a convolution as an inception-like unit. In:
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (2021)

 39. Ding, X., Zhang, X., Ma, N., et al.: Repvgg: making vgg style
convnets great again [C]. In: Proceedings of the IEEE/CVF

http://it.rising.com.cn/d/file/it/dongtai/20230203/2022baogao.pdf.(Chinese)
http://it.rising.com.cn/d/file/it/dongtai/20230203/2022baogao.pdf.(Chinese)
https://doi.org/10.1609/aaai.v31i1.11231
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/2110.03860
http://arxiv.org/abs/2206.04040
http://arxiv.org/abs/2104.13840
http://arxiv.org/abs/2107.06263

 International Journal of Computational Intelligence Systems (2024) 17:30 30 Page 18 of 18

conference on computer vision and pattern recognition. IEEE,
13733–13742 (2021)

 40. Zeyu, W., Yutong, B., Yuyin, Z., Cihang, X.: Can cnns be more
robust than transformers? arXiv preprint arXiv: 2206. 03452 (2022)

 41. Li, Q., Mi, J., Li, W., et al.: CNN-based malware variants detec-
tion method for internet of things[J]. IEEE Internet Things J.
8(23), 16946–16962 (2021)

 42. Sudhakar, K.S.: MCFT-CNN: malware classification with fine-
tune convolution neural networks using traditional and transfer
learning in internet of things[J]. Fut. Gener. Comput. Syst. 125,
334–351 (2021)

 43. Danish, V., Mamoun, A., Sobia, W., et al.: Image-based malware
classification using ensemble of CNN architectures (IMCEC)[J].
Comput. Secur. 92, 101748 (2020)

 44. Nataraj, L., Karthikeyan, S., Jacob, G., et al.: Malware images:
visualization and automatic classification[C]. In: Proceedings of
the 8th international symposium on visualization for cyber secu-
rity, pp. 1–7 (2011)

 45. Cui, Z., Fei, X., Xingjuan, C., et al.: Detection of malicious code
variants based on deep learning[J]. IEEE Trans. Industr. Inf. 14(7),
3187–3196 (2018)

 46. Naeem, H., Bing, G., Muhammad-Rashid, N., et al.: Identifica-
tion of malicious code variants based on image visualization[J].
Comput. Elect. Eng. 76, 225–237 (2019)

 47. Cui, Z., Lei, D., Penghong, W., et al.: Malicious code detection
based on CNNs and multi-objective algorithm[J]. J Parall Distrib
Comput 12, 950–958 (2019)

 48. Vinayakumar, R., Mamoun, A., Soman, K.-P., et al.: Robust intel-
ligent malware detection using deep learning[J]. IEEE Access 74,
6717–46738 (2019)

 49. Sitalakshmi, V., Alazab, M., Vinayakumar, R.: A hybrid deep
learning image-based analysis for effective malware detection[J].
J. Inform. Secur. Appl. 47, 377–389 (2019)

 50. Naeem, H., Bing, G., Farhan, U., et al.: A cross-platform mal-
ware variant classification based on image representation[J]. KSII
Trans. Internet Inform. Syst. 13, 3756–3777 (2019)

 51. Vinita, V., Muttoo, S.K., Singh, V.B.: Multiclass malware clas-
sification via first- and second-order texture statistics[J]. Comput.
Secur. 97, 101895 (2020)

 52. Roseline, S.A., Geetha, S., Seifedine, K., et al.: Intelligent vision-
based malware detection and classification using deep random
forest paradigm[J]. IEEE Access 8, 206303–206324 (2020)

 53. Naeem, H., Farhan, U., Muhammad-Rashid, N., et al.: Malware
detection in industrial internet of things based on hybrid image
visualization and deep learning model[J]. Ad Hoc Netw. 10,
5102154 (2020)

 54. Danish, V., Alazab, M., Wassan, S., et al.: IMCFN: image-based
malware classification using fine-tuned convolutional neural net-
work architecture[J]. Comput. Netw. 17, 1107138 (2020)

 55. Anandhi, V., Vinod, P., Varun-G, M.: Malware visualization and
detection using DenseNets[J]. Person. Ubiquit. Comput. (2021).
https:// doi. org/ 10. 1007/ s00779- 021- 01581-w

 56. Moussas, V., Antonios, A.: Malware detection based on code visu-
alization and two-level classification[J]. Information 12(3), 118
(2021)

 57. Sudhakar, K.S.: MCFT-CNN: Malware classification with fine-
tune convolution neural networks using traditional and transfer
learning in Internet of Things[J]. Fut. Gen. Comput. Syst. 12,
5334–5351 (2021)

 58. Kumar, S., Janet, B.: DTMIC: deep transfer learning for malware
image classification [J]. J. Inform. Secur. Appl. 64, 103063 (2022)

 59. He, Z., Lin, M., Zeshui, Xu., et al.: Deconv-transformer (DecT):
a histopathological image classification model for breast cancer
based on color deconvolution and transformer architecture. Inf.
Sci. 608, 1093–1112 (2022)

 60. Zhong, M., Lin, M., He, Z.: Dynamic multi-scale topological rep-
resentation for enhancing network intrusion detection. Comput.
Secur. 135, 103516 (2023)

 61. Wei, X., Mingwei, L.: Information security evaluation of indus-
trial control systems using probabilistic linguistic MCDM method.
Comput. Mater. Cont. 77(1), 199–222 (2023)

 62. Yong, C., Mingwei, L.: Linguistic knowledge representation in
DPoS consensus scheme for blockchain. Comput. Mater. Cont.
77(1), 845–866 (2023)

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2206.03452
https://doi.org/10.1007/s00779-021-01581-w

	A Lightweight Model for Malicious Code Classification Based on Structural Reparameterisation and Large Convolutional Kernels
	Abstract
	1 Introduction
	2 Malicious Code Classification Method Based on MDC-RepNet
	2.1 Data Preprocessing
	2.1.1 Malware Visualization
	2.1.2 Malware Image Size Normalization
	2.1.3 Data Enhancement Techniques

	2.2 Feature Extraction and Classification
	2.2.1 Structural Reparameterization
	2.2.2 Linear Train-Time Overparameterization
	2.2.3 Large Kernel Convolution

	3 Experiments and analyses
	3.1 Data Set and Experimental Environment
	3.2 Evaluation Indicators
	3.2.1 Model Training Performance Evaluation Metrics
	3.2.2 Indicators for Evaluating the Speed of Model Inference

	3.3 Analysis of Experimental Results
	3.3.1 Hyperparameter Comparison Experiment
	3.3.2 Experiments to Verify the Validity of Structural Reparameterization
	3.3.3 MDC-RepNet Ablation Synthesis Experiment
	3.3.4 Comparison with Other Deep Learning Models in Image Classification Tasks
	3.3.5 Comparison with Other Malicious Code Classification Techniques

	4 Conclusion
	References

