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Abstract
With the advancement of adversarial techniques for malicious code, malevolent attackers have propagated numerous mali-
cious code variants through shell coding and code obfuscation. Addressing the current issues of insufficient accuracy and 
efficiency in malicious code classification methods based on deep learning, this paper introduces a detection strategy for 
malicious code, uniting Convolutional Neural Networks (CNNs) and Transformers. This approach utilizes deep neural 
architecture, incorporating a novel fusion module to reparametrize the structure, which mitigates memory access costs by 
eliminating residual connections within the network. Simultaneously, overparametrization during linear training time and 
significant kernel convolution techniques are employed to enhance network precision. In the data preprocessing stage, a 
pixel-based image size normalization algorithm and data augmentation techniques are utilized to remedy the loss of texture 
information in the malicious code image scaling process and class imbalance in the dataset, thereby enhancing essential 
feature expression and alleviating model overfitting. Empirical evidence substantiates this method has improved accuracy 
and the most recent malicious code detection technologies.

Keywords Malware variant detection · Convolutional neural network · Structurral reparameterisation · Large kernel 
convolution · Image size normalisation

1 Introduction

Malicious code is software designed to carry out malicious 
activities or launch attacks. According to the “Internet Secu-
rity Situation Analysis Report for the First Half of 2021” 
published by the China National Internet Emergency Center 
(CNCERT/CC) [1], approximately 23.07 million malicious 
software samples were captured in the first half of 2021, 
with a daily distribution frequency amounting to 5.82 mil-
lion instances. This involved about 208,000 malicious code 
families, infecting approximately 4.46 million computer ter-
minals. Concurrently, the “China Internet Security Report 
2022” released by Rising [2] indicated that 73.55 million 
malicious codes were caught by the Rising “Cloud Security” 
system in 2022, with virus infections occurring 124 million 

times, including devices from individuals, companies, and 
government agencies. The rapid propagation and variance of 
the malicious code have severely impacted users' everyday 
lives, jeopardizing our national cybersecurity and hinder-
ing the development of a communal digital future. Hence, 
accurately and efficiently detecting and categorizing mali-
cious software and its varieties has become a focal point in 
this field.

Traditional malicious software identification methodolo-
gies hinge on the match of a signature-based model. This 
necessitates researchers manually extracting the signature 
of the malicious software using expert knowledge and then 
comparing these signatures with known ones stored in a 
database. However, numerous variations of malicious soft-
ware have been generated with the evolution of obfusca-
tion and wrapping techniques. This circumstance renders 
traditional detection methods less efficient and ineffective 
at detecting and recognizing variations of malicious soft-
ware. To tackle the challenges faced by static analysis-based 
malicious code detection methodologies, visualization-based 
detection and classification techniques for malicious code 
have emerged [3, 4]. These methods map malicious code as 
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images based on the distinct texture features within the same 
malicious code family and differing texture characteristics 
between various code families. They extract texture fea-
tures of the malicious code image and use these elements to 
detect and categorize malicious code samples. Visualization-
based malicious code analysis methodologies neither rely 
on expert knowledge nor static decompilation procedures 
and have been proven capable of detecting malicious code 
variations effectively.

Since the method was proposed, a large number of 
experts and scholars have researched on it and some pro-
gress has been made. The main focus is on using machine 
learning and deep learning techniques to improve detection 
accuracy and efficiency. Nataraj et al. [5] fused image and 
signal features to describe the malicious code and used KNN 
(K-Nearest Neighbor) as a classifier to identify the malicious 
code. Kancherla et al. [6] to enhance the diversity of the 
features incorporated Gabor features, Wavelet features and 
intensity features are fused as total features and SVM (Sup-
port Vector Machines) classifier is trained to achieve mali-
cious code classification. Yashu Liu et al. [7] constructed 
anti-confusion features by fusing GIST features and LBP 
(Local Binary Pattern) features of malicious images to solve 
the problem of degradation of classification performance 
of the model in similar malicious images. The above stud-
ies applied machine learning to visualisation-based mali-
cious code detection methods, and although there is some 
progress, they usually require manual extraction of features 
from the data, and the detection efficiency is low.

With the advent of deep learning, Naeem et al. [8] pro-
posed a malware variant classification method. They first 
converted malware files into grey-scale images and then 
used global malicious and local collective mechanisms to 
identify malware variants. Their paper describes the pro-
posed method in detail. The only shortcoming may be that 
comprehensive empirical psychological results are not pro-
vided to demonstrate the performance of variant classifica-
tion. Mathew et al. [9] devised a method to classify malware 
variants. Their method converts malware files into colour 
images and introduces a local pyramid pool to handle vari-
ous input image sizes. Although in practice, their paper also 
did not address variant classification performance, especially 
the results of experiments on variant classification for vari-
ous levels of variability.

In recent years, with the advancement of computer vision 
and deep learning technologies, deep learning algorithms, 
represented by Convolutional Neural Networks (CNNs), 
have made breakthrough progress in image classification 
and feature recognition, becoming the mainstream architec-
ture for visual models. They have gradually been applied 
to malicious code detection and classification fields. The 
classic Convolutional Neural Network (ConvNet) [10], com-
posed of Conv, ReLU, and pooling, has achieved significant 

success in image recognition. The advent of Inception [11], 
ResNet [12], and DenseNet [13] have shifted a vast amount 
of research interest towards intricately designed architec-
tures, escalating the model complexity. Recent architectures 
are based on automatic [14] or manual [15] architectural 
searches or searched compound scaling strategies [16]. 
Although many complex CNNs have improved in accuracy, 
their disadvantages are significant: (1) Complex multi-
branch designs, for instance, residual additions in ResNet 
and branch connections in Inception, make the model dif-
ficult to implement and customize, leading to slow infer-
ence speed and low memory utilization. (2) Certain com-
ponents, such as depthwise convolution in Xception and 
MobileNets [17, 18] and channel shuffling in ShuffleNets 
[19], increase memory access overhead and lack support 
for various devices.

With the success of data-driven models in image classi-
fication, detection and segmentation tasks [20, 21], a range 
of hybrid visual transformer models have emerged [22–25]. 
Different from convolution layers, the self-attention mecha-
nism of Vision Transformers offers a global context by 
modeling long-distance dependencies. However, achieving 
this global view often incurs high computational costs [26] 
and increases memory access overhead [27], thus resulting 
in significant latency overhead. To alleviate this challenge, 
some studies [26, 28, 29] focus on mitigating the computa-
tional burden associated with self-attention layers. Design 
approaches include replacing Patchify Stem with convolu-
tion layers [30], introducing early convolution stages [31], 
or employing window attention [32] to implement implicit 
hybrid models. The latest research has established explicit 
hybrid structures that better facilitate information exchange 
among tokens (or patches) [33–35]. In most hybrid struc-
tures, token mixing primarily depends on self-attention.

Inspired by recent work [27] utilizing reparametrized 
skip-connections to reduce memory access costs, this 
study introduces an architectural component called the 
Rep Mixer into the model. This operator is a fully repara-
metrized token mixer, combining the advantages of con-
volution architectures and Transformers, supplanting 
the self-attention layer to achieve computational latency 
reduction. The jump connections are eliminated through 
structural reparametrization. In addition, Rep Mixer also 
employs deep convolution to carry out operations simi-
lar to the information space mixing of ConvMixer. To 
enhance performance, various studies [17, 18, 36] have 
incorporated deep convolution or group convolution, sub-
sequently resorting to 1 × 1 point convolution to factor 
the k × k convolution. Despite this technique effectively 
bolstering the model's overall operational efficiency, the 
parameter decrease may result in a drop in model capacity. 
To further ameliorate latency, the number of floating-point 
operations (FLOPs), and parameter count, more recent 
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research [27, 37, 38] employs linear training time over-
parametrization to increase such a model's capacity. This 
paper replaces all the dense k × k convolutions with their 
decomposition version, that is, depthwise convolution fol-
lowed by pointwise convolution, and uses the linear train-
ing time over-parametrization proposed in [27] to enhance 
the capacity of these layers. These additional branches are 
only introduced during training and are reparametrized 
during inference.

Additionally, in the design of the MDC-RepNet (Struc-
tural Reparameterization and Multi-scale Deep Convolu-
tional Classifier Network, MDC-RepNet), we have adopted 
large kernel convolution to replace the early-stage Self-
Attention method. Although the Vision Transformer based 
on self-attention demonstrates high accuracy, it is inefficient 
in handling latency [26]. As a result, we introduce large 
kernel convolutions in the Feed Forward Network (FFN) 
layer and the patch embedding layer. Compared with other 
Vision Transformer architectures, our MDC-RepNet has a 
more negligible impact on overall latency while improving 
performance.

Aiming at the problem of insufficient extraction accuracy 
and low efficiency of current deep learning-based malicious 
code classification methods, this paper proposes a malicious 
code detection method combining CNN and Transformer, 
compared with other deep learning-based malicious code 
detection methods, the MDC-RepNet proposed in this paper 
has the following advantages.

1. For the problem of data image texture information 
loss, In the data preprocessing stage, pixel-filling based 
image size normalization algorithm and data enhance-
ment techniques are used to improve the image texture 
information loss and dataset category imbalance prob-
lem during malicious code image size deflation, respec-
tively, and to enhance the expression of key features and 
alleviate the overfitting phenomenon of the model.

2. For the problem of slow detection speed, A deep neural 
network is adopted as the framework, and the fusion 
module is introduced to make its structure reparameter-
ised, which effectively reduces the memory access cost 
by eliminating the jump connections in the network.

3. For the problem of poor classification accuracy, linear 
training time over-parameterisation and large kernel 
convolution technique are used to improve the network 
accuracy.

4. Through the final experiments, it is proved that the 
method in this paper has a stable improvement in both 
accuracy and operation efficiency, which is better than 
the latest malicious code detection technology.

In conclusion, MDC-RepNet is based on the Vision Trans-
formers architecture, leveraging structural reparametrization 

to achieve lower memory access costs and higher efficiency, 
realizing superior accuracy-latency balance.

2  Malicious Code Classification Method 
Based on MDC‑RepNet

Our proposed malicious code detection scheme consists of 
two core components: data preprocessing and the construc-
tion of the MDC-RepNet. During the data preprocessing 
stage, it includes visualizing malicious code, normalizing 
image size, and data augmentation techniques. The construc-
tion of the MDC-RepNet stage introduces the Rep Mixer 
token-mixing operator. It employs a structural reparametri-
zation strategy to eliminate skip connections within the 
network to reduce memory access costs. Simultaneously, it 
utilizes over-parametrization during training time and exten-
sive kernel convolution techniques to enhance the model's 
accuracy. The complete architecture is shown in Fig. 1.

2.1  Data Preprocessing

2.1.1  Malware Visualization

Malicious Code Visualisation is the conversion of malicious 
code executables into greyscale images. Malware visuali-
sation does not require any feature engineering or domain 
expert knowledge and is a simple and easy-to-use method 
for malicious code analysis. The visualisation-based mali-
cious code analysis method can present the static structural 
information of the malicious code through images, which 
can quickly process a huge number of samples. And its abil-
ity to capture small changes between malicious code variants 
while preserving the global structure will help in analysing 
malicious code.

The process of malicious code visualization entails trans-
forming malicious code binary files into grayscale images, as 
illustrated in Fig. 2. First, given a malicious code, a binary 
file is read in groups of 8-bit unsigned integers. Each group 
of binary numbers is then converted into a decimal integer. 
Subsequently, the row width is determined according to the 
PE file size and transformed into a two-dimensional array, 
and the correspondence between the row width and the file 
size is shown in Table 1. Finally, each element in the two-
dimensional array is considered as the grayscale value of the 
image, mapping the two-dimensional array onto a grayscale 
image—the partial conversion of malicious family samples 
as depicted in Fig. 3.

The correspondence of the different parts of the malware 
code binary file mapped to a grey scale image is shown in 
Fig. 4. In Fig. 4, the text contains not only malware exe-
cutable code but also black blocks filled with zeros. The 
data section contains information about initialised and 
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uninitialised variables. The final rsrc section contains all 
kinds of compiled and generated malicious code resources, 
including the program's icons and so on.

2.1.2  Malware Image Size Normalization

In convolutional neural networks, the size of the weight 
matrix in the fully connected layer is fixed, meaning the 
feature size input into the fully connected layer must remain 
consistent. If the input image sizes vary, the feature sizes 
following convolution and pooling operations will also dif-
fer, leading to disparate feature sizes input into the fully 

connected layer and rendering the fully connected layer inef-
fective. Thus, images input into the convolutional neural net-
work must be the same size. However, the sizes of visuals 
created after visualizing malicious images are all different. 
Consequently, it is necessary to normalize the size of the 
malicious images after visualization.

We adopt the bilinear interpolation algorithm for image 
size normalization to maintain the original texture features 
of the malicious images after normalization as much as pos-
sible. This algorithm first selects four-pixel points directly 
adjacent to the interpolation point of the malicious image, 
then performs linear interpolation calculations twice in the 
x direction, and finally performs linear interpolation in the 
y direction to obtain the pixels of the interpolation point:

(1)f (x, y1) =
x2 − x

x2 − x1
f (x1, y1) +

x − x1

x2 − x1
f (x2, y1)

(2)f (x, y2) =
x2 − x

x2 − x1
f (x1, y2) +

x − x1

x2 − x1
f (x2, y2)

Fig. 1  Schematic diagram of the model structure

Fig. 2  Illustration of malware images visualization

Table 1  Image width for various file sizes

File size range Image 
width

File size range Image width

1  < 10 KB 32 5 100–200 KB 384
2 10–30 KB 64 6 200–500 KB 512
3 30–60 KB 128 7 500–1000 KB 768
4 60–100 KB 256 8  > 1000 KB 1024
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where f (x, y) is the pixel value of the interpolation point in 
the malware image. (xi, yj) (i, j = 1, 2) are the four pixels near 
the interpolation point in the malware image. Figure 5 shows 
the malicious image of a sample in the Allaple.A family after 
normalisation, by observation it can be seen that the basic 
texture features of the malicious image after the bilinear 
interpolation algorithm are well preserved.

2.1.3  Data Enhancement Techniques

In deep learning models, the effect of classification 
is closely related to the quality of the dataset, and an 

(3)f (x, y) =
y2 − y

y2 − y1
f (x, y1) +

y − y1

y2 − y1
f (x2, y2)

adequate and balanced dataset can not only improve the 
classification accuracy of the model but also avoid the 
overfitting phenomenon to a certain extent. When the num-
ber of samples in the dataset is small or the number of 
samples in each category is unbalanced, data enhancement 
techniques can be used to increase the number of samples 
in a few categories, so as to suppress the impact of unbal-
anced samples on the model and improve the robustness 
of the model. The common image data enhancement is 
to generate new data by transforming the original image 
data, such as: scaling, flipping, shifting, etc. To solve the 
problem of an unbalanced number of samples of various 
categories in the malicious code dataset, this paper uses 
the image data augmentation technique function in python 
to expand the samples of the dataset, and the parameter 

Fig. 3  Samples of different malware family grayscale images

Fig. 4  Malicious code PE file 
section and its correspond-
ing visualised image fragment 
information
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settings of the data augmentation technique used in the 
experiment are given in Table 2.

2.2  Feature Extraction and Classification

The design inspiration of MDC-RepNet comes from the 
combination of CNN and Transformer. CNN is good at 
extracting local features from images, while Transformer 
can globally capture sequence information. MDC-RepNet 
attempts to combine the advantages of both to achieve 
stronger feature extraction and model representation capa-
bilities. The overall architecture of the MDC-RepNet is 
shown in Fig. 6.

The starting point of MDC-RepNet is Stem, which uses 
convolutional structures for feature extraction. During the 
inference stage, the structure consists of 3 × 3 convolution, 
3 × 3 depth convolution, and 1 × 1 convolution to extract 
multi-scale features from the original image. To achieve 
structural reparameterization, additional 1 × 1 convolution 
or Identity branches are introduced during the training stage, 
providing greater flexibility to the model and helping to opti-
mize its representation ability.

MDC-RepNet is divided into four stages, each of which 
halves the resolution of the feature map and doubles the 
number of channels. The first three stages use the same 

internal structure, using the Rep Mixer in Fig.  6d for 
token mixing. This structure aims to achieve feature reuse 
across stages and dimensions, and improves the represen-
tational power of the model by reparameterizing the skip 
connections.

The internal structure of the fourth stage is shown in 
Fig. 6a, using attention as a token mixer. This design sacri-
fices inference speed to ensure higher accuracy. The atten-
tion mechanism allows the model to focus on key informa-
tion within the global scope, further improving the quality 
of feature representation.

The ConvFFN architecture is used in each stage of MDC-
RepNet, which is different from traditional FFN. ConvFFN 
combines deep separable convolutions (7 × 7) and feedfor-
ward networks to achieve more efficient feature extraction 
and model representation. Deep separable convolutions 
allow the model to learn more complex spatial features while 
reducing computation, which helps improve model inference 
speed and accuracy.

To achieve structural re-parameterization, MDC-RepNet 
introduces a novel fusion module. This module aims to fuse 
different levels of features from CNN and Transformer, lev-
eraging the advantages of both. During training, the fusion 
module allows the model to adaptively adjust the feature 
fusion method according to task requirements, optimizing 
the model's performance. This design provides greater flex-
ibility for the model, enabling it to better adapt to various 
visual tasks.

In summary, MDC-RepNet achieves powerful feature 
extraction and model representation capabilities by cleverly 
combining a CNN and a Transformer. the CNN is respon-
sible for extracting local features from an image, while the 
Transformer captures global sequence information using a 
self-attentive mechanism. This integration approach enables 

64 × 64

128 × 128

256 × 256

Fig. 5  Bilinear interpolation method to deflate the malicious code image

Table 2  The parameter settings of data augmentation

Method Setting Method Setting

1 Rescale 1/255 5 Shear range 0.0
2 Width shift 0.0 6 Zoom range 0.0
3 Height shift 0.0 7 Horizontal flip False
4 Rotation range 0.0 8 Fill mode None
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MDC-RepNet to simultaneously process both spatial and 
sequence information of an image, resulting in excellent per-
formance in a variety of visual tasks. In addition, by intro-
ducing the novel fusion module and ConvFFN architecture, 
MDC-RepNet further improves its feature extraction and 
model representation capabilities.

2.2.1  Structural Reparameterization

Multi-branch network structures, boasting receptive fields 
of varying scales, increase the network's width and param-
eter amount compared to tiling network structures. This is 
conducive to enhancing network performance. However, as 
the network becomes more branched, the memory consump-
tion during training and inference speed are significantly 
affected. Therefore, Ding et al. [39] propose the notion of 
structural reparametrization, which equivalently converts 
complex multi-branch structures into a single-branch struc-
ture. In this way, a network with a multi-branch structure can 
be selected during training to enhance network performance. 
After training, the network can be converted into a single-
branch structure for inference. The converted single-branch 
structure can maintain the original network's performance 
while improving the network's running speed and reducing 
memory consumption and the parameter count.

Figure 7 illustrates the transformation of the multi-
branch structure during training into a single-branch 
structure for inference. Figure 7a presents a multi-branch 

structure known as a basic block. Apart from the bottom-
most branch in the basic block, each branch comprises a 
convolution layer and a Batch Normalization (BN) layer. 
In contrast, the bottommost branch consists solely of a 
BN layer. Fusing all branches in the basic block into a 
single branch entails multiple fusion steps, including the 
fusion of the BN layer with the convolution layer and the 
fusion of convolution layers of different sizes, etc.

Fusion of the BN layer with the convolution layer. The 
Conv. change and BN operation are represented as follows:

In the equations, x represents the input. Hence, after 
passing through the convolution layer and BN layer, the 
input x can be expressed as:

In the equations, � and b are the weights and bias before 
merging, � and � are the translation and scaling parameters 
obtained after training, �B and �B are the means and vari-
ances of all training data, respectively, � is a very small 
constant to avoid division by zero.

(4)yconv = � ⋅ x + b

(5)
BN� ,�(yconv) = �

yconv − �B
√

�2
B
+ �

+ �

(6)BN� ,�(x) =
��

√

�B
2
+ �

x +
�

√

�B
2
+ �

(b − �B) + �

Fig. 6  Overall architecture of the MDC-RepNet
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From Eqs. (7) and (8):

where �̂� and b̂ are the weights and bias of the fused con-
volutional kernel, respectively. The convolutional layer can 

(7)
�̂� =

𝛾𝜔
√

𝜎2
B
+ 𝜀

(8)
b̂ =

𝛾
√

𝜎2
B
+ 𝜀

(b − 𝜇B) + 𝛽.

(9)BN𝛾 ,𝛽(x) = �̂� ⋅ x + b̂

be fused with the BN layer by the above transformations to 
reduce the computation amount during inference. The spe-
cific fusion method is:

(1) Fusion of 1 × 1 convolution with 3 × 3 convolution. 
The 1 × 1 convolution is filled to 3 × 3 size using 0. Utilizing 
the additivity of convolution, the convolution obtained from 
the filling is added to the original 3 × 3 convolution to obtain 
the fused 3 × 3 convolution.

(2) Fusion of 3 × 3 convolution and 7 × 7 convolution. 
Similar to the fusion of 1 × 1 convolution and 3 × 3 convo-
lution, the 3 × 3 convolution is filled with zeros to a con-
volution of size 7 × 7 and then added to the original 7 × 7 
convolution to obtain the fused 7 × 7 convolution.

Fig. 7  Processing flow for transforming a multi-branch structure into a single-branch structure
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(3) Fusion of residual branches with BN layer. Residual 
branching can be considered a convolution operation of the 
original input data with a convolution kernel with unique 
parameters. Using 1 × 1 convolution and making the param-
eter of the convolution kernel corresponding to the current 
number of channels one and the parameter corresponding to 
the rest of the channels 0, the output can be obtained as the 
same as the input. This 1 × 1 convolution is fused with the 
BN layer and then filled to a 5 × 5 convolution using zeros.

After fusing the convolutional layer with the BN layer 
using the fusion method described above, the transforma-
tion of Fig. 7a to Fig. 7b can be realized, and the additivity 
of the convolution can be utilized to transform Fig. 7b, c. 
Up to this point, a multi-branch basic block during training 
can be equivalently transformed into a single convolution 
during inference.

2.2.2  Linear Train‑Time Overparameterization

To further improve the efficiency of parameter counts, 
FLOPs, and delays, all the model's dense k × k convolu-
tions are replaced with their factorized versions, i.e., k × k 
depth convolutions followed by 1 × 1 point convolutions. 
However, the lower number of parameters resulting from 
the factorization reduces the model's capacity. To increase 
the capacity of the decomposition layer, a linear training 
time over-parameterization is used, which means that the 
model is trained using more parameters than are required. 
Adding more parameters during the training process helps 
to fit the training data better and thus improves the model's 
performance. However, due to the increased computational 
overhead of branching, training time overparameterization 
leads to an increase in training time.

Over-parameterizing the model with additional param-
eters on a linear scale. The advantage is that although the 
complexity of the model increases, the training time does not 
increase dramatically because the scale of the model is lin-
ear, so the model can still be trained in a reasonable amount 
of time. MDC-RepNet replaces only dense k × k convolu-
tions with their decomposed forms and over parameters as 
described above. These layers are in the convolutional back-
bone, block embedding, and fully connected layers. Since 
the computational cost of these layers is lower than the rest 
of the network, overparameterizing these layers does not 
result in a significant increase in training time.

2.2.3  Large Kernel Convolution

Compared with the sensory field of Self-Attention in 
Vision Transformer architecture, the sensory field of Rep 
Mixer is localized. However, the Vision Transformer based 
on the Self-Attention mechanism has a higher computa-
tional overhead. Introducing deep large kernel convolution 

in FFN and patch embedding layers is a computationally 
efficient way to improve the sensory field in the early 
stages without using Self-Attention by combining deep 
large kernel convolution. MDC-RepNet introduces large 
kernel convolution at the Patch Embedding layer and FFN. 
The experimental model parameter settings are shown in 
Table 3.

The architecture of the FFN and patch embedding layer 
is shown in Fig. 5c. The FFN block has a similar struc-
ture to the ConvNet block with some key differences. 
The MDC-RepNet architecture uses Batch Normalization 
instead of Layer Normalization in the ConvNet block. 
The BN layers can be fused with the previous layer dur-
ing inference, and, similar to the implementation of the 
ConvNet block, no additional reshaping operations are 
required to obtain a suitable tensor layout for the Layer 
Norm.

Conv. FFN blocks are usually more robust than vanilla-
FFN blocks [40], as the sensory field increases, a sizeable 
convolutional kernel helps to improve the robustness of the 
model. Therefore, combining large convolutional kernels 
is an effective way to improve model performance and 
robustness.

Table 3  MDC-RepNet parameter settings

Stage Tokens Layer spec Settings

Stem H ×W Conv 3 × 3, stride = 2
3 × 3, stride = 2
48

1 H

4
×

W

4

Patch embed 7 × 7, stride = 2
48

MDC-Rep block Mixer Rep mixer
Exp 3
Blocks 2

2 H

8
×

W

8

Patch embed 7 × 7, stride = 2

96
MDC-Rep block Mixer Rep mixer

Exp 3
Blocks 2

3 H

16
×

W

16

Patch embed 7 × 7, stride = 2

192
MDC-Rep block Mixer Rep mixer

Exp 3
Blocks 4

4 H

32
×

W

32

Patch embed 7 × 7, stride = 2

384
MDC-Rep block Mixer Rep mixer

Exp 3
Blocks 2
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3  Experiments and analyses

3.1  Data Set and Experimental Environment

This experiment uses the Malimg dataset published by the 
University of California Vision Research Laboratory for 
model training and classification. The dataset contains a 
total of 9435 malicious code sample data from 25 mali-
cious families, and the operating system in the model 
training is Ubuntu version 22.04.2, running in CUDA 11.8 
environment, using Pytorch1.11.0 deep learning frame-
work, and hardware configuration of Nvidia GeForce RTX 
3080Ti.

The Malimg dataset is divided into two parts, the train-
ing set and the validation set, in a ratio of 9:1. Among 
them, the training set is used for model training, and 
the validation set is used for observing and evaluating 
the model’s performance. The name of each family and 
the distribution of the number of samples per family are 
shown in Table 4.

3.2  Evaluation Indicators

3.2.1  Model Training Performance Evaluation Metrics

Four common rubrics in the field of malicious code clas-
sification: Accuracy, Precision, Recall, and F1-score are 
selected to evaluate the model classification, which has been 
widely used in related research [41–43]. The formulas are 
as follows:

where TP is the actual class (meaning that malware is cor-
rectly categorized as malware), FN is the false negative class 
(meaning that malicious code is incorrectly categorized as 
regular code), FP is the false positive class (meaning that 
regular code is incorrectly categorized as malicious code), 
and TN is the actual negative class (meaning that regular 
code is correctly categorized as standard code).

The performance of the model is presented using a visual 
representation of the confusion matrix, and the values of 

(10)Accuracy =
TP + TN

TP + TN + FP + FN

(11)Precision =
TP

TP + FP

(12)Recall =
TP

TP + FN

(13)F1 − score = 2 ×
Precision × Recall

Precision + Recall

Table 4  Details of malimg dataset

ID Family name Type Number of 
malignant 
samples

1 Adialer.C Dialer 122
2 Agent.FYI Backdoor 116
3 Allaple.A Worm 2949
4 Allaple.L Worm 1591
5 Alueron.gen!J Trojan 198
6 Autorun.K Worm:AutoIT 106
7 C2LOP.gen!g Trojan 200
8 C2LOP.P Trojan 146
9 Dialplatform.B Dialer 177
10 Dontovo.A TrojanDownloader 162
11 Fakerean Rogue 381
12 Instantaccess Dialer 431
13 Lolyda.AA1 PWS 213
14 Lolyda.AA2 PWS 184
15 Lolyda.AA3 PWS 123
16 Lolyda.AT PWS 159
17 Malex.gen!J Trojan 136
18 Obfuscator.AD TrojanDownloader 142
1 Rbot!gen Backdoor 158
20 Skintrim.N Trojan 80
21 Swizzor.gen!E TrojanDownloader 128
22 Swizzor.gen!I TrojanDownloader 132
23 VB.AT Worm 408
24 Wintrim.BX TrojanDownloader 97
25 Yuner.A Worm 800

Fig. 8  Confusion matrix for multi-categorization problems
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TP, FP, TN, and FN for the multiclassification problem are 
shown in Fig. 8 where Fi (i = 0,1,2…n) denotes the mali-
cious code family category.

3.2.2  Indicators for Evaluating the Speed of Model 
Inference

The MDC-RepNet uses structural reparameterization to 
optimize the rate of model operation in the inference phase. 
Using a divided test set (10%) of about 944 images as exper-
imental data, the inference speed of MDC-RepNet versus 
classical network models for predicting an unknown sample, 
i.e., the time overhead incurred in categorizing each image 
of malicious code, is calculated as a metric for determining 
the inference speed of the model.

3.3  Analysis of Experimental Results

3.3.1  Hyperparameter Comparison Experiment

Limited by the characteristics of fully connected layers in 
CNNs, the size size of the malignant code image input to 
the model must be deterministic. In addition, the size of 
the image put into the CNN will not only affect the size of 
the model but also change the effectiveness of the model. 
In order to obtain the most suitable input image size for the 
model, this paper applies bilinear interpolation to normalize 
the malicious code images to 32 × 32, 64 × 64, 128 × 128, 
256 × 256, and 512 × 512. The performance of the model 
is experimentally tested by inputting the malicious images 
in the Malimg dataset into the model, and it can be ana-
lyzed in Table 5 to know that, after the size of the mali-
cious code image is increased from 32 × 32 to 256 × 256, 
is an increase in accuracy from 86.65 to 99.57%, however, 
when the image size continues to increase from 256 × 256 
to 512 × 512, the accuracy decreases from 99.57 to 98.92%, 
which indicates that the model is overfitting. Moreover, as 
the image size increases, the number of parameters increases 
gradually. This is because the more significant the image 
size, the more convolution operations and parameters are 
involved, which further increases the consumption of com-
puter resources and leads to longer model training time. 

Then, after a comprehensive trade-off between the malicious 
code classification accuracy and the number of parameters, 
a 256 × 256 malicious code image is finally chosen as the 
input to the model.

In deep learning, optimizers are algorithms that update 
and find the optimal parameters of a model. For the purpose 
of optimizing model parameters, in this paper, we conduct 
comparative experiments on some optimizers Adagrad, 
Adamax, Adam, NAdam, and AdamW that perform well 
in classification tasks. Table 6 lists the performance graphs 
of the above optimizers concerning the relevant metrics. 
The experimental results show that AdamW outperforms 
other optimizers regarding accuracy, precision, recall, and 
F1-score. Therefore, in this paper, AdamW is selected as 
the optimizer of MDC-RepNet for performing the malicious 
code family classification task.

3.3.2  Experiments to Verify the Validity of Structural 
Reparameterization

A structural reparameterization technique is used to decou-
ple and separate the training process and inference phase of 
the MDC-RepNet. The multi-branch model is first trained, 
then equivalently transformed into a one-way model, and 
finally the model is deployed. In the prediction phase, the 
actual model that has been transformed is run. To verify 
the effectiveness of structural reparameterization, experi-
ments are set up to analyze the training and inference phases 
quantitatively, and to evaluate the accuracy, FLOPs, infer-
ence speed, the number of parameters, and the model size 
of the MDC-RepNet before and after the transformation, to 
verify the actual effect of structural reparameterization. In 
the model training, the number of samples selected for each 
training batch size is set to 32, the number of Epoch is set to 
30, the initial learning rate is set to 0.0001 using the AdamW 
optimizer, the weight decay is 0.05, the peak learning rate 
is  10–3, and the cosine scheduling is used to attenuate the 
learning rate, and the loss function is the cross-entropy loss 
function, the results are shown in Table 7.

The MDC-RepNet has the same recognition accuracy 
before and after the conversion, the FLOPs, the number 
of parameters, and the model volume are reduced by 
about 10%, while the inference speed is reduced by about 

Table 5  Experimental results on the effect of input image size on the 
model

Input Accuracy (%) Recall (%) F1-score (%) Params (M)

32 × 32 86.65 86.65 86.64 0.31
64 × 64 95.32 95.32 95.30 0.35
128 × 128 98.47 98.47 98.47 0.50
256 × 256 99.57 99.58 99.57 1.11
512 × 512 98.92 98.90 98.91 2.58

Table 6  Comparative experimental results of different optimizers

Optimizer Accuracy (%) Precision (%) Recall (%) F1-score (%)

Adagrad 97.20 96.26 97.20 96.72
Adamax 97.57 96.71 97.57 97.63
Adam 98.23 98.20 98.23 98.21
NAdam 99.10 99.18 99.10 99.13
AdamW 99.57 99.56 99.58 99.57
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15–20%. The experimental results show that with the 
increase of the model depth and width, the inference speed 
of the model is reduced, and the recognition efficiency is 
significantly improved.

To further verify the effectiveness of structural repa-
rameterization, the confusion matrices of the MDC-Rep-
Net before and after conversion are plotted to verify its 
effectiveness more intuitively. The confusion matrices 
before and after structural reparameterization are shown 
in Fig. 9. Observing that the confusion matrices before 
and after structural reparameterization are identical, it 
can be learned that the recognition accuracy before and 
after the conversion is also identical, and the network 
can achieve a high recognition accuracy by training 30 
Epochs. The results show that the MDC-RepNet before 
and after structural reparameterization does not reduce 
the recognition accuracy and affects the performance of 
the model before conversion. Decoupling the training and 
inference phases reduces the inference speed of the model 
and reduces the time for malicious code image classifica-
tion and recognition.

3.3.3  MDC‑RepNet Ablation Synthesis Experiment

The MDC-RepNet introduces a large kernel convolution at 
two locations, the patch embedding layer, and the FFN, to 
improve the sensory field in the early stages without using 
self-attention by combining the deep large kernel convolu-
tion. To verify the role of the large kernel convolution for the 
whole network. Setting up the ablation experiment using the 
large kernel convolution to replace the self-attention module 
layer by layer, the experimental results are shown in Table 8.

RM indicates that the current stage uses RepMixer-FFN 
blocks. SA indicates that the current stage uses Self-Atten-
tion-FFN blocks. The standard setup uses 3 × 3 factorization 
convolution in the block embedding and backbone layers, 
and 1 × 1 convolution in the FFN. In variants V4 and V5, 
large kernel convolution (7 × 7) is used for the patch embed-
ding and FFN layers.

Comparison shows that V5 has an 11.2% increase in 
model size, a 0.4% gain in accuracy, and a 2.3 × increase 
in inference speed with V3. V2 is 20% larger than V4 and 
achieves similar accuracy, while inference speed is 7.1% 
higher than V4. Overall, large kernel convolution provides 

Table 7  Validation experiments 
on the validity of structural 
reparameterization

Pt prediction time

Mould Accuracy (%) FLOPs (G) Pt (ms) Params (M) Model 
Volume 
(M)

MDC-Net 99.57 1.52 124 7.65 60.4
MDC-RepNet 99.57 1.36 104 4.29 46.1

(a) pre-conversion (b) post-conversion
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a 0.9% accuracy gain on MDC-RepNet. Experimental results 
show that using deep large-kernel convolution has similar 
effects as using the self-attention mechanism while inducing 
a slight increase in inference speed.

To further verify the enhancement effect of the multi-
branch structure and the introduction of the large kernel 
convolution on the network representation ability, several 
components of MDC-RepNet are removed by the network 
ablation method, and the role of the components for the 
whole network is analyzed. The two shortcut branches and 
the large kernel convolutional block of MDC-RepNet are 
used as components to test the recognition accuracy of the 
model after combining with the main branch, respectively. 
Ensuring that other parameters remain unchanged, the 
results of the ablation analysis experiments are shown in 
Table 9.

As can be seen from Table 8, when not including any of 
the components, the accuracy decreases by 9.16% compared 
to MDC-RepNet, but the inference speed increases dramati-
cally. When only one component is used, the accuracy rate 
also decreases to different degrees compared to MDC-
RepNet, and the inference speed increases accordingly. The 
results show that the multi-branch structure can increase the 
network’s representation ability and improve the model's 
recognition accuracy. After the introduction of large kernel 
convolution, MDC-RepNet increased the accuracy by 3.1% 

compared to the original network, and the inference speed 
was the same, indicating that the introduction of large kernel 
convolution did not increase any computational resources for 
the inference stage.

3.3.4  Comparison with Other Deep Learning Models 
in Image Classification Tasks

The study expects to improve the inference speed of the 
model as much as possible and reduce the recognition time 
of the image while ensuring higher recognition accuracy. In 
this section, the model is trained and tested against classi-
cal networks (AlexNet, VGG series, and ResNet series) and 
lightweight networks (DenseNet, MobileNetV2, and Shuffle-
NetV2), which are deep neural network models with excel-
lent performance in image classification tasks based on the 
Malimg dataset. The results of the test of the aforementioned 
network models are compared to the data shown in Table 10.

As can be seen from Table 9, the MDC-RepNet possesses 
fewer FLOPs and faster inference speed with higher accu-
racy than the VGG16 network, the number of parameters 
is about 5% of the latter, and the model volume is about 
22% of the latter. Through structural reparameterization, 
the MDC-RepNet adopts the one-way model architecture 
of the VGG16-style network in the inference stage, and the 
inference speed is about twice as fast as that of the latter. 
The MDC-RepNet adopts the multi-branch structure as the 
backbone network and discards the fully connected layer 
of the VGG16-style network. The FLOPs are about 10% of 
that of the latter, and the complexity of the model is reduced 
dramatically.

Compared with the multi-branch structure ResNet series 
network, MDC-RepNet has more evident advantages in 
FLOPs, inference speed, number of parameters, and model 
volume over the former group compared with the ResNet50 
network. The MDC-RepNet borrows the residual module 
from the ResNet series network, making it possible to train 
the network deeper and making the network more complex 
in terms of similar recognition results. The MDC-RepNet 
borrows the residual module from the ResNet series net-
work, making it possible to train the network deeper and 

Table 8  Large kernel 
convolutional ablation 
experiments

Variant Stages Params (M) Accuracy (%) Pt (ms)

1 2 3 4

Standard setting
 V1 RM RM RM RM 6.37 97.89 52
 V2 RM RM RM SA 10.82 98.92 60
 V3 RM RM SA SA 10.41 99.66 122

Large kernel convolutions (7 × 7)
 V4 RM RM RM RM 6.81 98.48 56
 V5 M RM RM SA 8.92 99.57 67

Table 9  MDC-RepNet ablation synthesis experiment

"90.41(9.16↓)" means that the accuracy is 90.41% without any com-
ponent, which is a decrease of 9.16% compared to MDC-RepNet, 
"92.74(6.83↓)" means that the accuracy is 92.74% with only 1 × 1 
shortcut branches only, the accuracy is 92.74%, which is 6.83% lower 
than that of MDC-RepNet, and so on

1 × 1 Short-
cut Branch

BN Short-
cut Branch

MDC Branch Accuracy (%) Pt (ms)

90.41 (9.16↓) 163
√ 92.74 (6.83↓) 103

√ 94.28 (5.29↓) 138
√ √ 96.47 (3.10↓) 87
√ √ √ 99.57 86
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reduce the model complexity in the case of a similar recog-
nition effect with a lower number of parameters and faster 
inference.

MobileNet and ShuffleNet networks are network architec-
tures designed for devices with limited computing resources, 
which significantly reduce the computational overhead 
while retaining a certain level of model accuracy, signifi-
cantly increase the inference speed, and greatly reduce the 
FlOPs, the number of parameters, and the size of the model. 
The MDC-RepNet is a high-efficiency model designed for 
dedicated hardware or GPU, which pursues faster inference 
speed and more memory-saving. Faster and more memory-
efficient, with less attention to the number of parameters and 
FLOPs. MDC-RepNet improves the recognition accuracy by 
1–2% compared to MobileNetV2 and ShuffleNetV2, but the 
inference speed is not as fast as the two, and the number of 
parameters and FLOPs are higher than the two. However, 
it can be observed that compared with MobileNetV2, the 
FLOPs are five times higher than the latter. However, the 
inference speed is 71% of the latter, which shows that the 
FLOPs do not entirely determine the inference speed, indi-
cating that the computational density of the MDC-RepNet 
is higher.

To observe the combined classification accuracy and 
detection time more intuitively, the accuracy and detection 
time results of each model are plotted in Fig. 9. The Fig. 
shows that the MDC-RepNet has the highest accuracy rate, 
and it only takes 219 ms to predict an unknown sample, 
which better realizes the balance between accuracy and 
delay. In summary, the MDC-RepNet has a high accuracy 
rate, a low number of parameters, and a high computational 
density. This is because the MDC-RepNet efficiently cap-
tures both local and global information. The structural repa-
rameterization module obtains lower memory access costs 
and higher efficiency by eliminating jump connections in 
the network. At the same time, techniques such as large 
kernel convolution are used to improve accuracy. This ulti-
mately reduces the number of parameters in the model and 
decreases the amount of floating-point operations, improving 
the model's speed.

To further observe and analyze the classification perfor-
mance of the models, Fig. 10 plots the classification details 

of each model in each malicious family, and the results show 
that the MDC-RepNet, through time-training over-para-
metrization and extensive kernel convolution techniques, 
improves the above classical deep neural network model's 
insufficient classification accuracy in some confusing mali-
cious families to varying degrees, and then improves the 
overall classification accuracy, Accurately classify 25 fami-
lies on the Malimg dataset. Experiments prove that the mali-
cious code classification performance of this paper's model 
outperforms other models (Fig. 11).

3.3.5  Comparison with Other Malicious Code Classification 
Techniques

To verify that the proposed model can achieve satisfactory 
performance and to further validate the model's malicious 
code detection capability, this section compares MDC-Rep-
Net with existing malicious code detection methods based 
on visual analysis based on the Malimg dataset. Table 11 
summarises the performance metrics of each malicious 
code detection method, from which we can see that MDC-
RepNet achieves an accuracy of 99.57% and a prediction 
time of 67 ms, which is much lower than that of the existing 

Table 10  Comparison of 
experimental results of different 
network models

Model Accuracy (%) FLOPs (G) Pt (ms) Params (M) Model volume (M)

AlexNet8 95.01 22.14 65 276.49 513.19
VGG16 96.91 15.91 51 131.37 214.00
ResNet50 97.94 6.52 75 32.75 96.07
DenseNet 99.07 3.16 118 28.44 126.30
MobileNetV2 97.63 0.31 124 2.51 9.07
ShuffleNet 98.41 0.15 131 1.48 5.23
MDC-RepNet 99.57 1.56 86 7.79 47.10
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Fig. 10  Comparison of classification accuracy and detection time of 
each model
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state-of-the-art research. Our model achieves better results 
in terms of accuracy, precision and other evaluation metrics 
than all existing research techniques.

The reason for this is related to the properties of convolu-
tion: in this paper, we use point-by-point convolution after 
deep convolution, large kernel convolution instead of the 
self-attention method to improve the model performance in 
the early stage, and re-parameterisation and jump-over con-
nectivity in inference, which eliminates the time overhead 
of the extra branches in the inference stage and improves the 
classification accuracy without introducing the extra infer-
ence time to aggravate the computational burden. Thus the 
model parameters from the training phase can be equiva-
lently used at inference time, resulting in lower memory 

access costs and higher efficiency, achieving an accuracy-
latency balance.

4  Conclusion

This paper proposes a malicious code detection method that 
combines CNNs and Transformers. The method takes deep 
neural networks as a framework, adopts the modular design 
idea, and introduces a new Token hybrid operator to make its 
structure reparameterized, which reduces the memory access 
cost by eliminating the jump connections in the network. 
Meanwhile, this paper adopts techniques such as training 
time over-parameterization and large kernel convolution to 

Fig. 11  Classification details of each model in malicious families
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improve the accuracy. In the data preprocessing stage, this 
paper uses pixel-filling-based image size normalization algo-
rithm and data enhancement techniques to improve the loss 
of image texture information and dataset category imbalance 
problem during malicious code image size deflation, respec-
tively, and to enhance the expression of critical features to 
alleviate the overfitting phenomenon of the model. Finally, 
the deep neural network model is trained to realize the clas-
sification of malicious code and its variants. Through experi-
ments, it is proved that the method in this paper has a stable 
improvement in accuracy and operation efficiency, which is 
better than the current malicious code detection technology.

In our future research, we will further investigate, design 
and implement appropriate improvements to enhance the 
performance and applicability of MDC-RepNet. We will try 
to address some of the current limitations of MDC-RepNet 
with respect to family confusion and continue to explore 
new methods and techniques such as color deconvolution 
techniques [59], dynamic multi-scale topology techniques 
[60] and linguistic sequence-based evaluation methods [61, 
62], etc., Combining the latest deep learning-based research 
results [22, 24] to improve the research in the field of mal-
ware classification.
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