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Abstract
Acknowledged as a robust tool for managing uncertain information, Dempster–Shafer evidence theory has seen significant
progress in recent years, especially in the refinement of mass functions, also known as basic belief assignments (BBAs).
This progress is particularly noticeable in complex domains where the effective handling of uncertainty is considered of
paramount importance. Despite these advancements, the generation of complex mass functions, referred to as complex basic
belief assignments (CBBAs), continues to be viewed as an open and challenging aspect within the framework of complex
evidence theory. A method for CBBA generation based on triangular fuzzy numbers was introduced by Xiao, specifically
applied to target recognition. However, despite its application, there is notable room for improvement in the recognition rate
achieved by this method. In response to this gap, an improved CBBA generation method based on triangular fuzzy numbers
is proposed in this paper. Notably, the consideration of attribute weights is incorporated into the CBBA generation process by
this approach. This refinement is rooted in the recognition that, in practical scenarios, different attributes carry distinct levels of
importance. Hence, adopting a more rational approach by assigning higher weights to crucial attributes becomes imperative.
The proposed method is subjected to rigorous testing in the paper of target recognition, with its performance systematically
compared against Xiao’s method and the conventional Dempster–Shafer evidence theory. The ensuing simulation results
unequivocally demonstrate the superior efficacy of the proposed method in achieving enhanced target recognition rates.

Keywords Complex Dempster–Shafer evidence theory · Complex basic belief assignment (CBBA) · Attribute weights ·
Triangular fuzzy number model · Target recognition

1 Introduction

Various facets of real life are permeated by uncertain infor-
mation [1–5]. The critical challenge ofmeasuring uncertainty
has prompted the advancement of numerous theories, includ-
ing, but not confined to, probability theory [6], fuzzy sets
[7, 8], Dempster–Shafer evidence theory [9], rough sets [10,
11], D numbers [12], Z numbers [13, 14], R numbers [15],
entropy measure [16]. These theories, with their diverse
foundations, find extensive applications in various real-life
scenarios, bearing profound practical implications. Note-
worthy applications include their valuable contributions to
medical diagnosis [17, 18], target recognition [19], multi-
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attribute decision making [20–22], cluster analysis [23, 24],
risk and reliability analysis [25].

Dempster–Shafer evidence theory is recognized as a
highly effective tool for navigating uncertain information
and reasoning based on evidence [26]. Numerous advantages
characterize this theory, as it serves as a generalization of
probability theory and provides a means to model uncertain
information in real-life scenarios devoid of a priori prob-
ability. The pivotal role played by Dempster combination
rules in fusing diverse information sources contributes to
progressively mitigating information uncertainty through a
step-by-step fusionprocess. Fromageometric standpoint, the
alignment of the Dempster combination rule with the com-
mutative and combinative laws of multiplication enhances
its widespread utilization across various domains, includ-
ing information fusion, decision-making, image processing,
and risk analysis. In the evolution of Dempster–Shafer evi-
dence theory, scholarly attention has been drawn to three key
aspects: enhancing the discrimination framework, generating
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BBA, and measuring conflicting evidence. The method for
generating BBA is not standardized and necessitates tailored
analysis based on specific situations. A method utilizing tri-
angular fuzzy numbers to generate BBA was proposed in
[27]. Boudraa et al. adopted a fuzzy membership degree
derived from image histograms and utilized an unsupervised
approach to calculate BBA [28]. Meanwhile, an algorithm
for BBA generation based on the probability density func-
tion obtained through kernel density estimation and pairwise
learning was introduced by Xiao et al. [29]. Applications in
target recognition and cluster analysis are found for these
generative methods. Nevertheless, the Dempster–Shafer evi-
dence theory also has its limitations. In response, several
alternative theories have been proposed to refine and extend
its applicability. The theoretical landscape has witnessed the
emergence of refined frameworks, such as the generalized
evidence theory [30], D numbers [12], and the complex evi-
dence theory advocated by Xiao and Deng [31] and Pan [32].
These advancements in theoretical frameworks are crafted
to address specific challenges and, in turn, contribute to the
overall enhancement of evidence reasoning.

In the domain of Dempster–Shafer evidence theory, the
challenge of managing inherent uncertainty in the BBA is
accentuated when encountering periodic data characterized
by dynamic phase angles [31]. This limitation has been
addressed by Xiao, who has adeptly introduced a com-
plex Dempster–Shafer evidence theory. In this innovative
variation, the BBA undergoes a transformation from being
mapped in the power set to the real number domain (rang-
ing from 0 to 1) to being mapped in the complex number
domain, termed CBBA. This adaptation has been proven
notably effective when handling data with multidimensional
features [26]. Contributing to the progress in this field, a new
CBBA that does not exactly consistent with Xiao’s CBBA
is proposed in [32]. Pan and Deng’s CBBA adheres to the
condition that the sum of the moduli of the CBBAs across all
power sets equals 1 [32]. However, a significant distinction
arises, as in Xiao’s complex Dempster–Shafer evidence the-
ory, where the requirement is for the sum of CBBA across all
power sets to equal 1. Despite these commendable theoreti-
cal advancements, the generation of CBBA remains a central
challenge in complex Dempster–Shafer evidence theory. A
methodgrounded in triangular fuzzynumbers forCBBAgen-
eration is proposed by Xiao, finding practical application
in target recognition and showcasing a commendably high
recognition rate. Nevertheless, there is still ample room for
improvement in enhancing this recognition rate [33].

In this paper, an improved method for generating CBBA
based on triangular fuzzy numbers is presented. The method
is structured into four sequential steps: first of all, the division
of the training set and test set; then, themodeling of triangular
fuzzy numbers for different attributes; besides, the derivation
of weights for different attributes; and finally, the generation

of new CBBAs with associated weights. The consideration
of objective weights for different attributes enhances the rea-
sonability and reliability of the final generated CBBAs. For
target recognition, the proposed method is employed, and
a target recognition algorithm is formulated based on the
developed CBBA generation approach. This algorithm is
subsequently applied to various data sets, including the iris
data set, banknote data set, and lense data set, to demonstrate
its performance. Simulation results highlight that the recog-
nition rate is improved significantly, leading to high-quality
recognition outcomes.

The subsequent sections of the paper are organized as
follows. In the second section, the fundamental concepts
of Dempster–Shafer evidence theory, complex Dempster–
Shafer evidence theory, and the definition of triangular fuzzy
numbers are briefly introduced. The third section meticu-
lously outlines the specific procedure for CBBA generation.
Section four details and provides applications of the method
to target recognition. Lastly, the fifth section encapsulates the
paper with a summary.

2 Preliminary

2.1 Dempster–Shafer Evidence Theory

Definition 1 (Frame of discernment) The frame of discern-
ment, denoted as �, comprises a set of mutually exclusive
and non-empty elements: � = {E1, E2, E3, . . . , EN }. This
set, known as the frame of discrimination, serves as the basis
for the context under consideration. The power set of �,
represented as 2�, encompasses various subsets that can be
constructed from its elements. This representation, cited from
[34], is articulated as:

2� = {∅, {E1} , {E2} , · · · , {EN } , {E1, E2} , · · · , �} . (1)

Definition 2 (Mass function) The mass function, denoted as
m, characterizes the basic belief assignment (BBA)within the
discrimination framework �. As per the definition provided
in [32], the BBA m is articulated as a mapping:

m : 2� −→ [0, 1], (2)

this mapping adheres to two fundamental conditions:

m(∅) = 0, (3)∑

B∈2�

m(B) = 1, (4)

in these expressions, when m(B) attains a value greater than
zero, the corresponding set B is designated as the focus
element within the discrimination framework �. The sig-
nificance of m(B) lies in its indication of the support for
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proposition B. A higher value of m(B) signifies stronger
support for the associated proposition.

Definition 3 (Dempster’s combination rule) The BBAs m1

and m2 operate on the discrimination frame �, with their
respective focal elements denoted by B and C . The combi-
nation rule for these BBAs, represented as m = m1 ⊕ m2, is
defined as follows [32]:

m(A) =
{ ∑

B∩C=A m1(B)m2(C)

1−K , A �= ∅,

0, A = ∅,
(5)

in this formulation, the conflict coefficient K between the
two BBAs is expressed passively:

K =
∑

B∩C=∅
m1(B)m2(C), (6)

it’s worth noting that, in general terms, 0 ≤ K < 1.

2.2 Complex Dempster–Shafer Evidence Theory

The complexDempster–Shafer evidence theory, adept at han-
dling uncertain information, is equipped with a complex
combinatorial rule that enhances information fusion. Widely
applicable across various domains, this theory stands as a
robust framework for dealingwith uncertainty. In this subsec-
tion, fundamental concepts of the complex Dempster–Shafer
evidence theory are presented.

Definition 4 (Frame of discernment) Let � = {
θ1, θ2, θ3,

. . . , θN
}
be a mutually exclusive and non-empty set, identi-

fied as a frame of discrimination. The power set of the frame
of discrimination, denoted by 2�, is expressed as follows
[34]:

2� = {∅, {θ1} , {θ2} , · · · , {θN } , {θ1, θ2} , · · · , �} . (7)

Definition 5 (Complex mass function) The complex mass
function, also known as the complex basic belief assignment
(CBBA), represents a generalization of the BBA within the
Dempster–Shafer evidence theory framework. It is a map-
ping from elements in the power set to complex domains
[34]:

M : 2� −→ C, (8)

this mapping adheres to the following three conditions:

M(∅) = 0, (9)

M(B) = m(B)eiθ(B), B ∈ 2�, (10)∑

B∈2�

M(B) = 1. (11)

Here, i = √−1, and m(B) denotes the modulus of CBBA
M(B), taking values in the range [0,1]. The term θ(B) rep-
resents a phase term within the range [−π, π ]. According to
Euler’s formula, the CBBA M(B) may be presented in the
following “rectangular” or “Cartesian” form:

M(B) = x + yi, B ∈ 2�, (12)

this form satisfies
√

x2 + y2 ∈ [0, 1]. Additionally, M(B)

can be represented as:

|M(B)| = m(B) =
√

x2 + y2. (13)

When |M(B)| is greater than 0, proposition B is con-
sidered a focal element, and |M(B)| represents the degree
of support for the proposition. A larger |M(B)| indicates
stronger support, while a smaller value suggests weaker sup-
port. Notably, when y = 0, M(B) is a real number, causing
the CBBA to degenerate into classical BBA.

Definition 6 (Complex Dempster’s combination rule) Two
independent CBBAs, M1 and M2, within the discrimination
frame�, with the focal element of M1 denoted as B and that
of M2 denoted as C . The complex Dempster’s combination
rule, symbolized as m = m1 ⊕ m2, is articulated as follows
[34]:

M(A) =
{ ∑

B∩C=A M1(B)M2(C)

1−K , A �= ∅,

0, A = ∅,
(14)

the conflict coefficient K of twoCBBAs is expressed in terms
of K as follows:

K =
∑

B∩C=∅
m1(B)m2(C). (15)

In decision-making scenarios, the CBBA may lack intu-
itiveness. Therefore, there arises a necessity to transform the
CBBA. Xiao generalized the Pignistic probability transfor-
mation in Dempster–Shafer evidence theory and introduced
the complex Pignistic probability transformation. This trans-
formation facilitates the assignment of the CBBA ofmultiple
subsets to a single subset, thereby enhancing the decision-
making process.

Definition 7 (Complex Pignistic Probability Transforma-
tion) In the framework of discernment �, the complex
Pignistic probability transformation is defined as follows, as
presented by Xiao [35]:

C Bet(B) =
∑

A,B∈�

M(A)
|A ∩ B|

|A| , (16)
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here, |A ∩ B| denotes the cardinal number of the intersection
of A and B, while |A| denotes the cardinal number of A.

2.3 Triangular Fuzzy Membership Function

Fuzzy sets, crucial for handling uncertainty, find extensive
applications in decision-making. The concept of the degree of
membership holds fundamental significance in fuzzy mathe-
matics. Various fuzzy membership degree functions, such as
triangular fuzzy distribution, trapezoidal fuzzy distribution,
Gaussian fuzzy distribution, etc., have been explored [36]. In
many instances, establishing a triangular fuzzy membership
degree function proves more practical. The definition of the
triangular fuzzy membership function is provided below.

Definition 8 (Triangular fuzzy membership function) Sup-
pose fB denotes a triangular fuzzy membership function,
and B is considered a focal element within the frame of dis-
cernment �. The trapezoidal fuzzy membership function is
defined as follows [33]:

fB(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 x < a,
x−a
b−a a ≤ x < b,
c−x
c−b b ≤ x < c,
0 c ≤ x,

(17)

a denotes the lower bound of the fuzzy number, b signifies
the most probable value of the fuzzy number, and c serves
as the upper bound of the fuzzy number. The representation
of the triangular fuzzy number is also possible in the form
(a, b, c).

3 The ProposedMethod for Generating
CBBA

An approach is proposed in this paper to generate the CBBA
for various attributes based on trapezoidal fuzzy numbers.
The original data set comprises multiple classes of samples,
each consisting of several attribute values. The process of
generating the CBBA involves four distinct steps. Firstly, the
original data set is partitioned into two classes: the training
set and the test set. Subsequently, amodel for each attribute is
created using a triangular fuzzy number approach, leveraging
the training set [33]. In the third step, the weights of each
attribute are computed. Finally, test samples are chosen and
inputted into the model derived in the previous step. The
degrees of membership of focal elements for each attribute
are determined based on the intersection points. This yields
the proposed CBBA for different attributes. The flow chart
of this method for generating the CBBA is depicted in Fig. 1.
A more detailed process is outlined below.

The first step: Divide the original data set into a training
set and a test set.

Assuming there are J classes of samples in the original
data set, with each sample comprising I attribute values, and
each class containing n test samples. Prior to experimenta-
tion, the original data set undergoes a division into two parts:
a training set and a test set. Both sets are drawn in equal pro-
portions from each class, with the training set to test set ratio
being 3:2.

The second step: Triangular fuzzy numbers are modeled
for different attributes based on the training set.

Within the training set, encompassing J classes, each sam-
ple is characterized by I attribute values, and there are S
samples in each class. Let as

i j denote the i-th attribute value
of the s-th training sample in class j (i = 1, 2, 3, . . . , I ;
s = 1, 2, 3, . . . , S; j = 1, 2, 3, . . . , J ). The representation
of as

i j is given by:

as
i j = xs

i j + ys
i j i . (18)

here, xs
i j denotes the real part of the i-th attribute value for

the s-th sample in class j , and ys
i j represents the imaginary

part. The modulus of a complex number is denoted by |·|.
The expression of the triangular fuzzy number stemming

from attribute i within class j , denoted as (ai j , bi j , ci j ), is
determined through the following computations:

∣∣ai j
∣∣ = min

√
(xs

i j )
2 + (ys

i j )
2, ai j = xs

i j + ys
i j i, (19)

bi j = 1

S

S∑

s=1

(xs
i j + ys

i j i), (20)

∣∣ci j
∣∣ = max

√
(xs

i j )
2 + (ys

i j )
2, ci j = xs

i j + ys
i j i . (21)

Consequently, the formulation for the triangular fuzzy
number originating from attribute i within class j is rep-
resented by the function fB(x):

fB(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 |x | <
∣∣ai j

∣∣ ,
x−ai j

bi j −ai j

∣∣ai j
∣∣ ≤ |x | <

∣∣bi j
∣∣ ,

ci j −x
ci j −bi j

∣∣bi j
∣∣ ≤ |x | <

∣∣ci j
∣∣ ,

0
∣∣ci j

∣∣ ≤ |x | .
(22)

The triangular fuzzy number derived from the i-th
attribute’s values across all samples within the j-th class in
the training set can be denoted as T RIi j :

T RIi j = (ai j , bi j , ci j ). (23)

In order to generate the CBBA and obtain the degree of
membership for focal elements, it is crucial to categorize the
test sample into different classes of triangular fuzzy num-
bers. This necessitates the establishment of a triangular fuzzy
numbermodel comprising the triangular fuzzynumbers asso-
ciated with attribute i . The representation of the triangular
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Fig. 1 Flow chart for generating CBBAs with weights

fuzzy number model for attribute i is denoted as T RIi and
can be expressed as follows:

T RIi = (T Ri1, T Ri2, T Ri3, · · · , T Ri J ),

(i = 1, 2, 3, · · · , I ). (24)

Subsequently, the triangular fuzzy model for different
attributes is collectively expressed as:

T RI1, T RI2, T RI3, · · · , T RII , (25)

the entire process is illustrated in Fig. 2.
To represent the triangular fuzzy number model of the

different attributes of the sample inputsmore intuitively, to be
able to represent the triangular fuzzy numbers intuitively on
the Cartesian coordinate system, themodel of the established
triangular fuzzynumbers needs to be processed,whichmeans
taking the modulus of the triangular fuzzy numbers.

The third step: Determine the weights of different
attributes according to the recognition effect of different
attributes on the sample.

As is widely recognized, diverse attributes exert distinct
influences on sample recognition. In the context of the second
step, the samples within the training set undergo sequen-
tial integration into the triangular fuzzy number model, each
associated with specific attributes. Subsequent to multi-step
computations, the recognition rates for the samples pertain-
ing to different attributes are derived. The weights assigned
to these attributes are then determined through the processing
of the recognition rates. The following outlines the procedu-
ral steps involved in ascertaining the weights of the various
attributes.

(1) Samples from the training set, with known classes, are
randomly selected and, based on their attributes, incorporated
into the triangular fuzzy number model established in the
second step.

The model of the triangular fuzzy number for attribute
i is employed to incorporate the value of attribute i from
the training sample. This results in intersections with the
triangular fuzzy numbers of various classes, denoted as
ωi1, ωi2, · · · , ωi J (i = 1, 2, · · · , I ) in sequential order. The
corresponding vertical coordinates, ωi1, ωi2, · · · , ωi J are
then subjected to modulus operations, yielding |ωi1| , |ωi2| ,
· · · , |ωi J | (i = 1, 2, · · · , I ).

(2) The samples are introduced into themodel, resulting in
intersections with various models. Subsequently, the degree
of membership for different attributes of the focal element is
determined based on these intersections.

Themagnitudes |ωi1| , |ωi2| , · · · , |ωi J | (i = 1, 2, · · · , I )
are arranged in descending order, assuming

|ωi1| > |ωi2| > · · · |ωi J | . (26)

Subsequently, the degree of membership for focal elements
of attribute i is expressed as follows:

Gi ({θ1}) = ωi1,

Gi ({θ1, θ2}) = ωi2,

Gi ({θ1, θ2, θ3}) = ωi3,

. . .

Gi ({θ1, θ2, θ3, . . . , θJ }) = ωi J ,

(27)

where θ1, θ2, . . . , θJ represent class 1, class 2, . . . , class J
respectively.
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Fig. 2 The process of triangular fuzzy number models with different attributes

(3) Discuss in separate cases to obtain CBBA for different
attributes.

We first compute the sum of the degrees of membership
SU M : SU M = ∑J

j=1 ωi j of the focal elements under
different attributes and the sum of the degrees ofmembership

for the modulus |SU M | =
∣∣∣
∑J

j=1 ωi j

∣∣∣, |SU M | is divided
into the following three cases:

Case 1:where |SU M | =
∣∣∣
∑J

j=1 ωi j

∣∣∣ > 1, the value of

1 − |SU M | is indicative of uncertainty, and it is assigned to
�. Consequently, the CBBA for attribute i is formulated as
follows:

Mi ({θ1}) = G({θ1}) = ωi1,

Mi ({θ1, θ2}) = G({θ1, θ2}) = ωi2,

Mi ({θ1, θ2, θ3}) = G({θ1, θ2, θ3}) = ωi3,

...

Mi ({θ1, θ2, θ3, . . . , θJ }) = G({θ1, θ2, θ3, . . . , θJ })
+1 − |SU M | = ωi J + 1 − |SU M |

Case 2:when |SU M | =
∣∣∣
∑J

j=1 ωi j

∣∣∣ = 1, the CBBA for

attribute i is expressed as:

Mi ({θ1}) = G({θ1}) = ωi1,

Mi ({θ1, θ2}) = G({θ1, θ2}) = ωi2,

Mi ({θ1, θ2, θ3}) = G({θ1, θ2, θ3}) = ωi3,
...

Mi ({θ1, θ2, θ3, . . . , θJ }) = G({θ1, θ2, . . . , θJ }) = ωi J .

Case 3:|SU M | =
∣∣∣
∑J

j=1 ωi j

∣∣∣ > 1, so it needs to be

normalized to |SU M |. The CBBA for attribute i is:

Mi ({θ1}) = G({θ1})|SU M| = ωi1|SU M| ,

Mi ({θ1, θ2}) = G({θ1,θ2})|SU M| = ωi2|SU M| ,

Mi ({θ1, θ2, θ3}) = G({θ1,θ2,θ3})|SU M| = ωi3|SU M| ,
...

Mi ({θ1, θ2, θ3, . . . , θJ }) = G({θ1,θ2,θ3,...,θJ })
|SU M| = ωi J|SU M| .

(4) By applying the complex Pignistic probabilistic
transformation, the CBBA of multiple subsets in different
attributes is assigned to single subsets.

The representation of the CBBA for a singleton set of
attribute i is articulated as follows:

Mi ({θ1}), Mi ({θ2}), Mi ({θ3}), · · · , Mi ({θJ }).

(5) Based on the modulus of the CBBA of the singleton
set acquired earlier, the classes to which this sample belongs
are determined.

The CBBA of a single subset of attribute i is ranked, and
the class corresponding to the largest modulus is selected.
Then, the sample is considered to belong to the class corre-
sponding to the largest modulus within the triangular fuzzy
number model of attribute i . If the calculated sample class
matches the actual class of the sample, the sample can be
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correctly identified by the attribute. Conversely, if the calcu-
lated sample class differs from the actual class, the sample
cannot be correctly identified by the attribute.

(6) Continuing the process, samples are consistently cho-
sen from the training set and incorporated into the model,
with steps 1 to 5 being iteratively executed to determine
the recognition impact of different attributes on the samples,
specifically, the recognition rate.

The recognition rate of a sample for attribute i is denoted
as Pi (i = 1, 2, 3 . . . , I ). The training set comprises m sam-
ples. It is assumed that among these m samples, the number
of samples correctly identified by attribute i is mi . Conse-
quently, the recognition rate of attribute i for the samples is
expressed as follows:

Pi = mi

m
, (i = 1, 2, 3..., I ).

(7) The recognition rate is normalized to obtain the
weights for different attributes.

The recognition rates for different attributes are:

P1, P2, P3, . . . , PI ,

the normalization of recognition rates for various attributes
yields corresponding weights denoted as W1, W2, W3, . . . ,

WI . The recognition rates for different attributes are arranged
in a ranking, and the attribute with the highest recognition
rate is chosen, denoted as Pk . Subsequently, the weights for
different attributes can be formulated as follows, as described
in [36]:

W1 = P1

Pk
, W2 = P2

Pk
, W3 = P3

Pk
, . . . , WI = PI

Pk
.

The fourth step: The test samples are put into a triangular
fuzzy number model, and the CBBA for different attributes
is obtained.

Random selection of test samples from the test set, which
pertains to a particular class, is conducted. The test samples
are then introduced into the triangular fuzzy number model
for diverse attributes, and the procedure unfolds as follows:

(1) In the second step, the triangular fuzzy number model
for different attributes is acquired, and the test samples are
introduced into this model. Subsequently, the process (2) and
(3) outlined in the third step is executed. Finally, the CBBA
for different attributes is derived:

Mi ({θ1}), Mi ({θ1, θ2}), Mi ({θ1, θ2, θ3}), . . . , Mi ({θ1, θ2, θ3, . . . , θJ }).

(2) The weights are used to amend the CBBA to obtain
the weighted CBBA for different attributes:

Algorithm 1 Generation of a weight-fused CBBA
Input
The data set after the Fast Fourier Transform (FFT);
The class J , attribute I of the date set;
The frame of discernment � = {θ1, θ2, θ3, . . . , θN }
Output:
the weighted CBBA Mi

1: The original data set is divided into a training set and a test set
2: for i = 1;i≤ I do
3: Model the triangular fuzzy numbers T RIi
4: end
5: for i = 1;i≤ I do
6: Calculate the weights of different attributes based on the training

set:Wi
7: end
8: for i = 1;i≤ I do
9: Obtain the weighted CBBA Mi
10: end

Mi ({θ1}) = Wi ∗ Mi ({θ1}),
Mi ({θ1, θ2}) = Wi ∗ Mi ({θ1, θ2}),

Mi ({θ1, θ2, θ3}) = Wi ∗ Mi ({θ1, θ2, θ3}),
Mi ({θ1, θ2, θ3, . . . , θJ }) = Wi ∗ Mi ({θ1, θ2, θ3, θ3, . . . , θJ }).

Consequently, the weighted CBBA, considered more rea-
sonable than the unweightedCBBA, is achieved.Algorithm1
corresponds to the aforementioned process.

4 Application

4.1 Application in Target Recognition

In this section, to demonstrate its applicability and effec-
tiveness, the proposed method in this paper is employed
for target recognition. The iris data set, the banknote data
set and the lense data set are selected for the experiments,
sourced from https://archive.ics.uci.edu/datasets. The sub-
sequent table (Table 1) furnishes a concise description of the
three data sets.

Given that the data in the iris data set, the banknote
data set, and the lense data set comprises real numbers, it
becomes necessary to map these real numbers onto the com-
plex domain using the Fast Fourier Transform before the
experiments are conducted. The process of target identifica-
tion, formulated based on the proposed CBBA method, is
outlined as follows:

1. Select data sets, and identify power sets and discrimi-
nation frameworks.

2. Divide the selected data set into a training set and a test
set.

3. Model the triangular fuzzy numbers with different
attributes.
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Table 1 Basic information about three data sets

Data set Total number of samples Number of classes Number of attributes Attribute type

Iris 150 3 4 Real

Banknote 1372 2 4 Real

Lense 24 3 4 Real

Algorithm 2 The decision-making process in target recog-
nition
Input:
The data set after the Fast Fourier Transform (FFT);
The class J , attribute I of the date set;
The frame of discernment � = {θ1, θ2, . . . , θi , . . . , θN }
Output:
target recognition rate;
1: The original data set is divided into a training set and a test set;
2: for i = 1;i≤ I do
3: Model the triangular fuzzy numbers T RIi
4: end
5: for i = 1;i≤ I do
6: Calculate the weights of different attributes based on the training

set:Wi
7: end
8: for i = 1;i≤ I do
9: Obtain the weighted CBBA Mi
10: end
11: for k = 1;k≤ K do
12: for i = 2;i≤ I do
13: M =Mi−1 ⊕ Mi
14: end
15: M is converted into the form of a singleton set M by Complex

Dempster-Shafer combination rule;
16: Calculate the modulus

∣∣M
∣∣ of M ;

17: Pick the class that corresponds to the maximum value of
∣∣M

∣∣ and
label that class is ψ ;

18: if ψ==θSample then
19: Recognition success;
20: else
21: Recognition failure;
22: end
23: Obtain target recognition rate;

4. Determine the weights of different attributes based on
the recognition effect.

5. Obtain the weighted CBBA.
6. Fuseweighted CBBAof different attributes by complex

Demspter-Shafer combination rule.
7. Determine the class of the sample.
8. Repeat the above processes 3, 4, and 5 to calculate the

recognition rate.
To showcase the effectiveness of the proposed method, a

comparative analysis is conducted with Xiao [31] and classi-
cal Dempster–Shafer evidence theory. Xiao’s method relies
on triangular fuzzy numbers to generate the CBBA, neces-
sitating the application of the Fast Fourier Transform to the
original data set before conducting experiments. In classi-
cal Dempster–Shafer evidence theory, the BBA is generated

using triangular fuzzy numbers. The target recognition pro-
cess associated with the proposed method is delineated by
Algorithm 2. Results are presented in Tables 2, 3, and 4.

The aforementioned target recognition process is iterated
1000 times to acquire recognition rates, and the results of
every 100 experiments are averaged to yield ten sets of exper-
imental recognition rates. Tables 2, 3, and 4 present the
outcomes of ten sets of experiments conducted on the iris
data set, banknote data set, and lenses data set, respectively.
In these three tables, the second column denotes the target
recognition rate obtained through the proposed method. The
third column represents the target recognition rate based on
Xiao’s method, and the fourth column displays the recogni-
tion rate based on the classical Dempster–Shafer evidence
theory. As observed in Tables 2, 3, and 4, the values in the
second column surpass those corresponding to both the third
and fourth columns. For enhanced visualization of the results,
Figs. 3, 4, and 5 correspond to Tables 2, 3, and 4, respectively.

In Fig. 3, the results obtained for the iris data set are
presented. As observed in the Figure, the red line signifies
the target recognition rate achieved through the proposed
method, the blue line represents the recognition rate obtained
through Xiao’s CBBA generation method, and the green line
illustrates the target recognition rate obtained through the
BBA generation method of classical Dempster–Shafer evi-
dence theory. It can be noted that the value of the red line
is approximately around 89.84%, the value of the blue line
is roughly around 89.19%, and the value of the green line is
roughly around 84.95%. Notably, the red line surpasses the
blue line, and the blue line, in turn, surpasses the green line.
Moving on to Fig. 4, the results obtained for the banknote
data set are depicted. In this Figure, the value of the red line
is approximately around 51.56%, the value of the blue line
is approximately around 47.91%, and the value of the green
line is approximately around 46.22%. Evidently, the red line
stands out as the highest, indicating superior performance
of the proposed method compared to the other two meth-
ods. Fig. 5 showcases the results obtained for the lens data
set. Here, the value of the red line is approximately around
40.22%, the value of the blue line is approximately around
22.22%, and the value of the green line is approximately
around 11.11%. Once again, the red line demonstrates the
highest performance, signifying the superiority of the pro-
posed method when compared to the other two methods.
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Table 2 Recognition rates obtained by different methods(Iris)

Number of exper-
imental groups

Proposed method The method of Xiao The method on real numbers
(Dempster-Shafer evidence theory)

1 90.05% 89.38% 85.28%

2 89.48% 89.10% 85.47%

3 89.20% 88.38% 85.48%

4 90.28% 89.77% 84.93%

5 89.53% 88.82% 84.77%

6 89.98% 89.25% 85.02%

7 89.92% 89.22% 84.55%

8 90.03% 89.32% 84.43%

9 89.92% 89.22% 85.00%

10 89.97% 89.47% 84.55 %

Table 3 Recognition rates obtained by different methods(Banknote)

Number of experimental
groups

Proposed method (complex
number)

The method of Xiao (com-
plex number)

The method on real numbers (Dempster-
Shafer evidence theory)

1 51.42% 47.81% 46.24%

2 51.27% 47.82% 46.16%

3 51.53% 47.89% 46.32%

4 51.26% 47.74% 46.29%

5 51.57% 47.91% 46.24%

6 51.93% 47.94% 46.13%

7 51.80% 48.06% 46.20%

8 51.78% 47.93% 46.23%

9 51.17% 47.93% 46.21%

10 51.85% 48.01% 46.20%

The effectiveness of the proposed method was further
illustrated by conducting another 1000 experiments on the
iris data set, the banknote data set, and the lense data set,
respectively. The recognition rates obtained from these data
sets are displayed in Figs. 6, 7, and 8. As observed in these
Figures, it’s noted that more than 80% of the red dots surpass
the blue dots, and similarly, more than 80% of the blue dots
exceed the green dots. This observation implies that the tar-
get recognition rate achieved by the proposed method stands
as the highest, signifying that the proposed method is more
effective and yields superior results in target recognition.

Having discussed the 1000 experiments above, the
obtained recognition rateswere sequentially averaged to gen-
erate another 1000 sets of data, as illustrated inFigs. 9, 10, and
11, respectively. As the number of experiments increased, the
stabilization of the red line, the blue line, and the green line
values became evident. The red line consistently surpassed
the blue line, and in turn, the blue line consistently exceeded
the green line. This phenomenon is attributed to the gradual
increase in the number of proper recognitions achieved by

the proposed method. With the growing number of experi-
ments, the proposedmethod consistently outperforms Xiao’s
method in correctly recognizing samples. Consequently, the
averaged value of the red line surpasses that of the blue
line. This underscores that the proposed method excels in
recognizing more samples in target recognition, exhibiting
superior performance.

The effectiveness of the proposed method was further
emphasized through experiments conducted on the iris data
set and the banknote data set, resulting in the generation of
two graphs by varying the scale of the training set. Figure12
represents the experimental outcomes derived from selecting
different proportions of the training set in the iris data set,
while Fig. 13 showcases the experimental results obtained
by varying the proportions of the training set in the banknote
data set. As observed from Figs. 12 and 13, the recognition
rate achieved by the proposed method consistently surpasses
that of the other two methods, irrespective of alterations in
the proportion of the training set.
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Table 4 Recognition rates obtained by different methods(Lense)

Number of experimental groups Proposed method The method of Xiao The method on real numbers
(Dempster-Shafer evidence theory)

1 38.00% 21.22% 11.11%

2 42.11% 24.56% 11.11%

3 37.33% 22.22% 11.11%

4 40.22% 21.11% 11.11%

5 39.22% 23.22% 11.11%

6 41.33% 24.33% 11.11%

7 43.44% 26.89% 11.11%

8 38.44% 20.11% 11.11%

9 41.78% 20.78% 11.11%

10 39.56% 24.44% 11.11 %

Fig. 3 Comparison of target recognition rates of three methods for 10 experiments under the iris data set

4.2 Results Analysis and Discussion

In Figs. 3, 4, and 5, the red line’s value is observed to be higher
than that of the blue line, indicating that the recognition
rate achieved by the proposed method surpasses that of the
method introduced by Xiao. This superiority arises from the
consideration ofweights assigned to different attributes of the
sample within the proposed method. Distinct attributes exert
varying degrees of influence on sample recognition, empha-
sizing the non-equivalency of these attributes.Attributeswith
robust recognition effects merit higher weights, while those
with less impactful recognition effects are assigned lower
weights. The weights serve to refine the obtained CBBA,
resulting in a weighted CBBA that is more rational. The

elevation of the blue line over the green line is attributed
to the fact that the former represents the recognition rate
based on the CBBA, while the latter represents the recogni-
tion rate based on the BBA. The CBBA inherently contains
higher uncertainty information compared to the BBA, and its
measurement of uncertainty is notably more accurate. The
CBBA, derived by incorporating the test set into the triangu-
lar fuzzy number model with distinct attributes, is deemed
more reasonable and suitable. This aspect proves advan-
tageous for predicting the class of samples in subsequent
analyses. In summary, a high recognition rate is achieved
in target recognition by the proposed method, signifying its
effectiveness.
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Fig. 4 Comparison of target recognition rates of three methods for 10 experiments under the banknote data set

Fig. 5 Comparison of target recognition rates of three methods for 10 experiments under the lense data set

5 Conclusion

In this paper, a new method for generating the CBBA is
introduced. The method involves considering the weights
of different attributes, which are determined based on the
recognition effect of various attributes on the samples. These
weights are employed to adjust the CBBA obtained from
triangular fuzzy numbers, resulting in the derivation of the

new CBBA. To validate the effectiveness of the proposed
method, a target recognition algorithm is devised based on
this approach. Experiments are conducted using the iris
data set, the banknote data set, and the lense data set. In
the iris data set, the recognition rate achieved through the
proposed method reaches nearly 89.84%, surpassing both
Xiao’s method and the classical Dempster-Shafer evidence
theory method. For the banknote data set, the recognition
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Fig. 6 Comparison of target recognition rates of three methods for 1000 experiments under the iris data set

Fig. 7 Comparison of target recognition rates of three methods for 1000 experiments under the banknote data set

rate based on the proposed method stands at about 51.56%,
while in the lense data set, it reaches around 40.22%, both of
which outperform the other twomethods. Furthermore, in the
majority of experiments, the proposed method consistently
achieves the highest recognition rate. These results collec-
tively demonstrate that the proposed method exhibits a high
recognition rate and yields a superior recognition effect.

In future work, the investigation of the distance between
CBBA is deemed essential, given that the conflict coeffi-
cientmay not adeptly gauge the disparity between two bodies
of evidence in certain scenarios. Additionally, a worthwhile
research direction involves the application of CBBA to clus-
ter analysis, decision-making, and other domains.
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Fig. 8 Comparison of target recognition rates of three methods for 1000 experiments under the lense data set

Fig. 9 Comparison of target recognition rates of 1000 experiments conducted by three methods under the iris data set, each target recognition rate
is obtained by sequential averaging
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Fig. 10 Comparison of target recognition rates of 1000 experiments conducted by threemethods under the banknote data set, each target recognition
rate is obtained by sequential averaging

Fig. 11 Comparison of target recognition rates of 1000 experiments conducted by three methods under the lense data set, each target recognition
rate is obtained by sequential averaging
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Fig. 12 Experimental results obtained by taking different training sets in the iris data set

Fig. 13 Experimental results obtained by taking different training sets in the banknote data set
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