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Abstract
The Forensic-Based Investigation (FBI) algorithm is a novel metaheuristic algorithm. Many researches have shown that FBI
is a promising algorithm due to two specific population types. However, there is no sufficient information exchange between
these two population types in the original FBI algorithm. Therefore, FBI suffers frommany problems. This paper incorporates
a novel self-adaptive population control strategy into FBI algorithm to adjust parameters based on the fitness transformation
from the previous iteration, named SaFBI. In addition to the self-adaptive mechanism, our proposed SaFBI refers to a novel
updating operator to further improve the robustness and effectiveness of the algorithm. To prove the availability of the proposed
algorithm, we select 51 CEC benchmark functions and two well-known engineering problems to verify the performance of
SaFBI. Experimental and statistical results manifest that the proposed SaFBI algorithm performs superiorly compared to
some state-of-the-art algorithms.

Keywords Metaheuristic algorithm ·Evolutionary algorithm ·Optimization problem · Self-adaptivemechanism ·Engineering
problem

1 Introduction

Although deterministic algorithm can effectively find the
optimal solution for some problems, in general, it has
high-level time and space complexity, in addition to that,
deterministic algorithms are dependent on the property of
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specific problem. Stochastic algorithms are more efficient
and easier to understand in comparison with traditional
deterministic algorithms. With the development of stochas-
tic algorithms for several decades, meta-heuristic algorithms
(MHAs) emerged and developed rapidly, which have been
successfully applied to existing optimization problem due to
their effectiveness and robustness.

MHAsare inspired byphysical phenomena, ecosystemsor
immune systems, whose principles cause their intelligibility
and interpretability of them. In accordancewith distinct prop-
erties, MHAs include the algorithms which draw inspiration
from swarm behaviour, such as particle swarm optimiza-
tion [1, 2], ant colony optimization [3], artificial bee colony
algorithm [4], bat algorithm [5], dynamic hunting leadership
optimization [6], slime mould algorithm [7]. The algorithms
inspired by natural (physical) phenomena contain (but are
not limited to) a simulated annealing algorithm [8], gravita-
tional search algorithm [9], plasma generation optimization
[10], and sine cosine algorithm [11]. Except for these algo-
rithms above, a vitally important part of MHAs is genetic
algorithms, which involve differential evolution [12], genetic
algorithm [13], and artificial immune system [14]. Not only
that, but most novel biology-inspired evolutionary algorithm
or variant of classical MHAs have been successfully applied
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to optimization problems in various fields. Such as protein
energy landscapes mapping [15], droplet routing automation
[16], road map partitioning [17], digital IIR filter optimiza-
tion [18], and so on.

Although the novel MHAs emerge endlessly in recent
years, the pursuit of high-performance algorithms has never
stagnated on the basis of exploration and exploitation in orga-
nizational learning [19]. Achieving a better balance between
the exploration ability and exploitation ability of the pro-
posed algorithm is crucial to find the optimal solution for
different problems. The concept of exploration and exploita-
tion represent the global search process and local search
operator in MHAs, respectively. Since the mechanism and
implementation of earlier MHAs were relatively simple,
most of them have only a global search mechanism. It stands
to reason that the mix of global search algorithm and local
search strategy is an available method to improve the perfor-
mance of an original algorithm, the common and effective
local search such as chaotic local search (CLS) [20, 21],
hill-climbing algorithm (HC) [22, 23], local optima topol-
ogy (LOT) [24].

Whereas with the rapid development ofMHAs and hybrid
algorithms, current mechanisms contain multiple global
and local search operators. Meanwhile, new shortcomings
appear that the fixed calling mechanism of multiple search
operators is unable to fit distinct characteristics of opti-
mization problems. Therefore, adaptive and self-adaptive
parameters (or judgment mechanisms) are incorporated into
original algorithms, for example, aggregative learning grav-
itational search algorithm [25], self-adaptive bat algorithm
[26], self-adaptive strategy based firefly algorithm [27] and
self-adaptive hybrid self-learning teaching learning based
optimization (SHSLTLBO) [28]. Self-adaptive MHAs per-
form superior to origin in that they can dynamically obtain
information about the current population and the specificity
of objective problems.

Despite the fact that according to No Free Lunch theory,
none of global or local optimization algorithms can solve
various existing kinds of problems perfectly on account of
the randomness initialization and non-deterministic search
mechanism. Nevertheless, it is also extremely significant
to design a metaheuristic algorithm that can perform well
in most optimization problems and keep both time com-
plexity and space complexity low. Recently, a novel FBI
inspired meta-optimization algorithm was proposed [29].
Different from most of other MHAs, FBI is inspired from
the system of human work and refer to a double popula-
tion mechanism. Then some variants have been applied to
the optimal design of frequency-constrained dome structures
and Parameter Extraction of Solar Cell Models [30, 31].
However, both the original FBI and its variants are only suit-
able for some specific optimization problems, and most of
them perform very ordinary or even poorly on other types

of problems. According to the previous research, it can be
concluded that MHAs with multiple population types have
a good performance in population diversity, but most of
the time consumption is much more than that of ordinary
meta-heuristic algorithms. Therefore, we consider that the
information between two different populations, and design a
general dynamic population mechanism. When dealing with
optimization problems, our proposed dynamic population
mechanism adapts to the problem by changing the composi-
tion of population according to the complexity of problem.
To demonstrate the robustness and effectiveness, experimen-
tal datasets involve 29 CEC2017 benchmark functions [32],
22 CEC2011 real-world optimization problems [33] and two
classical engineering problems [34]. Each dataset has differ-
ent complexity and number of dimension, additionally, each
of those dimensions has different upper and lower bounds on
its value.

This work gives the following contributions and original-
ity:

1) We design a novel dynamic population architecture to
regulate the proportion of each individual type. When a large
number of individuals are in a state of stagnation, the pro-
portion of explorers (Investigation team) in the population
will increase based on evaluation value, whereas conversely,
the proportion of exploiters (Pursuit team) will rise. This is
a guide to the improvement of some existing evolutionary
algorithms with multiple population.

2) We put forward a effective updating operator to expand
the search space based on two gaussian random numbers and
the current iteration number, providing a promising operator
for SaFBI and other MHAs.

3) Experimental results demonstrate that SaFBI can be
applied to various optimization problems with different
dimension. In addition to the chart data, we illustrate the con-
vergence graph, box-and-whisker plot, diversity graph, and
three-dimensional contour map to reflect the effectiveness of
SaFBI in terms of diverse metrics.

The rest of this paper can be divided into the following
sections. Table 1 lists the explanations of frequent symbols.
Section 2 briefly introduces FBI algorithm. Section 3 depicts
our proposed SaFBI algorithm. The experimental results and
statistical analyses are shown in Sect. 4. Section 5 exhibit the
conclusion of this work.

2 The introduction of FBI

This section briefly introduces the whole system of FBI algo-
rithm. In the whole law enforcement, forensic investigation
process is high-frequency and critical. A standard forensic
investigation consists of five steps:

1) The start of the investigation: An investigation begins
with information found by the first police officer who arrives
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Table 1 Nomenclatures Symbol Description

X The total population

Xi The ith individual of population X

Xi j The jth dimension of ith individual in population X

f (Xi ) The fitness of objective function of individual Xi

XBest The optimal individual in the current population X

XWorst The worst individual in the current population X

rand() A random number which obeys uniform distribution between [0,1]

g The current number of iteration

G The maximum number of iteration

D The dimension of each individual for objective problem

ST AT Ei The search tendency of ith individual Xi

N P The scale of whole population X

N PA The scale of individuals in investigation team

N PB The scale of individuals in pursuit team

Lb j The upper limit of jth dimension of objective problem

Ub j The lower limit of jth dimension of objective problem

Algorithm 1 Pseudo-code of original FBI.
1: for i from 1 to N PA do
2: Generate individuals X A

i .
3: end for
4: for i from 1 to N PB do
5: Generate individuals XB

i .
6: end for
7: repeat
8: for i from 1 to N PA do
9: Randomly select two individuals XA1 and XA2

10: Calculate new individual X A,new
i by Eq. 1

11: Evaluate new location and choose the offspring
12: if rand<0.5 then
13: Calculate new individual X A,new2

i by Eq. 3
14: else
15: Restore to the initial X A

i
16: end if
17: Evaluate new location and choose the offspring
18: end for
19: for i from 1 to N PB do
20: Calculate new individual XB,new1

i by Eq. 4
21: Evaluate new location and choose the offspring
22: Calculate new individual XB,new2

i by decision statement Eq.
5

23: Evaluate new location and choose the offspring
24: end for
25: Sort and obtain the optimal solution in two populations
26: until Reach Terminal Condition

at the crime scene, this information determines the main
direction of investigation for team members.

2) The interpretation of the findings: The investigation
team interprets existing survey results and shares information
with other team members. At the same time, team members
will attempt to connect the new information with their exist-
ing impressions of the case.

3)Directions of inquiry:Based on the interpretation of sur-
vey results, team members construct several lines of inquiry
(scenarios, criminal motives, and lines of inquiry) and try
to reach a consensus when discussing research directions in
briefings or brainstorming sessions.

4) Actions: After determining the survey direction and
priorities of this investigation, the total team decides on fur-
ther actions about the criminal investigation. Team members
weigh the cost and predicted earnings of a survey direction,
and carry out a promising scheme.

5) Prosecution: Until a key suspect has been found, the
whole case is almost over.

To reflect the distinct survey direction of team members,
FBI divided the whole population into an investigation team
and a pursuit team based on the behavior of the police. The
members of the investigation team attempt to analyze the
possible position of the prime suspect (global optimal) in
the whole search space, which can be called ’suspected loca-
tions’. After determining the suspected locations with a high
possibility, the pursuit team acts on the orders fromheadquar-
ters and gradually closes to the current suspected locations. In
FBI algorithm, the scale of these two team is set to N PA and
N PB (N PA=N PB), each sub-population executes its respec-
tive search operations. The details of investigation team and
pursuit team can be described as follows.

2.1 Investigation Team

The members of investigation team X A mainly implement
the process of step(2) and step(3). Each individual X A

i (i =
1, 2, .., N PA) concludes the possible position of the suspect
based on two random individuals X A

r1 and X A
r2 , the first step
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can be expressed as:

X A
i, j = X A

i, j + rand ∗ (X A
i, j − F × (X A

r1, j + X A
r2, j ))

(1)

where F is the positive constant,i = 1, 2, ..., N PA, and j
is a random positive integer between [1, D], which repre-
sents the position to be modified, the random numbers of
individual satisfy uniformdistribution between [1, N PA] and
r1 �= r2 �= i . This equation reflects the process ’interpretation
of the findings’, where the random individual can stimulate
disorganized and random information collected by investi-
gation members. The second search model of investigators
is ’directions of inquiry’. Team members move towards
some promising survey direction with selected dimensions
based on the results of group discussion or brainstorming. To
embody the feasibility of selected survey direction, a proba-
bility parameter is formulated as:

Prob(Xi ) = fWorst − f (Xi )

fWorst − fBest
(2)

where fBest and fWorst respectively represents current indi-
vidual with the best and worst fitness, f () represents the
fitness of the individual to be calculated. According to the
normalization method, each probability to be optimized of
individual is determined by a decision tree and a random
number. The selected individual will be calculated by for-
mulation:

X A
i, j = XBest, j + X A

r3, j + rand × (X A
r4, j − X A

r5, j ) (3)

where r3, r4, and r5 are the random positive integer between
[1, N PA] (r3 �= r4 �= r5 �= i), the whole investigation team
respectively carries out two operators one by one.

2.2 Pursuit Team

The pursuit team concludes promising positions based on
the population and investigation team’s information and
move directly toward the speculative location. Different from
the investigation team, each dimension of the individual in
the pursuit team will be improved by different information
between the current optimal individual XBest and the selected
individual XB

i , the process can be formulated as:

XB
i, j = rand × XB

i, j + rand × (XBest, j − XB
i, j ) (4)

The pursuit team considers that if the fitness of the updated
position according to Eq.4 is better than the previous state,
however, the whole algorithm may converge fastly and fall
into stagnation due to the new position mainly depending on
the present best individual. Therefore, the second step of the

Algorithm 2 Pseudo-code of SaFBI.
1: for i from 1 to N P do
2: Randomly generate individuals X1

i .
3: Randomly initialize the count n1i ← n0.
4: end for
5: for g from 2 to G do
6: for i from 1 to N P do
7: if ng−1

i = 1 then
8: if rand<0.35 then
9: Calculate new individual Xg

i by Eq. 4
10: else
11: Select a random individual Xr1
12: Calculate new individual Xg

i by Eq. 5
13: end if
14: else
15: if ng−1

i ≤-3 then
16: Select two random individuals Xr2 and Xr3 .
17: Calculate new individual Xg

i by Eq. 8
18: else
19: select a random dimension d between [1,D]
20: for j from 1 to D do
21: if rand<0.5 or j = d then
22: Calculate new element Xg

i, j by Eq. 3
23: else
24: Xg

i, j ← Xg−1
i, j

25: end if
26: end for
27: end if
28: end if
29: Update the state ngi by Eq. 6
30: end for
31: Evaluation new individuals and select the offspring with better

fitness
32: end for

pursuit team need to strengthen the diversity of the whole
population. Except for XBest , team member should take the
pursuit information from other members into account. In
the course of pursuit action, headquarters constantly receive
position information from members and update the current
optimal location.Members cooperatewith each other accord-
ing to the instruction of headquarters, which can be depicted
by:

i f f (XB
i ) > f (XB

r6)

XB
i = XB

i + rand(D) × (XB
r6 − XB

i )

+ rand(D) × (XBest − XB
r6)

else

X B
i = XB

i + rand(D) × (XB
i − XB

r6)

+ rand(D) × (XBest − XB
i )

(5)

where rand(D) represent a D-dimensional vector which is
constituted by random numbers between [0, 1], r6 is a ran-
dom number with the range of [1, N PB]. In general, the
cyclic invocation of investigation and pursuit forms a com-
plete forensic investigation process, which can be shown in
Algorithm 1, where the original FBI respectively executes
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two updating operators in different populations, then select
the individual with better fitness as the offspring in com-
parison to the newly produced individual. According to the
differing characteristics of two populations, we have identi-
fied issueswith the original FBI and thusmade the decision to
improve it in regards to the overall architecture and updating
operator.

3 Proposed Algorithm SaFBI

3.1 Issue of FBI andMotivation

Although the mechanism of the original FBI is reliable
and efficient in solving optimization problems, its abil-
ity of exploration and exploitation are still limited under
some circumstances. Firstly, updating double populations
will slow down the convergence speed of the whole mecha-
nism, which causes a feasible solution that can’t be obtained
under the standard numbers of iterations. Secondly, although
FBI expands a wider search space than conventional algo-
rithms due to a larger population, its exploration still suffers
from poor information exchange between two populations.
Specifically, in the process of optimizing population A
(Investigation team) to generate new individual, the infor-
mation in population B (Pursuit team) are not considered.
Therefore, it is easy for both populations to fall into stagna-
tion. Finally, it is difficult to reflect the different emphasis of
two populations on exploration and exploitation due to the
updating operators.

For disposing of the specific problems with no prior infor-
mation, a self-adaptive mechanism is introduced to achieve a
better balance between exploration and exploitation. Self-
adaptive optimization algorithms dynamically adjust the
population structure or parameters to react to some particu-
lars of the problem to be solved. According to the persistent
progress and immediate situation of optimization, the adap-
tive mechanism concentrates on exploring new search space
when the population is trapped in local optima. On the con-
trary, the emphasis of the algorithm tends to exploit the
current space when the diversity of the population is high-
level. To achieve an excellent balance between exploration
and exploitation, we incorporate a dynamic population struc-
ture based on self-adaptive parameters into the original FBI,
named SaFBI.

3.2 Self-Adaptive PopulationMechanism

The original FBI algorithm generates two populations with
the same scales, which updates the offspring by different
operators respectively. Nevertheless, double population size
has no advantage in producing offspring due to poor utiliza-
tion of individuals from a different population. When the

scale of each population is set to less than the standard value,
each of them is prone to fall into a local optima in search
space, respectively. On the contrary, the convergence speed
of the algorithm is not sufficient to obtain a feasible solu-
tion within the specified time consumption. Therefore, our
improvement is primarily founded on the population struc-
ture. Instead of creating two distinct populations and using
separate operators for each,we label all individuals in various
states to differentiate between the investigation team and the
pursuit team. If an individual’s evaluation indicator remains
unpromising or unchanged for multiple iterations, it signi-
fies stagnation. Thus, operators with robust exploration are
utilized to evade local optima, and the individual tag is con-
verted to a member of the investigation team. Alternatively,
as an individual steadily improves their fitness or explores
new areas, they should be integrated into a pursuit team. To
accomplish the self-adaptive population mechanism, a vari-
able parameter ngi is produced as the count number to reflect
the state of the individual in the continuous optimization pro-
cess, which can be formulated as

ngi =
{
ng−1
i − τ, i f f (Xg−1

i ) <= f (Xg
i )

n0 , otherwise
(6)

where τ represent the strade, and n0 is the initial value.
Different state of individual is dynamically classified as
investigation teamor pursuit team. The state’s change of indi-
vidual Xi can be represented as the selection of two different
updating operator, which can be concretely embodied as

Xg
i =

{
Xg−1
i → Eq.8, i f ng−1

i ≤ −3

Xg−1
i → Eq.3, otherwise

(7)

where parameter n satisfies the inequality then the i th
individual acts as an investigation team and conversely as a
pursuit team. Based on the complexity and difficulty of var-
ious optimization functions, individuals deliberately select
and implement operators for exploration and exploitation.
Our proposed self-adaptive population structure’s advan-
tage can be observed in Figs. 1 and 2. The SaFBI algorithm
for unimodal functions utilizes a subset of individuals as
an investigation team to explore the entire search space,
while the rest of the individuals form the pursuit team and
exploit the areas that have been investigated. Consequently,
SaFBI outperforms the original FBI algorithm in locating
the optimal solution swiftly on unimodal problems. In com-
plex optimization problems with multiple modes, SaFBI will
continue to explore the entire area with a significant portion
of individuals after obtaining local optima. As a result, our
proposed self-adaptive population structure can effectively
prevent the FBI algorithm from falling into local optima.
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Fig. 1 FBI (left) and SaFBI (right) on unimodal function

Fig. 2 FBI (left) and SaFBI (right) on complex function

In addition to the terrible exploitation ability caused by
the population structure, several operators of FBI greatly uti-
lize the location information of current optima so that the
exploration ability of each population is low-level. In order
to enhance convergence speedwhen the current optimal solu-
tion is slowly optimized in the search space adjacent to the
global optima, we modified part of operators for better bal-
ance between exploration and exploitation. The investigation
individuals tend to seek for an undeveloped region when the
algorithm is stuck, so we adjust Eq.1 to expand the search
space.

X A
i = X A

i + (rand − 0.5) ∗ (1 − √
g/G) ∗ (X A

i − X A
r1)

+(rand−0.5) ∗ (1−√
g/G) ∗ (X A

i − X A
r2) (8)

According to the changing weight based on the proportion
of g in G, we can obtain a large step to escape from local

optima in the early generation. In the final phase of opti-
mization, the operator will tend to explore the found search
space to ensure excellent convergence results.We incorporate
self-adaptive population mechanism into original FBI and
fine-tune an operator. The pseudo-code of proposed SaFBI
is shown in Algorithm 2.

3.3 Time Complexity

Wecan determine the time complexity of the entire algorithm
by following the pseudo-code as a guide. This section lists
the computational complexity of SaFBI:

1) The initialization of population needs O(N );
2) Calculating the fitness of population costs O(N );
3) The time complexity of updating population needs

O(N );
4) The time complexity of boundary detection is O(N );
5) Selecting the random individuals costs O(N );
6) Replacing or retaining the current individuals needs

O(N );
Therefore, the total time complexity of SaFBI is O(N ). It

is worth mentioning that SaFBI is faster than original FBI
on account of the fewer judgment statements based on self-
adaptive population mechanism. The actual time cost will be
analyzed in detail under the repeated experiments.

4 Experimental Results and Statistical
Analysis

To testify the efficiency of our proposed SaFBI in dispos-
ing optimization problems with different specialties, the
experimental results of CEC2017 benchmark functions are
summarized as the comparison between SaFBI and other
state-of-the-art algorithms. At first, CEC2017 and CEC2011
benchmark functions are clarified. Secondly, the total results
of experiment are listed in table on two function groups.
Then, four different illustrations are depicted to verify the
performance of the proposed algorithm. Finally, multiple
variants of SaFBI with distinct parameter or structure are
compared with proposed SaFBI. All experiments are exe-
cuted by MATLAB on a desktop with Intel(R) Core(TM)
i7-9700 CPU @ 3.00 GHz and 8.00 GB of RAM.

4.1 Optimization Problems

We selected 51 benchmark functions from IEEE CEC to
assess SaFBI, our proposed algorithm’s viability. While 29
functions are from CEC2017, we derived the remaining ones
from CEC2011. The CEC2017 functions include two uni-
modal functions (F1, F2), seven multimodal functions (F3 to
F9), ten hybrid functions (F10 to F19), and ten composition
functions (F20 to F29). Notably, we discarded the second
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Fig. 3 Convergence graphs of SaFBI and six comparatives on nine CEC functions

original function due to its instability. To further underscore
the robustness and flexibility of our proposed algorithm, we
have selected some intricate problems as additional evalu-
ation criteria. 14 real-world problems are modeled as 22
optimization functions in CEC2011 with different dimen-
sions and constraints, which consist of parameter estimation
problem of frequency-modulated sound waves (F30), two
potential energy minimization problems (F31, F34 and F35),
two optimal control problems (F32, F33), spread spectrum
radar polly-phase code design (F36), transmission network
expansion planning problem (F37), large scale transmission
pricing problem (F38), circular antenna array design (F39),
two hourly dispatch problems (F40 to F46), hydrothermal
scheduling problem (F47 to F49), and two spacecraft tra-
jectory design problems (F50, F51). Except for 51 CEC
benchmark functions, we attach two complete engineering

optimization problems to further reflect the high-efficiency
and robustness of SaFBI.

4.2 Experimental Result on CEC2017

For the sake of fairness, parameters of each function are set
to the same standard in CEC2017. The initial population size
is fixed as 100, the dimension of each individual is set to 30,
the lower and upper bounds of element in individual are set to
-100 and 100 respectively, the maximal number of function
evaluation is 3×105, and the run time for functions are fixed
as 51 due to the randomicity of meta-heuristic algorithm.
Except for original FBI, two state-of-the-art algorithms and
three first-class variants of classical algorithm are selected as
competitors. We compare SaFBI with other six algorithms,
namely, FBI, reptile search algorithm (RSA) [35], innovative
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Fig. 4 Box-and-whisker plots of SaFBI and six competitors on nine CEC functions

optimizer based on weighted mean of vectors (INFO) [36],
global optimum-based search differential evolution(DEGLS)
[37], orthogonal Learning-based brain storm optimization
(OLBSO) [38], and modified particle swarm optimization
(MPSO) [39] to verify the performance of proposed SaFBI.
The experimental results are shown in Table 2,where each set
of data is formed from arithmetic mean and standard devia-
tionwith scientific notation,which is obtained by 51 identical
tests. Note that the best value among all compared algorithms
in these tables are shown in bold.All functions belong tomin-
imum optimization and the global optimal value of Fi are set
to i × 100, and the value in bold is the optimum in all algo-
rithms.W , T , L denotes the numbers of 29 functions that our
proposed SaFBI performs better, tied, worse than the com-
petitor from the result of Wilcoxon-sign-test, respectively. It

is observed that the performance of SaFBI dominates other
competitors in solving optimization function with different
types.

4.3 Convergence Graphs and Box-and-Whisker Plots

In order to specify the entire convergence process of each
algorithm and the comparison results between SaFBI and
other competitors, convergence curves of different functions
are illustrated in Fig. 3, where X-axis denotes the number
of current iteration (×100) and Y-axis represents the mean
evaluation value of 51 independent experiments. Obviously,
SaFBI is still hard to trap into stagnation in despite of a fast
convergence speed, and the optimal solutions under 3000
iterations are superior to other competitors. In addition to
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the convergence results, we can find that SaFBI is promising
during the following optimization process after constrained
number of iterations for disposing functions F4, F7, F15,
F20, and so on. The better optimum can be obtained under
the greater number of iterations.

Compared with the characteristics of convergence curve,
box-and-whisker plot tends to judge performance by several
indicators, which is shown in Fig. 4. In this figure, the plus
signs are outliers which can be utilized to reflect the sta-
bility of algorithm for many repeated tests under the same
conditions, the upper and lower black lines denote the max-
ima and minima, respectively. The top and bottom sides of
a polygon are the quantiles, and the medium line is median.
When the box-plot is drawn as a line, it means that the cor-
responding algorithm is stable and determinate. It can be
noted that the plots of SaFBI perform outstanding with the
lowest region and the smallest span, which manifest that
our proposed mechanism alleviates the randomness of meta-
heuristic algorithms under the premise of superb convergence
results. Excellent performance testifies the high-level balance
between exploration and exploitation of our proposed SaFBI.

4.4 Experimental Result on CEC2011

Since the dimensions of the CEC2017 standard dataset are
mostly fixed and do not reflect the robustness of proposed
SaFBI.We choose 22 real-world optimization problems with
unique dimensions from CEC2011. For each function of
CEC2011, the elements of each dimension in an individ-
ual are optimized under different constraints. Therefore, a
distinguished performance in dealing with the real-world
problems of CEC2011 can better reflect the effectiveness and
extensibility of algorithm. Taking the characteristic into con-
sideration, the parameter are set to follows: population size is
fixed as 100; the maximal number of i th function evaluation
is Di×104, where Di denotes the dimension of i th function
and each algorithm used for comparison run 30 times inde-
pendently. It is worth mentioning that OLBSO is excluded
in testing CEC2011 functions because of the poor perfor-
mance, which is caused by the segmentation mechanism
in OLBSO limited in real-world optimization with different
dimensions. To reflect the distinguished performance of pro-
posed SaFBI, two state-of-the-art algorithms for engineering
optimization are appended to experiment. The experimental
results are listed as Table 3, where HGS and SMA respec-
tively denotes hunger games search [40] and slime mould
algorithm [41]. From this table, it is obvious that proposed
SaFBI performs excellent in all the real-world optimization
problems. According to the mean, variance and result of
Wilcoxon’s sign rank test, we can conclude that the perfor-
mance of SaFBI is superior to other competitors.

4.5 Application for Engineering Optimization
Problem

Different from the simple CEC benchmark optimization
problems, the complete real-world engineering problems
have numerous complex constraints, such as range and type
of value, combination of values from different dimensions
and so on. Therefore, it is crucial for a newly proposed
algorithm to perform excellent in real-world engineering
problems. In this paper, two well-known optimization design
are added to verify the performance of SaFBI. These engi-
neering problems can be illustrated as Figs. 5 and 6 named
pressure vessel design problem and welded beam design
problem, respectively.

4.5.1 Pressure Vessel Design Problem

A pressure vessel (PV) refers to a sealed equipment contain-
ing gas or liquid under the determinate load, which plays
a significant role in civil, industry, military and chemistry
fields. However, the pressure difference between the interior
and exterior of PV is exceeding dangerous, the design of PV
is subject to strict standard control. In this paper, a modeling
of cylindrical vessel is selected as the additional experiment
to demonstrate the effectiveness of SaFBI for engineering
optimization problem [42]. The optimization formulation of
PV design can be depicted as:

FPV = 0.6224Ts RL + 1.7781Th R
2 + 3.1661T 2

s L + 19.84T 2
s R

Subject to :
Ts ≥ 0.0193R

Th ≥ 0.00954R

R2L + 4πR3/3 ≥ 1296000

0.0625×1 ≤ Ts , Th ≤ 0.0625 × 99

10 ≤ R, L ≤ 200

(9)

where four parameters thickness Ts , thickness of head Th ,
inner radius R and length of cylindrical section Lc are con-
sidered as 4-dimensional vectors for input, and FPV denotes
the cost of solution.

4.5.2 Welded Beam Design Problem

The other engineering optimization we chose is a minimiza-
tion problem welded beam (WB) design [45], which obtains
the minimum cost of WB. During optimization process, all
the design variables can be modeled as four parameters con-
taining thickness of weld Tw, length of welded joint Lw,
width of beam W , and thickness of beam Tb. The optimiza-
tion objective and constraint condition can be formulated as:
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Table 4 The Experimental
Results of Pressure Vessel
Design Problem

Algorithm Ts Th R L Optimal cost Time Rank

FBI 0.7500 0.3750 38.8587 221.4117 5.8511E+03 0.93s 4

SaFBI 0.7500 0.3750 38.8601 221.3655 5.8504E+03 0.84s 1

RSA 0.8750 0.4375 44.4173 160.3180 6.4761E+03 6.15s 8

HGS 0.8750 0.4375 45.2361 141.2957 6.1024E+03 1.55s 6

SMA 0.7500 0.3750 38.8573 221.4362 5.8513E+03 7.08s 3

INFO 0.7500 0.3750 38.8601 221.3655 5.8504E+03 5.95s 2

OPA [43] 0.8125 0.4375 42.0984 176.6365 6.0597E+03 1.44s 7

CSA [44] 0.7500 0.3750 38.8525 221.4818 5.8514E+03 0.96s 5

Fig. 5 The illustration of pressure vessel design problem

Fig. 6 The illustration of welded beam design problem

FWB = 1.10471T 2
wLw + 0.04811WTb(Lw + 14)

Subject to :
W 2Tb ≥ 168

Tw ≤ Tb
2.1952

W 3Tb
≤ 1

4

(1 − 0.0282346W )WT 3
b ≥ 1000

10791

(τ
′
)2 + (τ

′′
)2 + Tw

τ
′
τ

′′√
0.25((Tw + W )2 + L2

w)
≤ 136002

(10)

where

τ
′ = 6000√

2TwLw

τ
′′ = 6000(14 + 0.5Lw)

√
0.25((Tw + W )2 + L2

w)

√
2TwLw

(
L2

w

12 +
(
Tw+Lw

2

)2)
(11)

In addition, 0.125≤ Tw ≤5, 0.1≤ Lw,W , Tb ≤10, it isworth
mentioning that both Tw and Lw are multiples of 0.0065.

4.5.3 Experimental Results on Engineering Problems

In this experiment, we testify the performance of proposed
SaFBI in comparison with several state-of-the-art algorithms
designed to solve engineering problems. Each algorithm runs
independently 30 times, the optimal solutions and costs are
listed in Tables 4 and 5, where Rank represents the rank of
different algorithms based on Friedman test at the level of α

= 0.05. In both Tables 4 and 5, SaFBI all obtains the optimal
solutions on two different engineering problems.Meanwhile,
the time consumption of SaFBI is extremely low compared
with other competitors. This experiment certifies the effec-
tiveness and robustness of our proposed algorithm in solving
real-world engineering problems.

4.6 Discussion

Weutilize twoCECbenchmarkoptimization functiondatasets,
a pressure vessel optimization problem, and a welded beam
design problem to testify the effectiveness of SaFBI in
comparison with original FBI and other state-of-the-art algo-
rithms. In this section, the process and performance of
proposed SaFBI are analyzed in detail when dealing with
optimization problems.
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Table 5 The experimental
results of welded beam design
problem

Algorithm Tw Lw W Tb Optimal cost Time Rank

FBI 0.2444 6.2177 8.2910 0.2444 2.3813 13.08s 3

SaFBI 0.2444 6.2175 8.2915 0.2444 2.3810 0.39s 1

RSA 0.2250 6.6733 8.5988 0.2433 2.4540 6.05s 8

HGS 0.2423 6.2804 8.3062 0.2443 2.3870 1.79s 7

SMA 0.2444 6.2215 8.2873 0.2446 2.3830 7.17s 6

INFO 0.2444 6.2175 8.2915 0.2444 2.3810 6.06s 2

OPA 0.2443 6.2178 8.2939 0.2444 2.3818 8.21s 4

CSA 0.2440 6.1949 8.3309 0.2441 2.3831 1.08s 5

Fig. 7 Diversity of population in SaFBI under the different iterations on three CEC functions
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Fig. 8 3-dimensional conformation with contour map of SaFBI under the different iterations on three CEC functions
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4.6.1 Population Diversity

In the process of biological evolution, population evolves
continuously when it maintains a high-level diversity, which
increaseswith the expansion of spatial distribution in popula-
tion.Whendealingwith functionoptimizationbypopulation-
based algorithms, the level of population diversity directly
reflects the exploration ability of an algorithm. We utilize
squared deviation to describe the spatial distribution of pop-
ulation, which can be formulated as:

D(Xg) =
√∑N

i=1 ‖ Xg
i − X̄ g ‖

N
(12)

where ‖ Xg
i − X̄ g ‖ is euclidean distance between i th indi-

vidual in gth iteration and arithmetic mean of the whole
population in gth iteration. We plot four convergence graphs
in Fig. 7 and each subgraph includes six diversity curves of
different population types with the increase of iterations. In
these figures, it can be observed that the differences between
population diversity of investigation team and pursuit team
in original FBI are modest. FBI maintains similar population
diversity when it conducts functions with different com-
plexity, which causes the poor overall performance. On the
contrary, the self-adaptive population structure of our pro-
posed SaFBI can improve significantly the exploration of
investigation team and the exploitation of pursuit team to
achieve a better balance than the original algorithm.

4.6.2 3-Dimensional Conformation and Contour Map

Contour map refers to a closed curve connected by adjacent
points of equal height on a topographic map. The first two
dimensions of the optimization function are selected as two
axes, and each individual is distributed in different region
within the coordinate axis. However, two-dimensional plane
can’t reflect whether the location of population is global
optimal. Therefore, the evaluation fitness of the current pop-
ulation is taken as the third dimension, and the 3-dimensional
conformation with contour map is described as Fig.8. In this
figure, we draw the population transformation optimized by
SaFBI as the number of iterations increase on two different
functions. From the F10 on the left, it is observed that SaFBI
can fastly converge with excellent exploitation when tack-
les the simple function. On the contrary, a complex function
with several extremums in different regions needs remark-
able exploration. From the right of Fig. 8, we can find that
most of individuals are trapped into the local optima in the
beginning. However, several individuals later jump out of
local optima and seek for the global optima, which reflects
that proposed self-adaptive mechanism can effectively keep

balance between exploration and exploitation to improve the
performance.

5 Conclusions

This paper proposes a self-adaptive forensic-based investiga-
tion algorithmwith dynamic structure. In the original FBI, the
whole population is divided into two sub-populations (inves-
tigation team and pursuit team) to generate the offspring by
distinct operators. According to the shortcomings of origi-
nal population structure in disposing complex and specific
optimization, a self-adaptive state vector has been utilized
to represent the variation tendency of each individual. The
whole population structure will be constantly adjusted under
different situations during the iteration, which better matches
the peculiarity of problem to be optimized. In order to further
maintain the balance between exploration and exploitation
of proposed SaFBI, two operators are modified to reflect the
individual personalities of different teams. To verify the per-
formance of SaFBI, 51 CEC benchmark functions and two
engineering optimization problems are selected as exper-
iment targets, nine state-of-the-art original algorithms are
tested as competitors. The experimental results and statisti-
cal graphs unambiguously indicate the absolute dominance
of our proposed SaFBI in comparison to other competitors.
SaFBI demonstrates fast convergence speeds when solving
simple unimodal functions. When solving complex hybrid
functions, SaFBI displays excellent exploration capabilities.
The extensibility of SaFBI is showcased by its ability to
optimize real-world problems with varying dimensions and
constraints. In addition to superior performance, SaFBI has
an acceptable time complexity compared to certain inflated
variants of classical algorithms. In future research, we will
consider more informative interactions and expand the appli-
cation field, including wind farm layout optimization [46,
47], reservoir operation optimization [48, 49], and economic
load dispatch problem [50, 51], and so on. Additionally, we
plan to incorporate the Pareto frontier into SaFBI and apply
it to a multi-objective optimization algorithm [52, 53].
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