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Abstract
Conflict is ubiquitous in human society and has a profound impact on various fields such as the economy, politics, law, and 
military. Many scholars have focused on exploring the internal mechanisms and potential solutions to conflicts. Notably, 
describing agents’ attitudes is an effective way to construct a conflict model. However, in decision-making, agents’ attitudes 
on issues are often vague and ambiguous. Pythagorean fuzzy set can deal with fuzzy information more accurately than 
intuitionistic fuzzy set. On the basis of this understanding, we investigate the conflicts from the perspective of Pythagorean 
fuzzy set. Firstly, we use Pythagorean fuzzy numbers to express the attitudes of agents on issues, and subsequently establish 
a Pythagorean fuzzy conflict information system. Secondly, we classify agents into three categories by a pair of thresholds to 
establish a trisected agent set model with risk preference. Thirdly, we construct a three-way conflict analysis model based on 
multi-granulation Pythagorean fuzzy decision-theoretic rough set and discuss both global and local conflicts by combining 
conflict analysis with multi-granulation decision-theoretic rough set. Finally, we discuss the relationships and properties of 
the proposed conflict analysis models.

Keywords Pythagorean fuzzy set · Intuitionistic fuzzy set · Pythagorean fuzzy numbers · Multi-granulation Pythagorean 
fuzzy decision-theoretic rough set

1 Introduction

Conflicts are prevalent in human society, ranging from 
disputes over personal interests to their impact on vari-
ous aspects such as the economy, politics, and military of 
a country. Many scholars have dedicated their attention to 
understanding the mechanisms of conflicts, describing and 
expressing conflicts, as well as exploring ways to avoid them 
[1–3]. Pawlak introduced a conflict analysis model that uti-
lized values of 1, 0, and -1 to represent an agent’s attitudes 
of support, neutrality, and opposition to issues, respectively. 

This model has become an important theoretical framework 
for conflict analysis [4–6]. Deja [7] extended Pawlak's model 
and identified three fundamental questions for conflict analy-
sis: (1) What are the underlying causes of conflict? (2) How 
can a workable consensus strategy be identified? (3) Is there 
a solution that satisfies all agents involved? Skowron et al. 
[8] presented a requirements determination model based on 
rough sets, which utilizes a conflict relation to effectively 
represent agreements or disagreements among agents. 
Sun and Ma [9] introduced an approach for addressing the 
problem of multi-agent conflict analysis by leveraging the 
proposed multi-decision rough set approach. Lang et al. 
[10] developed a probability model of conflict analysis by 
employing a pair of thresholds. On the basis of their previ-
ous work [10], Lang et al. [11] employed Pythagorean fuzzy 
numbers to express the attitudes of agents and defined prob-
ability conflict set, probability neutrality set and probability 
alliance set based on Bayesian minimum risk theory. By 
using a formal concept analysis approach, Lang and Yao [12] 
investigated the relationships between agent coalitions and 
issue bundles. Yao [13] reformulated the Pawlak’s model by 
dividing the agent set, the agent's relation set, the issue set, 
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and the issue's relation set into trisections. Sun et al. [14] 
established a conflict decision-making information system 
based on probabilistic rough set over two universes, and 
proposed a decision-making model for complex conflicts. 
Basir et al. [15] proposed a conflict resolution model that 
utilizes game-theoretic rough sets. This model constructs 
a game involving all relevant agents, which produces more 
realistic and accurate results. Ali et al. [16] employed four 
multi-granulation rough sets with dominance relation and 
applied them to solve multi-agent conflict analysis decision 
problem. Zhi et al. [17] utilized an approximate three-way 
concept lattice to define alliance set, conflict set, and neu-
tral set, respectively, and explored maximal coalitions and 
minimum conflict sets. Li et al. [18] constructed a triangular 
fuzzy information system, adopted relative areas to describe 
the concrete attitudes of agents. They also developed a tri-
partition agents model through a pair of thresholds. Li et al. 
[19] formulated a three-way conflict analysis and resolu-
tion model in q-rung orthopair fuzzy information system, 
and provided answers to Deja's three fundamental questions 
about Pawlak's conflict model. Wang et al. [20] drew inspi-
ration from prospect theory and determined the allied set, 
neutral set, and conflict set by considering the agent's refer-
ence point. In order to clarify conflict semantics, Luo et al. 
[21] trisected the agent set and issue set by separating the 
opposite aspects within an auxiliary function, and created a 
pair of alliance and conflict functions. Combining qualita-
tive and quantitative evaluations, Lang et al. [22] developed 
a comprehensive model that unifies existing models through 
rough set and formal concept analysis.

Three-way decision [23], proposed by Yao, describes 
decision-makers’ decision behaviors towards uncertain 
things.

Due to its ability to effectively explain decision-making 
under uncertain conditions, three-way decision has attracted 
a lot of attention of many scholars [24–26]. Zhan et al. [27] 
incorporated three-way decision into multi-attribute deci-
sion-making by employing an outranking relation. They 
proposed three strategies to design a novel three-way deci-
sion model specifically tailored for multi-attribute decision-
making. Yang and Yao [28] investigated two potential solu-
tions to the problem of constructing a shadowed set from 
an intuitionistic fuzzy set by combining three-way decision 
and shadowed set. Zhang et al. [29] conducted an in-depth 
exploration of loss functions and developed a Pythagorean 
fuzzy three-way decision model by incorporating a hesita-
tion description into the Pythagorean fuzzy environment. 
Zhang and Ma [30] presented three-way decision with 
decision-theoretic rough set based on Pythagorean fuzzy 
covering.

In 1965, Zadeh [31] introduced fuzzy set to describe 
fuzzy phenomenon, and explained the meaning of fuzzi-
ness through the definitions and operations of membership 

degree and membership function. Based on fuzzy set, Zadeh 
[32] proposed the concept of fuzzy information granular-
ity in 1979. Yao [33] specifically established a granulation 
computing model in neighborhood system. Qian et al. [34] 
developed a multi-granulation rough set model and subse-
quently constructed a multi-granulation decision-theoretic 
rough set model by using Bayesian risk decision theory [35]. 
Based on the Zadeh’s work, Atanassov [36] developed the 
concept of intuitionistic fuzzy set and investigated its proper-
ties. Later, Yager and Abbasov [37] proposed Pythagorean 
fuzzy set with the assumption that the sum of the squares of 
membership and non-membership degrees does not exceed 
1. Pythagorean fuzzy set can deal with fuzzy information 
and fuzzy concepts more accurately than intuitionistic 
fuzzy set. Based on Pythagorean Fuzzy Bonferroni mean 
with weighted interaction operator, Yang et al. [38] adopted 
a decision-making method for addressing the aggregation 
problem of online multi-attribute interactive ratings. In order 
to realize the sustainable development of shared e-bikes, 
Tang and Yang [39] utilized Pythagorean fuzzy decision-
making method to help recycling suppliers to make rea-
sonable selection. By employing the concepts of variance 
and covariance, Ejegwa et al. [40] proposed a three-way 
approach for computing the correlation coefficient between 
Pythagorean fuzzy sets. According to the semantics of three-
way decision, Zhao et al. [41] established a three-way deci-
sion model on Pythagorean fuzzy set based on the dominant 
relationship of Pythagorean fuzzy set.

In real-life scenarios, agents often encounter some com-
plex decision-making environments that make their atti-
tudes less straightforward. This means that agents' attitudes 
towards issues are vague and uncertain. Since Pythagorean 
fuzzy set is more effective than intuitionistic fuzzy set in 
describing such vague and uncertain information, and there 
are many Pythagorean fuzzy information systems for con-
flicts in which attitudes of agents on issues are depicted 
by Pythagorean fuzzy numbers [11, 42]. These research 
findings serve as an important reference for us to study 
the three-way conflict analysis model. Furthermore, multi-
granulation conflict is common in life. For example, let's 
consider a conflict between a company and its unionized 
employees. At the micro-level, individual employees may 
be dissatisfied with their wages and working conditions. 
This might lead to strikes or protests. At the meso-level, 
the union leaders are negotiating with the company's man-
agement to reach a collective bargaining agreement. These 
negotiations may involve disagreements on issues such as 
salary increases, benefits, or working hours. At the macro-
level, the conflict may be influenced by broader societal 
factors such as economic conditions, government poli-
cies, or cultural norms. Despite the development of vari-
ous conflict analysis models, the current models have not 
been investigated from a multi-granulation perspective for 
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practical conflict problems. Particularly, in specific conflict 
scenarios like military conflicts, agents exercise caution in 
decision-making. They tend to employ multiple evaluation 
functions to assess decision outcomes and prevent errors. 
Since the multi-granulation rough set is approximation of 
a family of equivalence relations, it can accurately cap-
ture the cautious psychology of agents in decision-making. 
Therefore, researching the integration of multi-granulation 
rough set and conflict analysis presents an interesting topic 
worth exploring. Consequently, an important aspect of this 
paper is the construction of a multi-granulation conflict 
analysis model to describe conflicts within multi-dimen-
sional data.

The rest of this paper is organized in the following: 
Sect. 2 provides an overview of Pythagorean fuzzy set, 
conflict analysis and multi-granulation decision-theoretic 
rough set. In Sect. 3, we present a Pythagorean fuzzy three-
way conflict analysis model which trisects agents set, and 
establish a trisected agents set model with different risk 
preference. Section 4 focuses on establishing the tripartite 
classification of agents based on multi-granulation Pythago-
rean fuzzy rough approximations and discusses detailly the 
relations and properties of the proposed conflict analysis 
models. In Sect. 5, we explore methods for measuring the 
precision of the proposed rough set model. Finally, Sect. 6 
concludes the paper and outlines potential future work.

2  Preliminaries

We will briefly review some necessary concepts about 
Pythagorean fuzzy set, conflict analysis and multi-granula-
tion rough approximations in this section.

2.1  Pythagorean Fuzzy Set

Pythagorean fuzzy set is utilized to reveal the inherent fuzzi-
ness of things. Accordingly, this subsection reviews its defi-
nition and some basic properties.

Definition 1 [43]. Let U be the universe of discourse. 
A Pythagorean fuzzy set (PFS) on U is defined in the 
following:

where the functions uP(x), vP(x) ∶ U → [0, 1] are the mem-
bership degree and non-membership degree of x to P, 
respectively. For any x ∈ U , we have 0 ≤ u2

P
(x) + v2

P
(x) ≤ 1 , 

and the hesitant membership of x to P is given as follows:

(1)P =
{
x, uP(x), vP(x)|x ∈ U

}

(2)�P(x) =

√
1 − u2

P
(x) − v2

P
(x)

r(x) = (uP(x), vP(x)) is called Pythagorean fuzzy number 
(PFN), written as r = (uP, vP).

Definition 2 [43]. Assume r = (uP, vP) , r1 = (uP1
, vP1

) and 
r2 = (uP2

, vP2
) are PFNS. A quasi-ordering of Pythagorean 

fuzzy set is defined as follows:

In a nutshell, Pythagorean fuzzy set is more flexible in 
describing and characterizing the fuzziness of things.

2.2  Conflict Analysis

Conflict analysis, an important branch of management sci-
ence, plays a significant role in our decision-making. Nota-
bly, trisecting the agent set is currently an important research 
area within conflict analysis, as it guides us in making sound 
decisions. This is also the primary focus of this article. Thus, 
it is necessary to review some basic definitions of conflict 
analysis.

Definition 3 [6]. Let IS = (U, A, V, f) be an information sys-
tem, where U is a non-empty finite set of agents, A is a non-
empty finite set of issues, V = ∪

{
Vcj

|cj ∈ A
}

 , Vcj
 is the set 

of values of issues cj , f is the relationship between U and 
A, f ∶ U × A → {−1, 0, 1} . For any x ∈ U , a ∈ A , the func-
tion f is defined as follows:

To depict clearly the relations between agents and issues, 
we illustrate it through Example 1 from Table 1.

Example 1 An information system of a conflict problem is 
shown in Table 1.

where the agents x1 , x2 , x3 , x4 , x5 and x6 represent Israel, 
Egypt, Palestine, Jordan, Syria, Saudi Arabia, respectively. 

(3)r1 ≥ r2 iff uP1
≥ uP2

and vP1
≤ vP2

(4)f (x, a) =

⎧⎪⎨⎪⎩

+1, agent x support issue a

0, agent x neutralize issue a

−1, agent x oppose issue a

Table 1  Information system for 
the Middle East conflict [11]

a
1

a2 a3 a4 a5

x
1

− 1 1 1 1 1
x
2

1 0 − 1 − 1 − 1
x
3

1 − 1 − 1 − 1 0
x
4

0 − 1 − 1 0 − 1
x
5

1 − 1 − 1 − 1 − 1
x
6

0 1 − 1 0 1
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The issues a1 , a2 , a3 , a4 and a5 refer to Autonomous Pal-
estinian state on the West Bank and Gaza, Israeli military 
outpost along Jordan River, Israeli retains East Jerusa-
lem, Israeli military outposts on the Golan Heights, Arab 
countries grant citizenship to Palestinians who choose to 
remain within their borders, respectively [11]. Table 1 
reflects the attitudes of agents on issues, e.g. f (x3, u2) = −1 
shows that the agent x3 oppose the issue u2 , namely, Pal-
estine objects to the presence of Israeli military outposts 
along the Jordan River.

Definition 4 [6]. Let IS = (U, A, V, f) be an information sys-
tem, where U is a non-empty finite set of agents, A is a 
non-empty finite set of issues. For ∀x, y ∈ U and ∀c ∈ A , the 
auxiliary function is defined in the following formal:

where f (x, c) and f (y, c) denote the attitudes of x and y on c , 
respectively. When �c(x, y) = 1 , agent x and agent y have the 
same attitude to issue c or agent x and agent y are the same 
agent; when �c(x, y) = 0 , at least one of agent x and agent 
y is neutral about issue c ; when �c(x, y) = −1 , agent x and 
agent y have opposing attitudes towards issue c.

In conflict analysis, the distance function proposed by 
Pawlak [6] calculates the distance between any two agents 
as follows.

Definition 5 [6]. Assume IS = (U, A, V, f) is an information 
system. For ∀c ∈ A , the distance function �A for x, y ∈ U is 
defined as follows:

where �∗
c
(x, y) =

1−�c(x,y)

2
=

⎧⎪⎨⎪⎩

0 f (x, c) ⋅ f (y, c) = 1 ∨ x = y

0.5 f (x, c) ⋅ f (y, c) = 0 ∧ x ≠ y

1 f (x, c) ⋅ f (y, c) = −1

.

2.3  Multi‑granulation Rough Approximations

It is well known that one of the important advantages of 
rough set is semantic interpretability. Decision-theoretic 
rough set is used to explain uncertain things from the 
perspective of probability, and Qian et al. [35] developed 
the multi-granulation decision-theoretic rough set model 
based on Bayesian risk decision theory. Multi-granulation 
decision-theoretic rough set can effectively handle the 

(5)�c(x, y) =

⎧⎪⎨⎪⎩

1 f (x, c) ⋅ f (y, c) = 1 ∨ x = y

0 f (x, c) ⋅ f (y, c) = 0 ∧ x ≠ y

−1 f (x, c) ⋅ f (y, c) = −1

(6)�A(x, y) =

∑
c∈A

�∗
c
(x, y)

�A�

uncertainty of multi-dimensional uncertain data. Thus, this 
subsection introduces the key concepts of decision-theoretic 
rough set and multi-granulation decision-theoretic rough set.

Definition 6 [44]. Assume that (U,R) is an approximate 
space. The partition formed by the equivalence relation R 
on the universe U is given as (U,R) . For any X ⊆ U , the 
lower approximation and the upper approximation of X are 
respectively defined by:

where [x]R is the equivalence class of x under the equiva-
lence relation R.

When R(X) = R(X) , X is called the exact set under equiv-
alence relation. When R(X) ≠ R(X) , X is called rough set 
under equivalence relation. The lower and upper approxima-
tions of X divide U into the following three disjoint regions.

Definition 6 offers a reasonable semantic explanation for 
describing uncertain concepts.

Definition 7 [44]. Let IS = (U,A,V , f ) be an information 
system, where U is a non-empty finite set of objects, A is 
a non-empty finite set of attributes, and f is the relation-
ship between U and A . According to Bayes risk decision 
theory, the state space Θ={X,∼ X} is constructed to describe 
the state of objects belonging to the set X and not belong-
ing to the set X , respectively. The set of actions is given by 
A =

{
aP, aB, aN

}
 , where aP,aB and aN express the actions 

in classifying an object into POS(X),BND(X) and NEG(X) , 
respectively. The loss function values of the corresponding 
actions in different states are shown in Table 2.

where �∗P denotes the decision loss of taking action a∗ 
for classifying an object in X into the region specified by 
*, and �∗N denotes the decision loss of taking action a∗ for 
classifying an object that not belong to X into the region 
specified by *.

(7)
R(X) =

{
x ∈ U|[x]R ⊆ X

}

R(X) =
{
x ∈ U|[x]R ∩ X ≠ ∅

}

(8)

Positive region of X ∶ POS(X) = R(X)

Negative region of X ∶ NEG(X) = U − R(X)

Boundary region of X ∶ BND(X) = R(X) − R(X)

Table 2  Loss function values 
of different actions in different 
states

X ∼ X

a
P

�
PP

�
PN

a
B

�
BP

�
BN

a
N

�
NP

�
NN
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For a given object x , the expected loss of the decision 
action taken is written as R(a∗|[x]R) , and expressed as 
follows:

where Pr
(
X|[x]R

)
 represents the conditional probability that 

the equivalence class [x]R of object x belongs to set X.
The minimum loss rules produced by Bayes risk decision-

making process is as Rule 1.
Rule 1:
(P) If R(aP|[x]R) ≤ R(aB|[x]R) and.
R(aP|[x]R) ≤ R(aN|[x]R) , then x ∈ POS(X);
(B) If R(aB|[x]R) ≤ R(aN|[x]R) and.
R(aB|[x]R) ≤ R(aP|[x]R) , then x ∈ BND(X);
(N) If R(aN|[x]R) ≤ R(aP|[x]R) and.
R(aN|[x]R) ≤ R(aB|[x]R) , then x ∈ NEG(X).
The Rule 1 can also be expressed as Rule 2.
Rule 2:
(PP) If  Pr(X|[x]R) ≥ �  and Pr(X|[x]R) ≥ �  ,  then 

x ∈ POS(X);
(PB) If  Pr(X|[x]R) < 𝛼  and Pr(X|[x]R) > 𝛽  ,  then 

x ∈ BND(X);
(PN) If  Pr(X|[x]R) ≤ �  and Pr(X|[x]R) ≤ �  ,  then 

x ∈ NEG(X).
where

Obviously, recall that Rule 2, one can classify an object 
into the positive region, boundary region or negative region. 
Furthermore, the definitions of the optimistic multi-gran-
ulation rough approximations and the pessimistic multi-
granulation rough approximations can be given as follows:

Definition 8 [35]. Assume IS = (U,A,V , f ) is an informa-
tion system,R1,R2,⋯ ,Rm are m granular structures. For any 
X ⊆ U , the lower and upper approximations of the optimistic 
multi-granulation rough approximations of X about Ri can 
be defined by:

(9)

R(aP|[x]R) = �PP Pr(X|[x]R) + �PN Pr(∼ X|[x]R)
R(aB|[x]R) = �BP Pr(X|[x]R) + �BN Pr(∼ X|[x]R)
R(aN|[x]R) = �NP Pr(X|[x]R) + �NN Pr(∼ X|[x]R)

(10)

� =
�PN − �BN

(�PN − �BN) + (�BP − �PP)

� =
�BN − �NN

(�BN − �NN) + (�NP − �BP)

� =
�PN − �NN

(�PN − �NN) + (�NP − �PP)

where [x]Ri
 is the equivalence class of x under Ri , ∼ X is the 

complement set of X.
According to the definitions of the lower approximation 

and the upper approximation of the optimistic multi-gran-
ulation rough approximations, the boundary region of the 
optimistic multi-granulation rough approximations can be 
defined by

Analogous to decision-theoretic rough set, one may 
obtain decision rules of the optimistic multi-granulation 
rough approximations in the following.

Definition 9 [35]. Assume IS = (U,AT ,V , f ) is an informa-
tion system, R1,R2,⋯ ,Rm are m granular structures. For any 
X ⊆ U , when 𝛼 > 𝛽 , decision rules of the optimistic multi-
granulation rough approximations are in the following:

(OP1) If ∃i ∈ {1, 2,⋯ ,m} such that Pr(X|[x]Ri
) ≥ � , then 

x ∈ POS(X);
(ON1) If ∀i ∈ {1, 2,⋯ ,m} such that Pr(X|[x]Ri

) ≤ � , then.
x ∈ NEG(X);
(OB1) Otherwise, x ∈ BND(X).

Definition 10 [35]. Assume IS = (U,A,V , f ) is an informa-
tion system. R1,R2,⋯ ,Rm are m granular structures. For any 
X ⊆ U , the lower and upper approximations of the pessi-
mistic multi-granulation rough approximations of X about 
Ri can be defined by:

Formally, based on the definitions of the lower approxi-
mation and the upper approximation of the pessimistic 
multi-granulation rough approximations, the boundary 
region of the pessimistic multi-granulation rough approxi-
mations can be defined by:

(11)

m∑
i=1

Ri
O(X) =

{
x| m

∨
i=1

Pr(X|[x]Ri
) ≥ �, x ∈ U

}

m∑
i=1

Ri
O(X) =∼

m∑
i=1

Ri
O(∼ X)

(12)BNO
m∑
i=1

Ri

(X) =

m�
i=1

Ri
O(X) −

m�
i=1

Ri
O(X)

(13)

m∑
i=1

Ri
P(X) =

{
x| m

∧
i=1

Pr(X|[x]Ri
) ≥ �, x ∈ U

}

m∑
i=1

Ri
P(X) =∼

m∑
i=1

Ri
P(∼ X)
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Particularly, similar to the optimistic multi-granulation 
rough approximations, the decision rules of the pessimis-
tic multi-granulation rough approximations can be also 
acquired as follows.

Definition 11 [35]. Let IS = (U,AT ,V , f ) be an informa-
tion system, R1,R2,⋯ ,Rm be m granular structures. For any 
X ⊆ U , when 𝛼 > 𝛽 , decision rules of the pessimistic multi-
granulation rough approximations are as follows:

(PP1) If ∀i ∈ {1, 2,⋯ ,m} such that Pr(X|[x]Ri
) ≥ � , then   

x ∈ POS(X);
(PN1) If ∃i ∈ {1, 2,⋯ ,m} such that Pr(X|[x]Ri

) ≤ � , then 
x ∈ NEG(X);

(PB1) Otherwise, x ∈ BND(X).
Recall that Definition 9 and Definition 11, one may gain 

the decision rules of the optimistic multi-granulation rough 
approximations and the pessimistic multi-granulation rough 
approximations through Example 2 from Table 3.

(14)BNP
m∑
i=1

Ri

(X) =

m�
i=1

Ri
P(X) −

m�
i=1

Ri
P(X)

Example 2 Table 3 is a conflict information system, where 
U =

{
x1, x2, x3, x4, x5, x6, x7

}
,Ri (i = 1, 2,⋯ ,m) are m granu-

lar structures, AT =
{
a1, a2

}
∪ {d} , the decision attribute 

d = {P,B,N} , and P , N and B indicate accepting, rejecting, 
pending decisions, respectively.

Assume m = 2 ,  R1 =
{
a1
}

 ,  R2 =
{
a1, a2

}
 ,  and 

X =
{
x1, x2, x3, x5, x7

}
 . Then, the conditional probabilities 

of each object under R1 and R2  can be required respectively, 
and results are expressed in Table 4.

Let � = 0.6 , � = 0.3 . By Definitions of 9 and 11, the deci-
sion results are shown in Table 5 and Table 6, respectively.

3  Three‑Way Conflict Analysis 
in Pythagorean Fuzzy Information System

It is worth noting that there are numerous factors that influ-
ence decisions of agents, such as weather, mood, physi-
cal condition. Therefore, the attitudes of agents on issues 
are often vague and ambiguous. In view of the advantage 
of PFS in characterizing uncertain information, PFNs are 
used to express the agents’ attitudes towards the issues in 
this paper. Consequently, a novel three-way conflict analy-
sis model is constructed.

3.1  Pythagorean Fuzzy Conflict Information System

For the sake of concrete discussion in detail later, we 
establish a Pythagorean Fuzzy Conflict Information System 
in this subsection. Henceforth, we abbreviate it as PFCIS.

Definition 12 An information system IS = (U,A,V , f ) is 
called a PFCIS , where U is a non-empty finite set of agents, 
A is a non-empty finite set of issues, V = ∪

{
Vcj

|cj ∈ A
}

 , Vcj
 

is the set of values of issues cj , the attitudes of agents to 

Table 3  Conflict information 
system

U a1 a2 d

x
1

0 0 N

x
2

1 0 B

x
3

1 1 P

x
4

0 0 N

x
5

1 1 P

x
6

0 0 N

x
7

0 1 B

Table 4  Conditional 
probabilities of objects under 
R
1
 and R

2

U Pr(X|[xj]R1
) Pr(X|[xj]R2

)

x
1

0.33 0.33

x
2

1 1

x
3

1 1

x
4

0.33 0.33

x
5

1 1

x
6

0.33 0.33

x
7

1 1

Table 5  Decision results of the 
optimistic multi-granulation 
rough approximations

P B N

{
x
2
, x

3
, x

5
, x

7

} {
x
1
, x

4
, x

6

}
{∅}

Table 6  Decision results of the 
pessimistic multi-granulation 
rough approximations

P B N

{
x
2
, x

3
, x

5
, x

7

} {
x
1
, x

4
, x

6

}
{∅}

Table 7  Pythagorean fuzzy conflict information system

a1 a2 a3 a4

x
1

(0.4, 0.7) (0.4, 0.6) (0.2, 0.8) (0.6, 0.2)

x
2

(0.8, 0.1) (0.7, 0.4) (0.4, 0.3) (0.7, 0.1)

x
3

(0.5, 0.3) (0.8, 0.2) (0.7, 0.2) (0.5, 0.4)
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issues are denoted by PFNs and f is the relationship between 
U and A, f ∶ U × A → V .

Correspondingly, a PFCIS can be established ground on 
Definition 12. To depict clearly the PFCIS , one can state it 
by Example 3.

Example 3 A PFCIS is shown in Table 7.
It can be seen that the attitudes of agents towards the 

issues from Table 7, for example,(0.8, 0.2) shows that the 
support degree to the issue a2 is 0.8, and the oppose degree 
to the issue a2 is 0.2 for the agent x3.

Definition 13 Assume IS = (U,A,V , f ) is a PFCIS , a PFN 
is the attitude of any agent xi ∈ U on the any issue a ∈ A . 
M and N are the attitude of agents x, y ∈ U on the issue set 
A , and then the Pythagorean fuzzy correlation coefficient is 
defined as:

where
C(M,N) =

n
∑

i=1
[u2M(xi)u

2
N (xi) + v2M(xi)v

2
N (xi) + �2

M(xi)�
2
N (xi)],

C(M,M) =
n∑
i=1

[u4
M
(xi) + v4

M
(xi) + �4

M
(xi)] and

C(N,N) =
n∑
i=1

[u4
N
(xi) + v4

N
(xi) + �4

N
(xi)].

Intuitively, based on Definition 13, one may easily obtain 
the properties of k(M,N) in the following theorem.

Theorem 1 Let M and N be PFSs, k ∶ PFS × PFS → [0, 1] , 
then these properties hold in the following.

Proof (1) According to mean inequalities ab ≤
a2+b2

2
,

there exists u2
M
(xi)u

2
N
(xi) + v2

M
(xi)v

2
N
(xi) + �2

M
(xi)�

2
N
(xi).

≤
u4
M
(xi)+u

4
N
(xi)

2
+

v4
M
(xi)+v

4
N
(xi)

2
+

�4
M
(xi)+�

4
N
(xi)

2
.

It is obviously that u2
▵

,v2
▵

 and �2
▵

 are greater than 0, where 

▵= M , N . Thus, k(M,N) ∈ [0, 1].
(2) Due to C(M,N) = C(N,M) , then k(M,N) = k(N,M).
( 3 )  I f  k(M,N) = 1  ,  t h e r e  e x i s t s 

2C(M,N) = C(M,M) + C(N,N),
then 

∑n

i=1
[u2

M
(xi)u

2

N
(xi) + v2

M
(xi)v

2

N
(xi) + �2

M
(xi)�

2

N
(xi)].

=
∑

n

i=1
[u4

M
(x

i
) + v

4

M
(x

i
) + �4

M
(x

i
)] +

n∑
i=1

[u4
N
(x

i
) + v

4

N
(x

i
)

+�4

N
(x

i
)]

. T h u s ,uM(xi) = uN(xi)  ,  vM(xi) = vN(xi)  a n d 

�M(xi) = �N(xi).

(15)k(M,N) =
2C(M,N)

C(M,M) + C(N,N)

(16)
(1) k(M,N) ∈ [0, 1]

(2) k(M,N) = k(N,M)

(3) if k(M,N) = 1, thenM = N

Therefore, M = N.
Generally speaking, Definition 13 and Theorem  1 

describe the conflict degree of agents towards issue set A.

3.2  Trisecting Agents Set

A fundamental aspect of conflict analysis is to trisect agents 
set, which can guide us to make informed decisions, that 
is, support, neutralize and oppose. Establishing a conveni-
ent and effective model to realize the trisection of agents in 
PFCIS is a key focus of this paper.

Definition 14 Assume IS = (U,A,V , f ) is a PFCIS . For cor-
relation coefficient k(M,N) and a pair of thresholds � , � with 
0 ≤ 𝛽 < 𝛼 ≤ 1 , the alliance set, neutral set and conflict set 
with respect to agent x are defined respectively as:

Accordingly, one can judge the conflict state of any agents 
x,y towards issue set A by Definition 14.

Definition 15 Assume IS = (U,A,V , f ) is a PFCIS . For cor-
relation coefficient k(M,N) and a pair of thresholds � , � with 
0 ≤ 𝛽 < 𝛼 ≤ 1 , the no-conflict set, no-neutral set and no-
alliance set about the agent x are given respectively in the 
following formals:

 (1) no-conflict:

(2) no-neutral:

(3) no-alliance:

Theorem 2 Assume IS = (U,A,V , f ) is a PFCIS . The follow-
ing equalities are valid.

(17)

(1)AL(A,𝛼,𝛽)(x) = {y ∈ U|k(M,N) ≥ 𝛼}

(2)NE(A,𝛼,𝛽)(x) = {y ∈ U|𝛽 < k(M,N) < 𝛼}

(3)CO(A,𝛼,𝛽)(x) = {y ∈ U|k(M,N) ≤ 𝛽}

COC
(A,𝛼,𝛽)

(x) = {y ∈ U|k(M,N) > 𝛽}

= AL(A,𝛼,𝛽)(x) ∪ NE(A,𝛼,𝛽)(x)

NEC
(A,�,�)

(x) = {y ∈ U|k(M,N) ≤ � or k(M,N) ≥ �}

= AL(A,�,�)(x) ∪ CO(A,�,�)(x)

ALC
(A,𝛼,𝛽)

(x) = {y ∈ U|k(M,N) < 𝛼}

= NE(A,𝛼,𝛽)(x) ∪ CO(A,𝛼,𝛽)(x)
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Proof Intuitively, from Definition 14 and Definition 15, one 
can easily verify the above conclusions.

Apparently, the relations of agents among Definitions 
14,15 and Theorem 2 are clearly shown in Fig. 1.

As we all know, decision-making is often accompanied 
by risks, that is, agents will choose alliance, neutral or con-
flict with the loss of decision risk. Therefore, a decision-
making model with risk is very practical.

Definition 16 Let IS = (U,A,V , f ) be a PFCIS . The set of 
actions is denoted by E =

{
aA, aN , aC

}
 , where aA,aN and aC 

represent the actions for classifying agents into AL(A,�,�)(U) , 
NE(A,�,�)(U) and CO(A,�,�)(U) , respectively, where �∗P denotes 
the decision loss of taking action a∗ for classifying agents in 
X into the region specified by *, and �∗N denotes the deci-
sion loss of taking action a∗ for classifying agents that not 
belong to X into the region specified by *. For x, y ∈ U , 
the expected loss of the decision action taken is denoted as 
R(a∗|x, y) , which is described in the following:

Theorem 3 Assume IS = (U,A,V , f ) is a PFCIS . For any 
agents x, y ∈ U , R(aA|x, y) , R(aN|x, y) and R(aC|x, y) are 
expected losses of taking decision actions aA,aN and aC , 
respectively. Then, there exist.

(1) If R(aA|x, y) ≤ R(aN|x, y) and.

(18)

(1)COC
(A,�,�)

(x) ∩ NEC
(A,�,�)

(x) = AL(A,�,�)(x)

(2)COC
(A,�,�)

(x) ∩ ALC
(A,�,�)

(x) = NE(A,�,�)(x)

(3)ALC
(A,�,�)

(x) ∩ NEC
(A,�,�)

(x) = CO(A,�,�)(x)

(4)ALC
(A,�,�)

(x) ∩ NEC
(A,�,�)

(x) ∩ COC
(A,�,�)

(x) = ∅

(19)

(1)R(aA|x, y) = �APk(M,N) + �AN(1 − k(M,N))

(2)R(aN|x, y) = �NPk(M,N) + �NN(1 − k(M,N))

(3)R(aC|x, y) = �CPk(M,N) + �CN(1 − k(M,N))

R(aA|x, y) ≤ R(aC|x, y) , then x, y ∈ AL(A,�,�)(X);

(2) If R(aN|x, y) ≤ R(aA|x, y) and.

R(aN|x, y) ≤ R(aC|x, y) , then x, y ∈ NE(A,�,�)(X);

(3) If R(aC|x, y) ≤ R(aA|x, y) and.

R(aC|x, y) ≤ R(aN|x, y) , then x, y ∈ CO(A,�,�)(X).

The proof of Theorem 3 is provided in the appendix.

According to the proof of Theorem 3, we can obtain the 
following Rule 3.

Rule 3:

(A) If k(M,N) ≥ � , then x, y ∈ AL(A,�,�)(X);

(N) If 𝛽 < k(M,N) < 𝛼 , then x, y ∈ NE(A,�,�)(X);

(C) If k(M,N) ≤ � , then x, y ∈ CO(A,�,�)(X).

To provide a clear illustration of the decision actions of 
agents in Theorem 3, we illustrate it through Example 4.

Example 4 The PFCIS of the Middle East conflict is shown 
in Table 8.

Let �AP = 0.8,�AN = 3,�NP = 1.4,�NN = 1.7,�CP = 2.6

and �CN = 1.5 , thus, � = 0.68 and � = 0.45 . According to 
Rule 3, the decision results of Table 8 are shown in Table 9. 
Additionally, Table 9 also displays the comparison of deci-
sion results between Rule 3 and Lang's rule [11].

According to Table 9, we can draw a significant con-
clusion that our rule provides a more detailed and spe-
cific representation of conflict information. Additionally, 
it effectively highlights the internal causes of conflict 
formation.

Fig. 1  Relationships among agent sets

Table 8  The PFCIS of Middle East conflict [11]

a1 a2 a3 a4 a5

x
1

(1,0) (0.9,0.3) (0.8,0.2) (0.9,0.1) (0.9,0.2)
x
2

(0.9,0.1) (0.5,0.5) (0.1,0.9) (0.3,0.8) (0.1,0.9)
x
3

(0.1,0.9) (0.1,0.9) (0.2,0.8) (0.1,0.9) (0.5,0.5)
x
4

(0.5,0.5) (0.1,0.9) (0.3,0.7) (0.5,0.5) (0.1,0.9)
x
5

(0.9,0.2) (0.4,0.6) (0.1,0.9) (0.1,0.9) (0.3,0.9)
x
6

(0,1) (0.9,0.1) (0.2,0.9) (0.5,0.5) (0.8,0.4)
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3.3  Trisecting Agents Set with Different Risk 
Preference

In particular, risk preference also has a significant impact 
on decision-making for agents. For example, some people 
prefer risk because big risk often comes with large profit. 
Additionally, some people avoid risk because it can result 
in loss. Therefore, this subsection is devoted to establishing 
a trisecting agents set model with different risk preferences.

Definition 17 Assume A
∼

= ⟨�, �⟩ is a PFN. A binary group ⟨
uA

∼

(x), vA
∼

(x)
⟩

 is a characteristic function, � ∈ [0, 1] , the 

A� =
{
�� , �

C
�

}
 is defined as level cut set on A , 

where,�� =
{
x|uA

∼

(x) ≥ �

}
 and �C

�
=
{
x|1 − vA

∼

(x) ≥ �

}
 . 

Suppose P
∼

 and Q
∼

 are PFNs, the left and right points of PFNs 
P
∼

 , Q
∼

 lower ideal of level cut-off are defined as uP
∼

(p−
�
),uP

∼

(p+
�
)

,uQ
∼

(q−
�
) and uQ

∼

(q+
�
).

Accordingly, one can acquire thresholds of decision-
making by Bayes risk decision theory.

Definition 18 Let IS = (U,A,V , f ) be a PFCIS . According 
to Bayes risk decision theory, the state space Θ = {X,∼ X} 
is constructed to describe the state of agents belong-
ing to the set X , which indicate that an agent is in X , and 
not in X , respectively. The set of actions is written by 
E =

{
aA, aN , aC

}
 , where aA,aN and aC represent the actions 

in classifying agents into AL(A,�,�)(X) , NE(A,�,�)(X) and 
CO(A,�,�)(X) , respectively. The loss function values of the 
corresponding actions in different states are depicted PFNs. 
For � ∈ [0, 1] , A−

⋅⋅

(�) and A+
⋅⋅

(�) are regarded as left and right 

points of lower ideal set of PFNs �̃�
⋅⋅
 , then A−

⋅⋅

(𝜂) < A+
⋅⋅

(𝜂) , 
and decision loss functions are shown in Table 10.

(1) For optimists

(2) For pessimists

According to Bayes risk decision theory, there exist.

(1) I f  R▵(aA|x, y) ≤ R▵(aN|x, y)  a n d 
R▵(aA|x, y) ≤ R▵(aC|x, y),

  then x, y ∈ AL(A,�,�)(X);
(2) I f  R▵(aN|x, y) ≤ R▵(aA|x, y)  a n d 

R▵(aN|x, y) ≤ R▵(aC|x, y),
  then x, y ∈ NE(A,�,�)(X);
(3) I f  R▵(aC|x, y) ≤ R▵(aA|x, y)  a n d 

R▵(aC|x, y) ≤ R▵(aN|x, y),
  then x, y ∈ CO(A,�,�)(X).

RO(aA|x, y) = A−
AP
(�)k(M,N) + A−

AN
(�)(1 − k(M,N))

RO(aN|x, y) = A−
NP
(�)k(M,N) + A−

NN
(�)(1 − k(M,N))

RO(aC|x, y) = A−
CP
(�)k(M,N) + A−

CN
(�)(1 − k(M,N))

RP(aA|x, y) = A+
AP
(�)k(M,N) + A+

AN
(�)(1 − k(M,N))

RP(aN|x, y) = A+
NP
(�)k(M,N) + A+

NN
(�)(1 − k(M,N))

RP(aC|x, y) = A+
CP
(�)k(M,N) + A+

CN
(�)(1 − k(M,N))

Table 9  Comparison of 
decision results

Rule Information system AL(A,�,�)(X) NE(A,�,�)(X) CO(A,�,�)(X)

Lang’s rule The Middle East conflict x
1

x
6

x
2
, x

3
, x

4
, x

5

Rule 3 The Middle East conflict x
2
, x

4
x
1
, x

6
x
1
, x

2

x
2
, x

5
x
2
, x

3
x
1
, x

3

x
3
, x

4
x
2
, x

6
x
1
, x

4

x
4
, x

5
x
3
, x

5
x
1
, x

5

x
3
, x

6

x
4
, x

6

x
5
, x

6

Table 10  Loss function values of different actions in different states

X ∼ X

a
A �̃�

AP
= [A−

AP
(𝜂),A+

AP
(𝜂)] �̃�

AN
= [A−

AN
(𝜂),A+

AN
(𝜂)]

a
N �̃�

NP
= [A−

NP
(𝜂),A+

NP
(𝜂)] �̃�

NN
= [A−

NN
(𝜂),A+

NN
(𝜂)]

a
C �̃�

CP
= [A−

CP
(𝜂),A+

CP
(𝜂)] �̃�

CN
= [A−

CN
(𝜂),A+

CN
(𝜂)]

Table 11  Decision thresholds for optimists and pessimists

optimists pessimists

� �O=
A
−
AN

(�)−A−
NN

(�)

(A−
AN

(�)−A−
NN

(�))+(A−
NP
(�)−A−

AP
(�))

�P=
A
+
AN

(�)−A+
NN

(�)

(A+
AN

(�)−A+
NN

(�))+(A+
NP
(�)−A+

AP
(�))

� �O=
A
−
NN

−A−
CN

(A−
NN

−A−
CN

)+(A−
CP
−A−

NP
)

�P=
A
+
NN

(�)−A+
CN

(�)

(A+
NN

(�)−A+
CN

(�))+(A+
CP
(�)−A+

NP
(�))
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where ▵ denotes O and P , respectively. According to the 
assumption 0 ≤ �̃�AP < �̃�NP < �̃�CP and 0 ≤ �̃�CN < �̃�NN < �̃�AN , 
one may easily obtain the decision thresholds of optimists 
and pessimists, respectively, shown in Table 11.

where the range of values of threshold � as follows

and the range of values of threshold � in the following

Intuitively, one can get the range of values of thresholds 
� and � from Table 11. Therefore, decision actions with dif-
ferent risk preference can be obtained.

Definition 19 Assume IS = (U,A,V , f ) is a PFCIS , the M 
and N are the attitudes of any agents x, y ∈ U on the issue 
set A . For k(M,N) and � ∈ [0, 1] , then the optimistic alliance, 
the pessimistic alliance, the optimistic neutral, the pessimis-
tic neutral, the optimistic conflict and the pessimistic conflict 
are defined, respectively, in the following formals:

The relationships of agents in Definition 19 are clearly 
illustrated in Fig. 2. Consequently, we have the following 
proposition based on Definitions 18 and 19.

Proposition 1 Assume IS = (U,A,V , f ) is a PFCIS . There 
exist.

� ∈

[
A
−
AN
(�) − A

+
NN

(�)

(A+
AN
(�) − A

−
NN

(�)) + (A+
NP
(�) − A

−
AP
(�))

,

min

(
A
+
AN
(�) − A

−
NN

(�)

(A−
AN
(�) − A

+
NN

(�)) + (A−
NP
(�) − A

+
AP
(�))

, 1

)]

� ∈

[
A
−
NN

(�) − A
+
CN

(�)

(A+
NN

(�) − A
−
CN

(�)) + (A+
CP
(�) − A

−
NP
(�))

,

min

(
A
+
NN

(�) − A
−
CN

(�)

(A−
NN

(�) − A
+
CN

(�)) + (A−
CP
(�) − A

+
NP
(�))

, 1

)]

(20)

(1)ALO
(A,𝛼,𝛽)

(x)=
{
y ∈ U|k(M,N) ≥ 𝛼min

}

(2)ALP
(A,𝛼,𝛽)

(x)={y ∈ U|k(M,N) ≥ 𝛼max}

(3)NEO
(A,𝛼,𝛽)

(x)=
{
y ∈ U|𝛽min < k(M,N) < 𝛼max

}

(4)NEP
(A,𝛼,𝛽)

(x)=
{
y ∈ U|𝛽max < k(M,N) < 𝛼min

}

(5)COO
(A,𝛼,𝛽)

(x)={y ∈ U|k(M,N) ≤ 𝛽max}

(6)COP
(A,𝛼,𝛽)

(x)=
{
y ∈ U|k(M,N) ≤ 𝛽min

}

Proof. From Definitions 18,19 and basic properties of set, 
the above conclusions can be easily proved by intuition.

Theorem 4. Assume IS = (U,A,V , f ) is a PFCIS . The fol-
lowing properties hold.

Proof Based on the formula (20) and basic properties of set, 
the above relations can be easily verified.

In decision-making process, the agents need to consider 
not only their individual attitudes towards each issue, but 
also their overall attitude towards the issue set.

Definition 20 [42]. Assume IS = (U,A,V , f ) is a PFCIS . For 
any agents x, y ∈ U and a ∈ A , the degree of conflict of an 
issue a , which can be expressed as:

(21)

(1)ALO
(A,𝛼,𝛽)

(x) ∩ NEO
(A,𝛼,𝛽)

(x) ⊆ AL(A,𝛼,𝛽)(x)

(2)NEO
(A,𝛼,𝛽)

(x) ∩ COO
(A,𝛼,𝛽)

(x) ⊆ NE(A,𝛼,𝛽)(x)

(3)COO
(A,𝛼,𝛽)

(x) ∩ COP
(A,𝛼,𝛽)

(x) ⊆ CO(A,𝛼,𝛽)(x)

(4)ALO
(A,𝛼,𝛽)

(x) ∪ ALP
(A,𝛼,𝛽)

(x) ⊇ AL(A,𝛼,𝛽)(x)

(5)NEO
(A,𝛼,𝛽)

(x) ∪ NEP
(A,𝛼,𝛽)

(x) ⊇ NE(A,𝛼,𝛽)(x)

(6)COO
(A,𝛼,𝛽)

(x) ∪ COP
(A,𝛼,𝛽)

(x) ⊇ CO(A,𝛼,𝛽)(x)

(7)ALO
(A,𝛼,𝛽)

(x) ∪ NEP
(A,𝛼,𝛽)

(x) = COOC
(A,𝛼,𝛽)

(x)

(8)ALP
(A,𝛼,𝛽)

(x) ∪ NEO
(A,𝛼,𝛽)

(x) = COPC
(A,𝛼,𝛽)

(x)

(9)COO
(A,𝛼,𝛽)

(x) ∪ NEP
(A,𝛼,𝛽)

(x) = ALOC
(A,𝛼,𝛽)

(x)

(10)COP
(A,𝛼,𝛽)

(x) ∪ NEO
(A,𝛼,𝛽)

(x) = ALPC
(A,𝛼,𝛽)

(x)

(11)ALOC
(A,𝛼,𝛽)

(x) ∩ COOC
(A,𝛼,𝛽)

(x) = NEP
(A,𝛼,𝛽)

(x)

(12)ALPC
(A,𝛼,𝛽)

(x) ∩ COPC
(A,𝛼,𝛽)

(x) = NEO
(A,𝛼,𝛽)

(x)

(13)ALP
(A,𝛼,𝛽)

(x) ∪ COP
(A,𝛼,𝛽)

(x) = NEOC
(A,𝛼,𝛽)

(x)

(14)ALO
(A,𝛼,𝛽)

(x) ∪ COO
(A,𝛼,𝛽)

(x) = NEPC
(A,𝛼,𝛽)

(x)

(22)

(1) If x, y ∈ ALP
(A,�,�)

(x) , then x, y ∈ ALO
(A,�,�)

(x);

(2) If x, y ∈ NEO
(A,�,�)

(x) , then x, y ∈ ALP
(A,�,�)

(x);

(3) If x, y ∈ COP
(A,�,�)

(x), then x, y ∈ COO
(A,�,�)

(x).

Fig. 2  Relationships among sets of agents
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where X+
a
=
{
x ∈ U|ua(x) ≥ m∗ ∧ va(x) ≤ m∗

}
,

X−
a
=
{
x ∈ U|ua(x) < m∗ ∧ va(x) > m∗

}
 ,  t h resholds 

m∗ ≥ 0.5 and m∗ ≥ 0.5.card( ) expresses cardinality of a 
set, int( ) denotes the rounding of any number, n denotes 
the population of agents and formula (24) denotes conflict 
degree of situation S = (U,A).

Accordingly, the degree of conflict of an issue set A , 
which can be expressed as following formal:

Definition 21 Assume IS = (U,A,V , f ) is a PFCIS . A pair of 
thresholds l, h with 0 ≤ l < h ≤ 1 . Conflict situation, defuse 
situation and non-conflict situation are respectively defined 
as:

Definition 21 reveals that the conflict degree of a situation 
S = (U,A) can be divided as conflict situation, defuse situa-
tion and non-conflict situation through a pair of thresholds.

Definition 22. Suppose IS = (U,A,V , f ) is a PFCIS , then 
the strong conflict, the weak conflict, the strong alliance, the 
weak alliance, the strong neutral and the weak neutral are 
respectively defined as:

According to the concepts in Definition 22, the following 
inclusion relations hold.

Theorem 5 Assume IS = (U,A,V , f ) is a PFCIS . These fol-
lowing properties hold.

(23)con(a) =
card(X+

a
) ⋅ card(X−

a
)

int
(

n

2

)
⋅

(
n − int

(
n

2

))

(24)con(A) =

∑
a∈A

con(a)

card(A)

CS
(l,h)

PFCIS
= {A|con(A) ≥ h}

DS
(l,h)

PFCIS
= {A|l < con(A) < h}

(25)NS
(l,h)

PFCIS
= {A|con(A) ≤ l}

(26)

(1) SCA(x) =
{
y ∈ U|k(M,N) ≤ 𝛽min, con(A) ≥ h

}
(2)WCA(x) = {y ∈ U|k(M,N) ≤ 𝛽max, con(A) ≥ h}

(3) SAA(x) = {y ∈ U|k(M,N) ≥ 𝛼max, con(A) ≤ l}

(4)WAA(x) =
{
y ∈ U|k(M,N) ≥ 𝛼min, con(A) ≤ l

}

(5) SNA(x) =
{
y ∈ U|𝛽max < k(M,N) < 𝛼min, l < con(A) < h

}

(6)WNA(x) =
{
y ∈ U|𝛽min < k(M,N) < 𝛼max, l < con(A) < h

}

Proof Taking into account Definitions 20, 21 and 22, the 
above conclusions are verified easily.

To clearly depict the decision actions of agents in the 
above theorem, we illustrate them through Example 5.

Example 5 A PFCIS is shown in Table 12.
Assume that the decision loss functions of aA , aN and aC 

are PFNs, � = 0.5 , and the upper and low bound of decision 
loss function are as follows:

A−
AP
(�) = 3.1 , A+

AP
(�) = 3.3 , A−

NP
(�) = 4.5 , A+

NP
(�) = 5.0,

A−
CP
(�) = 9.0 , A+

CP
(�) = 10.3 , A−

CN
(�) = 2.2 , A+

CN
(�) = 2.5,

A−
NN

(�) = 5.0  ,  A+
NN

(�) = 5.2  ,  A−
AN
(�) = 9.8  a n d 

A
−
AN
(�) = 10.0.

From Definition 18, we have � ∈ [0.67, 0.86] and 
� ∈ [0.28, 0.46] . The attitudes of agents x1,x2 and x3 on issues 
set A are B , C and D , respectively. By Definition 13, we have 
k(B,C) = 0.44,k(B,D) = 0.83 and k(C,D) = 0.38.

For optimists, by Definition 19, there exist 
COO

(A,�,�)
(U) =

{{
x1, x2

}
,
{
x2, x3

}}
 , ALO

(A,�,�)
(U) =

{
x
1
, x

3

}
.

Suppose m∗ = 0.6,m∗ = 0.5 , according to Definition 20, 
there exists con(A) = 0.67 . Assume l = 0.3 , h = 0.6 , by Defi-
nition 21, then WCA(U) =

{
x1, x2, x3

}
.

For pessimists, there exists WCA(U) =
{
x1, x2, x3

}
 under 

the same conditions.

4  Trisecting Agents Based 
on Multi‑granulation Pythagorean Fuzzy 
Decision‑Theoretic Rough Set

Notably, individuals may sometimes need to make their 
decisions based on the level of granularity in the available 
information. For example, let's consider a company that 
aims to develop a new product. They would require both 
fine-grained information, such as customer preferences, 
demographics and purchase history, as well as macro-
level information like industry trends and macroeconomic 
indicators. This multi-granular perspective enables the 

(27)

(1) SCA(x) ⊆ WCA(x)

(2) SAA(x) ⊆ WAA(x)

(3) SNA(x) ⊆ WNA(x)

Table 12  Pythagorean fuzzy conflict information system

U a1 a2 a3

x
1

(0.7, 0.2) (0.4, 0.9) (0.5, 0.6)

x
2

(0.1, 0.8) (0.8, 0.2) (0.7, 0.6)

x
3

(0.8, 0.2) (0.1, 0.7) (0.4, 0.4)
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company to make informed decisions by incorporating 
micro and macro information into their decision-making 
process. In this section, the conflict analysis model is 
extended to the multi-granulation Pythagorean fuzzy con-
flict rough approximations, and then the conflicts between 
multi-source information system and multi-dimensional 
information system are also discussed in detail.

4.1  Optimistic, Pessimistic Multi‑Granulation 
Pythagorean Fuzzy Conflict Decision‑Theoretic 
Rough Set

We can acquire some different rough set models by adjust-
ing the values of thresholds. In this subsection, optimistic 
model and pessimistic model of multi-granulation Pythag-
orean fuzzy conflict rough approximations are studied. 
respectively. Hereinafter, we abbreviate them as OMRS 
and PMRS , respectively.

Definition 23 Assume IS = (U,A,V , f ) is a PFCIS . The 

lower approximation 
m∑
i=1

Ri
O(X) and upper approximation 

m∑
i=1

Ri
O(X) of the OMRS are defined respectively as in the 

following formals:

Formally, the boundary region of the OMRS is defined by:

Accordingly, by combining the features Definition 23, we 
can state the following proposition.

Proposition 2 Assume IS = (U,A,V , f ) is a PFCIS . The fol-
lowing relations hold.

(28)

m∑
i=1

Ri
O(X) =

{
y ∈ U| m

∨
i=1

ki(M,N) ≥ �

}

m∑
i=1

Ri
O(X) = ∼

m∑
i=1

Ri
O(∼ X)

(29)BNO
m∑
i=1

Ri

(X) =

m�
i=1

Ri
O(X) −

m�
i=1

Ri
O(X)

The proof of Proposition 2 is provided in the appendix.

Analogous to the Rule 2, when 𝛼 > 𝛽 , one can acquire 
Decision Rules 1 which can be expressed as follows.

Decision Rules 1. Assume  IS = (U,A,V , f ) is a PFCIS . 
For the OMRS , when 𝛼 > 𝛽 , we acquire the following deci-
sion rules.

(OA) If ∃i ∈ {1, 2⋯ ,m} such that ki(M,N) ≥ � , then 
x, y ∈ ALO

(A,�,�)
(X);

(OC) If ∀i ∈ {1, 2,⋯ ,m} such that ki(M,N) ≤ � , then 
x, y ∈ COO

(A,�,�)
(X);

(ON) Otherwise,x, y ∈ NEO
(A,�,�)

(X).

Similar to OMRS , one can investigate PMRS in the same 
way.

Definition 24 Assume IS = (U,A,V , f ) is a PFCIS . The 
lower approximation and upper approximation of the PMRS 
are given respectively as:

Correspondingly, the boundary region of the PMRS is 
defined by:

Accordingly, by Definition 24, one can require some 
conclusions of the lower and upper approximations of the 
PMRS.

(30)

(1)

m∑
i=1

Ri
O(X) ⊇ Ri

O(X), i ≤ m

(2)

m∑
i=1

Ri
O(X) ⊇ Ri

O(X), i ≤ m

(3)

m∑
i=1

Ri
O(X) =

m⋃
i=1

Ri
O(X), i ≤ m

(4)

m∑
i=1

Ri
O(X) =

m⋃
i=1

Ri
O(X), i ≤ m

(31)

m∑
i=1

Ri
P(X) =

{
y ∈ U| m

∧
i=1

ki(M,N) ≥ �

}

m∑
i=1

Ri
P(X) = ∼

m∑
i=1

Ri
P(∼ X)

(32)BNP
m∑
i=1

Ri

(X) =

m�
i=1

Ri
P(X) −

m�
i=1

Ri
P(X)



International Journal of Computational Intelligence Systems           (2024) 17:17  Page 13 of 25    17 

Proposition 3 Assume IS = (U,A,V , f ) is a PFCIS . These 
conclusions hold in the following.

Proof Analogous to Proposition 2, one can verify these 
properties.

Similar to the Rule 2, when 𝛼 > 𝛽 , one can obtain Deci-
sion Rules 2 which can be expressed in the following.

Decision Rules 2. Assume IS = (U,A,V , f ) is a PFCIS . 
For the PMRS , when 𝛼 > 𝛽 , we acquire the following deci-
sion rules:

(PA) If ∀i ∈ {1, 2,⋯ ,m} such that ki(M,N) ≥ � , then 
x, y ∈ ALP

(A,�,�)
(X);

(PC) If ∃i ∈ {1, 2⋯ ,m} such that ki(M,N) ≤ � , then 
x, y ∈ COP

(A,�,�)
(X);

(PN) Otherwise, x, y ∈ NEP
(A,�,�)

(X).
According to Definition 18, the decision loss functions of 

agents are PFNs, then the range of values of thresholds � , 
� in PFCIS can be denoted, respectively, in the following:

Therefore, the agents need to consider the range of thresh-
olds when making a decision of allied, neutral or conflict 
action in the multi-granulation Pythagorean fuzzy conflict 
information system.

According to different combinations of some special val-
ues (extreme values) of � and � , we can also construct some 
specific rough set models of Pythagorean fuzzy conflict 
decision-theoretic rough set. We will discuss them in Sects. 
4.2 to 4.9 in detail.

(33)

(1)

m∑
i=1

Ri
P(X) ⊆ Ri

P(X), i ≤ m

(2)

m∑
i=1

Ri
P(X) ⊇ Ri

P(X), i ≤ m

(3)

m∑
i=1

Ri
P(X) =

m⋂
i=1

Ri
P(X), i ≤ m

(4)

m∑
i=1

Ri
P(X) =

m⋂
i=1

Ri
P(X), i ≤ m

� ∈

[

A−
AN(�) − A+

NN(�)
(A+

AN(�) − A−
NN(�)) + (A+

NP(�) − A−
AP(�))

,

min

(

A+
AN(�) − A−

NN(�)
(A−

AN(�) − A+
NN(�)) + (A−

NP(�) − A+
AP(�))

, 1

)]

� ∈

[

A−
NN(�) − A+

CN(�)
(A+

NN(�) − A−
CN(�)) + (A+

CP(�) − A−
NP(�))

,

min

(

A+
NN(�) − A−

CN(�)
(A−

NN(�) − A+
CN(�)) + (A−

CP(�) − A+
NP(�))

, 1

)]

4.2  Supper Optimistic Multi‑Granulation 
Pythagorean Fuzzy Conflict Decision‑Theoretic 
Rough Set

Definition 25 Assume IS = (U,A,V , f ) is a PFCIS . The 

lower approximation 
m∑
i=1

Ri
SO(X) and upper approximation 

m∑
i=1

Ri
SO(X) of the Supper Optimistic Multi-Granulation 

Pythagorean Fuzzy Conflict Decision-Theoretic Rough Set 
(for short, SOMRS ) are given respectively by:

In this case, the boundary region of the SOMRS is 
expressed as follows:

Intuitively, from Definition 25, we can obtain some prop-
erties of the lower and upper approximations of the SOMRS 
as follows.

Proposition 4 Assume IS = (U,A,V , f ) is a PFCIS , then.

Proof Similar to Proposition 2, these properties can be eas-
ily verified.

Theorem  6. Suppose IS = (U,A,V , f ) is a PFCIS  , 
0 ≤ 𝛽i < 𝛼i ≤ 1 , X, Y ⊆ U . The following relations hold.

(1) 
m∑
i=1

Ri
SO(X) ⊆

m∑
i=1

Ri
SO(X)

(2) 
m∑
i=1

Ri
SO(∅) =

m∑
i=1

Ri
SO(∅) = ∅,

(34)

m∑
i=1

Ri
SO(X) =

{
y ∈ U| m

∨
i=1

ki(M,N) ≥ �min
i

}

m∑
i=1

Ri
SO(X) = U −

{
y ∈ U| m

∧
i=1

ki(M,N) ≤ �max
i

}

(35)BNSO
m∑
i=1

Ri

(X) =

m�
i=1

Ri
SO(X) −

m�
i=1

Ri
SO(X)

(36)

(1)

m∑
i=1

Ri
SO(X) ⊇ Ri

SO(X), i ≤ m

(2)

m∑
i=1

Ri
SO(X) ⊇ Ri

SO(X), i ≤ m

(3)

m∑
i=1

Ri
SO(X) =

m⋃
i=1

Ri
SO(X), i ≤ m

(4)

m∑
i=1

Ri
SO(X) =

m⋃
i=1

Ri
SO(X), i ≤ m
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(3)If �1 ≤ �2 , �1 ≤ �2 , then 
m∑
i=1

Ri𝛼2
SO(X) ⊆

m∑
i=1

Ri𝛼1
SO(X) 

and 
m∑
i=1

Ri𝛽2
SO(X) ⊆

m∑
i=1

Ri𝛽1
SO(X).

The proof of Theorem 6 is provided in the appendix.

Correspondingly, analogous to the OMRS , one can 
obtain the Decision Rules 3 which can be described in the 
following.

Decision Rules 3. Assume IS = (U,A,V , f ) is a PFCIS . 
When 𝛼min

i
> 𝛽max

i
(i = 1, 2,⋯ ,m) , we can acquire the fol-

lowing decision rules:

(SOA) If ∃i ∈ {1, 2⋯ ,m} such that ki(M,N) ≥ �min
i

 , then 
x, y ∈ ALSO

(A,�,�)
(X);

(SOC) If ∀i ∈ {1, 2,⋯ ,m} such that ki(M,N) ≤ �max
i

 , then 
x, y ∈ COSO

(A,�,�)
(X);

(SON) Otherwise x, y ∈ NESO
(A,�,�)

(X).

4.3  Weakly Optimistic Multi‑Granulation 
Pythagorean Fuzzy Conflict Decision‑Theoretic 
Rough Set

Definition 26 Suppose IS = (U,A,V , f ) is a PFCIS . For any 
agent x, y ∈ U , the lower approximation 

m∑
i=1

Ri
O�

(X) and 

upper approximation 
m∑
i=1

Ri
O�

(X) of the Weakly Optimistic 

Multi-Granulation Pythagorean Fuzzy Conflict Decision-
Theoretic Rough Set (namely,WOMRS ) are defined respec-
tively in the following formals:

Accordingly, the boundary region of the WOMRS is given 
by:

m∑
i=1

Ri
SO(U) =

m∑
i=1

Ri
SO(U) = U

m∑
i=1

Ri
O�

(X) =
{
y ∈ U| m

∨
i=1

ki(M,N) ≥ �max
i

}

(37)
m∑
i=1

Ri
O�

(X) = U −
{
y ∈ U| m

∧
i=1

ki(M,N) ≤ �min
i

}

Obviously, by Definition 26, one can obtain some conclu-
sions of the lower and upper approximations of the WOMRS 
as follows.

Theorem 7 Assume IS = (U,A,V , f ) is a PFCIS . The follow-
ing relationships hold.

The proof of Theorem 7 is provided in the appendix.

Accordingly, one can get the following Decision Rules.

Decision Rules 4. Suppose IS = (U,A,V , f ) is a PFCIS . 
When 𝛼min

i
> 𝛽max

i
(i = 1, 2,⋯ ,m) , we get the following deci-

sion rules of the WOMRS:

(WOA) If ∃ i ∈ {1, 2⋯ ,m} such that ki(M,N) ≥ �max
i

 , then 
x, y ∈ ALO

�

(A,�,�)
(X);

(WOC) If ∀i ∈ {1, 2,⋯ ,m} such that ki(M,N) ≤ �min
i

 , 
then x, y ∈ COO�

(A,�,�)
(X);

(WON) Otherwise, x, y ∈ NEO�

(A,�,�)
(X).

4.4  Supper Pessimistic Multi‑granulation 
Pythagorean Fuzzy Conflict Decision‑Theoretic 
Rough Set

Definition 27 Let IS = (U,A,V , f ) be a PFCIS , the lower 

approximation 
m∑
i=1

Ri
SP(X) and upper approximation 

m∑
i=1

Ri
SP(X) of the Supper Pessimistic Multi-Granulation 

Pythagorean Fuzzy Conflict Decision-Theoretic Rough Set 
(noted as SPMRS ) are described as follows:

(38)BNO�

m∑
i=1

Ri

(X) =

m�
i=1

Ri
O�

(X) −

m�
i=1

Ri
O�

(X)

(39)

m∑
i=1

Ri
O�

(X) ⊆

m∑
i=1

Ri
SO(X),

m∑
i=1

Ri
O�

(X) ⊆

m∑
i=1

Ri
SO(X).

m∑
i=1

Ri
SP(X) =

{
y ∈ U| m

∧
i=1

ki(M,N) ≥ �max
i

}
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Correspondingly, the boundary region is written as:

Accordingly, by Definition 27, one can require these fol-
lowing relations of the lower and upper approximations of 
the SPMRS.

Proposition 5 Assume IS = (U,A,V , f ) is a PFCIS , then.

Proof Intuitively, analogous to Proposition 2, we can verify 
these above conclusions.

Theorem  8 Assume IS = (U,A,V , f ) is  a PFCIS  . 
R1,R2,⋯ ,Rm are m granular structures, 0 ≤ 𝛽i < 𝛼i ≤ 1,

X, Y ⊆ U, there exist.

(1) 
m∑
i=1

Ri
SP(∅) =

m∑
i=1

Ri
SP(∅) = ∅,

  
m∑
i=1

Ri
SP(U) =

m∑
i=1

Ri
SP(U) = U;

(2) 
m∑
i=1

Ri
SP(X) ⊆

m∑
i=1

Ri
SP(X);

(3)  If �1 ≤ �2,�1 ≤ �2 , then 
m∑
i=1

Ri𝛼2
SP(X) ⊆

m∑
i=1

Ri𝛼1
SP(X).

  and 
m∑
i=1

Ri𝛽2
SP(X) ⊆

m∑
i=1

Ri𝛽1
SP(X).

Proof These conclusions can be proven based on the intui-
tion provided by Theorem 6.

Similar to the PMRS , one can acquire the following Deci-
sion Rules.

Decision Rules 5. Assume IS = (U,A,V , f ) is a PFCIS . 
When 𝛼min

i
> 𝛽max

i
(i = 1, 2,⋯ ,m) , we get the following deci-

sion rules of the SPMRS:

(40)
m∑
i=1

Ri
SP(X) = U −

{
y ∈ U| m

∨
i=1

ki(M,N) ≤ �min
i

}

(41)BNSP
m∑
i=1

Ri

(X) =

m�
i=1

Ri
SP(X) −

m�
i=1

Ri
SP(X)

(42)

(1)

m∑
i=1

Ri
SP(X) ⊆ Ri

SP(X), i ≤ m

(2)

m∑
i=1

Ri
SP(X) ⊇ Ri

SP(X), i ≤ m

(3)

m∑
i=1

Ri
SP(X) =

m⋂
i=1

Ri
SP(X), i ≤ m

(4)

m∑
i=1

Ri
SP(X) =

m⋂
i=1

Ri
SP(X), i ≤ m

(SPA) If ∀i ∈ {1, 2,⋯ ,m} such that ki(M,N) ≥ �max
i

 , then 
x, y ∈ ALSP

(A,�,�)
(X);

(SPC) If ∃i ∈ {1, 2⋯ ,m} such that ki(M,N) ≤ �min
i

 , then 
x, y ∈ COSP

(A,�,�)
(X);

(SPN) Otherwise, x, y ∈ NESP
(A,�,�)

(X).

4.5  Weakly Pessimistic Multi‑Granulation 
Pythagorean Fuzzy Conflict Decision‑Theoretic 
Rough Set

Definition 28. Let IS = (U,A,V , f ) be a PFCIS , the lower 

approximation 
m∑
i=1

Ri
P�

(X) and upper approximation 

m∑
i=1

Ri
P�

(X) of the Weakly Pessimistic Multi-Granulation 

Pythagorean Fuzzy Conflict Decision-Theoretic Rough Set 
(abbreviated as WPMRS ) are defined respectively in the fol-
lowing formals:

In this sense, the boundary region of the WPMRS is 
described as:

From Definition 28, one can obtain the following proper-
ties of the WPMRS.

Theorem  9 Assume  IS = (U,A,V , f ) is a PFCIS . These 
properties hold, which can be expressed as follows:

Proof Similar to Theorem 7, one may easily verify these 
properties.

In particular, analogous to the PMRS , one can also 
acquire Decision Rules 6 of the WPMRS.

Decision Rules 6. Suppose IS = (U,A,V , f ) is a PFCIS . 
The decision rules of the WPMRS are given as follows:

(43)

m∑
i=1

Ri
P�

(X) =
{
y ∈ U| m

∧
i=1

ki(M,N) ≥ �min
i

}

m∑
i=1

Ri
P�

(X) = U −
{
y ∈ U| m

∨
i=1

ki(M,N) ≤ �max
i

}

(44)BNP�

m∑
i=1

Ri

(X) =

m�
i=1

Ri
P�

(X) −

m�
i=1

Ri
P�

(X)

(45)

m∑
i=1

Ri
SP(X) ⊆

m∑
i=1

Ri
P�

(X),

m∑
i=1

Ri
SP(X) ⊆

m∑
i=1

Ri
P�

(X)
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(WPA) If ∀i ∈ {1, 2,⋯ ,m} such that ki(M,N) ≥ �min
i

 , then 
x, y ∈ ALP

�

(A,�,�)
(X);

(WPC) If ∃i ∈ {1, 2⋯ ,m} such that ki(M,N) ≤ �max
i

 , then 
x, y ∈ COP�

(A,�,�)
(X);

(WPN) Otherwise, x, y ∈ NEP�

(A,�,�)
(X).

4.6  Optimistic‑Pessimistic Multi‑Granulation 
Pythagorean Fuzzy Conflict Decision‑Theoretic 
Rough Set

Definition 29 Suppose IS = (U,A,V , f ) is a PFCIS . The 

lower approximation 
m∑
i=1

Ri
OP(X) and upper approximation 

m∑
i=1

Ri
OP(X) of the Optimistic-Pessimistic Multi-Granulation 

Pythagorean Fuzzy Conflict Decision-Theoretic Rough Set 
(for short, OPMRS ) are described as follows:

Accordingly, the boundary region of the OPMRS is given 
by:

Analogously, from Definition 29, one can obtain the fol-
lowing properties of the OPMRS.

Proposition 6 Let IS = (U,A,V , f ) be a PFCIS , these fol-
lowing properties hold.

m∑
i=1

Ri
OP(X) =

{
y ∈ U| m

∨
i=1

ki(M,N) ≥ �min
i

}

(46)
m∑
i=1

Ri
OP(X) = U −

{
y ∈ U| m

∨
i=1

ki(M,N) ≤ �min
i

}

(47)BNOP
m∑
i=1

Ri

(X) =

m�
i=1

Ri
OP(X) −

m�
i=1

Ri
OP(X)

(48)

(1)

m∑
i=1

Ri
OP(X) ⊇ Ri

OP(X), i ≤ m

(2)

m∑
i=1

Ri
OP(X) ⊇ Ri

OP(X), i ≤ m

(3)

m∑
i=1

Ri
OP(X) =

m⋃
i=1

Ri
OP(X), i ≤ m

(4)

m∑
i=1

Ri
OP(X) =

m⋂
i=1

Ri
OP(X), i ≤ m

Proof Particularly, analogous to Proposition 2, one can 
prove easily these above relations.

Theorem 10 Assume  IS = (U,A,V , f ) is a PFCIS , then.

Proof Analogous to Theorem 6, one can easily verify these 
properties.

Theorem 10 implies that increasing the threshold value 
in each granular structure will result in smaller lower and 
upper approximations across all granularities.

Consequently, we can gain the decision rules of the 
OPMRS.

Decision Rules 7. Assume that IS = (U,A,V , f ) is a 
PFCIS , then the OPMRS has the following decision rules:

(OPA) If ∃i ∈ {1, 2⋯ ,m} such that ki(M,N) ≥ �min
i

 , then 
x, y ∈ ALOP

(A,�,�)
(X);

(OPC) If ∃i ∈ {1, 2⋯ ,m} such that ki(M,N) ≤ �min
i

 , then 
x, y ∈ COOP

(A,�,�)
(X);

(OPN) Otherwise, x, y ∈ NEOP
(A,�,�)

(X).

4.7  Weakly Optimistic‑Pessimistic 
Multi‑granulation Pythagorean Fuzzy Conflict 
Decision‑Theoretic Rough Set

Definition 30 Let IS = (U,A,V , f ) be a PFCIS . The lower 

approximation 
m∑
i=1

Ri
OP�

(X) and upper approximation 

m∑
i=1

Ri
OP�

(X) of the Weakly Optimistic-Pessimistic Multi-

Granulation Pythagorean Fuzzy Conflict Decision-Theoretic 
Rough Set (namely, WOPMRS ) are written respectively in 
the following formals:

(49)

(1)

m∑
i=1

Ri
OP(∅) =

m∑
i=1

Ri
OP(∅) = ∅,

m∑
i=1

Ri
OP(U) =

m∑
i=1

Ri
OP(U) = U

(2)

m∑
i=1

Ri
OP(X) ⊆

m∑
i=1

Ri
OP(X)

(3) If 𝛼1 < 𝛼2, 𝛽1 < 𝛽2,

then

m∑
i=1

Ri𝛼2

OP(X) ⊆

m∑
i=1

Ri𝛼1

OP(X) and

m∑
i=1

Ri𝛽2

OP(X) ⊆

m∑
i=1

Ri𝛽1

OP(X).
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Correspondingly, the boundary region of the WOPMRS 
is described by:

From Definition 30, one can acquire the following proper-
ties of the WOPMRS.

Theorem 11 Assume IS = (U,A,V , f ) is a PFCIS . The fol-
lowing properties hold:

Proof Intuitively, similar to Theorem 7, one can verify these 
above properties.

Decision rules 8. Suppose IS = (U,A,V , f ) is a PFCIS . 
When 𝛼min

i
> 𝛽max

i
(i = 1, 2,⋯ ,m) . The decision rules of the 

WOPMRS are given as follows:
(WOPA) If ∃i ∈ {1, 2⋯ ,m} such that ki(M,N) ≥ �max

i
 , 

then x, y ∈ ALOP
�

(A,�,�)
(X);

(WOPC) If ∃i ∈ {1, 2⋯ ,m} such that ki(M,N) ≤ �max
i

,then.
x, y ∈ COOP�

(A,�,�)
(X);

(WOPN) Otherwise, x, y ∈ NEOP�

(A,�,�)
(X).

4.8  Pessimistic‑Optimistic Multi‑Granulation 
Pythagorean Fuzzy Conflict Decision‑Theoretic 
Rough Set

Definition 31 Suppose IS = (U,A,V , f ) is a PFCIS . The 

lower approximation 
m∑
i=1

Ri
PO(X) and upper approximation 

m∑
i=1

Ri
PO(X) of the Pessimistic-Optimistic Multi-Granulation 

Pythagorean Fuzzy Conflict Decision-Theoretic Rough Set 
(noted as POMRS ) are denoted respectively in the 
following:

(50)

m∑
i=1

Ri
OP�

(X) =
{
y ∈ U| m

∨
i=1

ki(M,N) ≥ �max
i

}

m∑
i=1

Ri
OP�

(X) = U −
{
y ∈ U| m

∨
i=1

ki(M,N) ≤ �max
i

}

(51)BNOP�

m∑
i=1

Ri

(X) =

m�
i=1

Ri
OP�

(X) −

m�
i=1

Ri
OP�

(X)

(52)

m∑
i=1

Ri
OP�

(X) ⊆

m∑
i=1

Ri
OP(X),

m∑
i=1

Ri
OP(X) ⊆

m∑
i=1

Ri
OP�

(X)

The boundary region of the POMRS is described as:

Analogously, by Definition 31, one can get the following 
properties of the POMRS.

Proposition 7 Let IS = (U,A,V , f ) be a PFCIS , then.

Proof Analogous to Proposition 2, one can verify these 
properties.

Theorem 12 Suppose  IS = (U,A,V , f ) is a PFCIS . These 
following relations hold.

Proof Intuitively, the proof is similar to Theorem 6.
Decision Rules 9. Assume that IS = (U,A,V , f ) is a 

PFCIS.

(53)

m∑
i=1

Ri
PO(X) =

{
y ∈ U| m

∧
i=1

ki(M,N) ≥ �max
i

}

m∑
i=1

Ri
PO(X) = U −

{
y ∈ U| m

∧
i=1

ki(M,N) ≤ �max
i

}

(54)BNPO
m∑
i=1

Ri

(X) =

m�
i=1

Ri
PO(X) −

m�
i=1

Ri
PO(X)

(55)

(1)

m∑
i=1

Ri
PO(X) ⊆ Ri

PO(X), i ≤ m

(2)

m∑
i=1

Ri
PO(X) ⊇ Ri

PO(X), i ≤ m

(3)

m∑
i=1

Ri
PO(X) =

m⋂
i=1

Ri
PO(X), i ≤ m

(4)

m∑
i=1

Ri
PO(X) =

m⋃
i=1

Ri
PO(X), i ≤ m

(56)

(1)

m∑
i=1

Ri
PO(∅) =

m∑
i=1

Ri
PO(∅) = ∅,

m∑
i=1

Ri
PO(U) =

m∑
i=1

Ri
PO(U) = U

(2)

m∑
i=1

Ri
PO(X) ⊆

m∑
i=1

Ri
PO(X)

(3) If 𝛼1 ≤ 𝛼2, 𝛽1 ≤ 𝛽2, then

m∑
i=1

Ri𝛼2

PO(X) ⊆

m∑
i=1

Ri𝛼1

PO(X) and

m∑
i=1

Ri𝛽2

PO(X) ⊆

m∑
i=1

Ri𝛽1

PO(X)
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The decision rules of the POMRS are given as follows:
(POA) If ∀i ∈ {1, 2⋯ ,m} such that ki(M,N) ≥ �max

i
 , then 

x, y ∈ ALPO
(A,�,�)

(X);
(POC) If ∀i ∈ {1, 2⋯ ,m} such that ki(M,N) ≤ �max

i
 , then 

x, y ∈ COPO
(A,�,�)

(X);
(PON) Otherwise, x, y ∈ NEPO

(A,�,�)
(X).

4.9  Weakly Pessimistic‑Optimistic 
Multi‑Granulation Pythagorean Fuzzy Conflict 
Decision‑Theoretic Rough Set

Definition 32 Let IS = (U,A,V , f ) be a PFCIS , then the 

lower approximation 
m∑
i=1

Ri
PO�

(X) and upper approximation 

m∑
i=1

Ri
PO�

(X) of the Weakly Pessimistic-Optimistic Multi-

Granulation Pythagorean Fuzzy Conflict Decision-Theoretic 
Rough Set (abbreviated as WPOMRS ) are denoted respec-
tively by:

In this case, the boundary region of the WPOMRS is 
described as:

Accordingly, from Definition 32, one can get the follow-
ing properties of the WOPMRS.

Theorem 13 Assume IS = (U,A,V , f ) is a PFCIS . These 
relations hold, which can be expressed in the following:

Proof Intuitively, similar to Theorem 7, one may verify these 
properties.

Analogously, one can obtain the following Decision 
Rules.

m∑
i=1

Ri
PO�

(X) =
{
y ∈ U| m

∧
i=1

ki(M,N) ≥ �min
i

}

(57)
m∑
i=1

Ri
PO�

(X) = U −
{
y ∈ U| m

∧
i=1

ki(M,N) ≤ �min
i

}

(58)BNPO�

m∑
i=1

Ri

(X) =

m�
i=1

Ri
PO�

(X) −

m�
i=1

Ri
PO�

(X)

(59)

m∑
i=1

Ri
PO�

(X) ⊆

m∑
i=1

Ri
PO(X) and

m∑
i=1

Ri
PO(X) ⊆

m∑
i=1

Ri
PO�

(X)

Decision Rules 10. Assume that IS = (U,A,V , f ) is a 
PFCIS . The decision rules of the WPOMRS are given as 
follows:

(WPOA) If ∀i ∈ {1, 2⋯ ,m} such that ki(M,N) ≥ �min
i

 , 
then x, y ∈ ALPO

�

(A,�,�)
(X);

(WPOC) If ∀i ∈ {1, 2⋯ ,m} such that ki(M,N) ≤ �min
i

 , 
then x, y ∈ COPO�

(A,�,�)
(X);

(WPON) Otherwise, x, y ∈ NEPO�

(A,�,�)
(X).

Table 13  Pythagorean fuzzy conflict information system

U a1 a2 a3

x
1

(0.8, 0.4) (0.7, 0.1) (0.1, 0.8)

x
2

(0.4, 0.6) (0.2, 0.8) (0.8, 0.4)

x
3

(0.1, 0.7) (0.2, 0.8) (0.6, 0.3)

Table 14  Decision results of the SOMRS

ALSO
(A,�,�)

(U) NESO
(A,�,�)

(U) COSO
(A,�,�)

(U)

{
x
2
, x

3

} {
x
1
, x

2

} {
x
1
, x

3

}

Table 15  Decision results of the WOMRS

ALO
�

(A,�,�)
(U) NEO�

(A,�,�)
(U) COO�

(A,�,�)
(U)

{
x
2
, x

3

} {
x
1
, x

2

}
, 
{
x
1
, x

3

}
{∅}

Table 16  Decision results of the SPMRS

ALSP
(A,�,�)

(U) NESP
(A,�,�)

(U) COSP
(A,�,�)

(U)

{
x
2
, x

3

} {
x
1
, x

2

}
, 
{
x
1
, x

3

}
{∅}

Table 17  Decision results of the WPMRS

ALP
�

(A,�,�)
(U) NEP�

(A,�,�)
(U) COP�

(A,�,�)
(U)

{
x
2
, x

3

}
{∅}

{
x
1
, x

2

}
,
{
x
1
, x

3

}

Table 18  Decision results of the OPMRS

ALOP
(A,�,�)

(U) NEOP
(A,�,�)

(U) COOP
(A,�,�)

(U)

{
x
2
, x

3

} {
x
1
, x

2

}
, 
{
x
1
, x

3

}
{∅}
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4.10  Three‑Way Conflict Analysis Based 
on Multi‑granulation Pythagorean Fuzzy 
Conflict Decision‑Theoretic Rough Set

Three-way decision theory offers an important research idea 
for solving uncertain issues. In order to further explore the 
conflict mechanism of agent in different decision-making 
cases, this subsection discusses the construction of three-
way conflict analysis model of multi-granulation Pythago-
rean fuzzy rough approximations.

Definition 33 Assume IS = (U,A,V , f ) is a PFCIS  , 
R1,R2,⋯ ,Rm are m granular structures, then the global 
conflict is defined as:

where Ai(i = 1, 2,⋯ ,m) and con(Ai) are the issue set and 
conflict degree under Ri , respectively. Formula (60) shows 
that the conflict degree under each granular structure con-
stitutes the global conflict degree, and provides a precondi-
tion for describing global conflict, global moderation, and 
no-global conflict.

(60)S(A) =

m∑
i=1

con(Ai)

Definition 34 Suppose IS = (U,A,V , f ) is a PFCIS . Given a 
pair of thresholds (c∗, c∗) , and global conflict, global mod-
eration, and no-global conflict are defined respectively as:

In particular, based on Definitions 20, 21, 33 and 34, we 
can know that if S(A) < c∗ and con(Ai) ≥ hi , then this situa-
tion is a local condition conflict.

Definition 35 Let IS = (U,A,V , f ) be a PFCIS , then the 
global strong conflict, the global weak conflict, the global 
strong alliance, the global weak alliance, the global strong 
neutral, the global weak neutral, the local strong conflict, the 
local weak conflict, the local strong alliance, the local weak 
alliance, the local strong neutral and the local weak neutral 
are defined respectively as:

(61)

GSA(U) = {A|S(A) ≥ c∗}

GMA(U) =
{
A|c∗ < S(A) < c∗

}
GNA(U) =

{
A|S(A) ≤ c∗

}

(62)

(1)GSCA(x) =
{
y ∈ U|k(M,N) ≤ 𝛽min, S(A) ≥ c∗

}
(2)GWCA(x) = {y ∈ U|k(M,N) ≤ 𝛽max, S(A) ≥ c∗}

(3)GSAA(x) =
{
y ∈ U|k(M,N) ≥ 𝛼max, S(A) ≤ c∗

}

(4)GWAA(x) =
{
y ∈ U|k(M,N) ≥ 𝛼min, S(A) ≤ c∗

}

(5)GSNA(x) =
{
y ∈ U|𝛽max < k(M,N) < 𝛼min, c∗ < S(A) < c∗

}

(6)GWNA(x) =
{
y ∈ U|𝛽min < k(M,N) < 𝛼max, c∗ < S(A) < c∗

}

(7) LSCAi
(x) =

{
y ∈ U|ki(M,N) ≤ 𝛽min

i
, S(A) < c∗, con(Ai) ≥ hi

}

(8) LWCAi
(x) =

{
y ∈ U|ki(M,N) ≤ 𝛽max

i
, S(A) < c∗, con(Ai) ≥ hi

}

(9) LSAAi
(x) =

{
y ∈ U|ki(M,N) ≥ 𝛼max

i
, S(A) < c∗, con(Ai) ≤ li

}

(10) LWAAi
(x) =

{
y ∈ U|ki(M,N) ≥ 𝛼min

i
, S(A) < c∗, con(Ai) ≤ li

}

(11) LSNAi
(x) = {y ∈ U|𝛽max

i
< ki(M,N) < 𝛼min

i
, S(A) < c∗, li < con(Ai) < hi}

(12) LWNAi
(x) = {y ∈ U|𝛽min

i
< ki(M,N) < 𝛼max

i
, S(A) < c∗, li < con(Ai) < hi}

where �i and �i are a pair of thresholds under Ri , li and hi are 
a pair of conflict degree thresholds under Ri , c∗ and c∗ are 
given as global conflict thresholds.

In particular, with formulas (61) and (62), one can acquire 
the following properties of the Multi-granulation Pythago-
rean fuzzy conflict decision-theoretic rough set.

Table 19  Decision results of the WOPMRS

ALOP
�

(A,�,�)
(U) NEOP�

(A,�,�)
(U) COOP�

(A,�,�)
(U)

{
x
2
, x

3

}
{∅}

{
x
1
, x

2

}
, 
{
x
1
, x

3

}

Table 20  Decision results of the POMRS

ALPO
(A,�,�)

(U) NEPO
(A,�,�)

(U) COPO
(A,�,�)

(U)

{
x
2
, x

3

} {
x
1
, x

2

} {
x
1
, x

3

}



 International Journal of Computational Intelligence Systems           (2024) 17:17    17  Page 20 of 25

Theorem 14. Assume IS = (U,A,V , f ) is a PFCIS . Given 
a pair of thresholds (c∗, c∗) , then these relations hold as 
follows.

Proof Intuitively, from formula (62) and basic properties of 
set, the above conclusions can be easily proved.

In order to gain a deeper understanding of the rough 
set models above-mentioned in this article, we illustrate 
the process of acquiring decision rules for each rough set 
model through the Example 6.

Example 6 A PFCIS is shown in Table 13.
Assume m = 2 , R1 =

{
a1, a2

}
 , R2 =

{
a1, a2, a3

}
 , decision 

loss functions are PFNs, and � = 0.5 . The lower and upper 
bounds of six decision loss functions for R1 are given as:

A−
AP1

(�) = 2.8  ,  A+
AP1

(�) = 3.1  ,  A−
NP1

(�) = 4.4  , 
A+
NP1

(�) = 4.7,
A−
CP1

(�) = 9.0  ,  A+
CP1

(�) = 10.0  ,  A−
CN1

(�) = 2.0  , 
A+
CN1

(�) = 2.6 , A−
NN1

(�) = 4.8 , A+
NN1

(�) = 5.0 , A−
AN1

(�) = 9.6 , 
A+
AN1

(�) = 9.8.
According to Definition 18, there exist �1 ∈ [0.67, 0.81] , 

�1 ∈ [0.26, 0.46].
The lower and upper bounds of six decision loss functions 

for R2 are defined as:
A−
AP2

(�) = 2.0  ,  A+
AP2

(�) = 3.0  ,  A−
NP2

(�) = 4.4  , 
A+
NP2

(�) = 4.8 , A−
CP2

(�) = 9.6,A+
CP2

(�) = 10.2,A−
CN2

(�) = 1.7

,A+
CN2

(�) = 2.6,
A−
NN2

(�) = 4.7  ,  A+
NN2

(�) = 5.0  ,  A−
AN2

(�) = 9.8

,A+
AN2

(�) = 10.0.
According to Definition 18, there exist �2 ∈ [0.56, 0.85] , 

�2 ∈ [0.23, 0.48].

(63)

(1) If x, y ∈ GSCA(x), then x, y ∈ GWCA(x);

(2) If x, y ∈ GSAA(x), then x, y ∈ GWAA(x);

(3) If x, y ∈ GSNA(x), then x, y ∈ GWNA(x);

(4) If x, y ∈ LSCAi
(x), then x, y ∈ LWCAi

(x);

(5) If x, y ∈ LSAAi
(x), then x, y ∈ LWAAi

(x);

(6) If x, y ∈ LSNAi
(x), then x, y ∈ LWNAi

(x).

Suppose the attitudes of x1 , x2 and x3 on the issue set A 
are B , C and D , respectively. According to Definition 13, 
we have k1(B,C) = 0.47, k1(B,D) = 0.38, k1(C,D) = 0.98, 
k2(B,C) = 0.43, k2(B,D) = 0.42, and k2(C,D) = 0.91 . Due 
to Decision Rules 3–10, decision results are expressed in 
Table 14, 15, 16, 17, 18, 19, 20, 21.

Given m∗ = 0.8 , m∗ = 0.5 , according to Definition 20, 
we have con(A1) = 0.5, con(A2) = 0.5 . Thus, global con-
flict degree S(A) = 1 . Given c∗ = 0.4, c∗ = 0.8, due to 
S(A) > c∗ , therefore, it is global conflict. Decision thresh-
olds � = [0.7, 0.8], � = [0.35, 0.45] are given under the global 
conflict and decision thresholds l1 = 0.3, h1 = 0.6 under R1 
and decision thresholds l2 = 0.4, h2 = 0.8 under R2 are given. 
Due to con(A1) < h1, con(A2) < h2 , thus, no conflict in local 
situation. According to Definition 35, global strong conflict 
and global weak conflict are {∅} and 

{
x1, x2, x3

}
 , respectively.

5  Measures in Multi‑granulation 
Pythagorean Fuzzy Conflict 
Decision‑Theoretic Rough Set

The existence of boundary region of rough set results in 
uncertainty of target set. In order to measure this uncer-
tainty, we develop accuracy measure methods of the models 
presented in this article by referring to the method in [42].

Definition 36 Assume IS = (U,A,V , f ) is a PFCIS  , 
R1,R2,⋯ ,Rm  are m granular structures, for any X ⊆ U , the 
accuracy measure of X in OPMRS is described as:

Definition 37 Suppose IS = (U,A,V , f ) is a PFCIS . The 
accuracy measure of X in WOPMRS is given by:

(64)�OP(X) =

m∑
i=1

Ri
OP(X)

m∑
i=1

Ri
OP(X)

(65)�OP� (X) =

m∑
i=1

Ri
OP�

(X)

m∑
i=1

Ri
OP�

(X)

Table 21  Decision results of the WPOMRS

ALPO
�

(A,�,�)
(U) NEPO�

(A,�,�)
(U) COPO�

(A,�,�)
(U)

{
x
2
, x

3

} {
x
1
, x

2

}
, 
{
x
1
, x

3

}
{∅}
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Accordingly, from the formulas (64) and (65), one can 
obtain the following properties.

Theorem 15 Assume  IS = (U,A,V , f ) is a PFCIS , then.

Proof Intuitively, from Definition 29 and Definition 30, 
there exist.

m∑
i=1

Ri
OP�

(X) ⊇
m∑
i=1

Ri
OP(X) , 

m∑
i=1

Ri
PO�

(X) ⊆
m∑
i=1

Ri
OP(X),

then 

m∑
i=1

Ri
OP(X)

m∑
i=1

Ri
OP(X)

≤

m∑
i=1

Ri
OP� (X)

m∑
i=1

Ri
OP� (X)

.

Thus, �OP(X) ≤ �OP� (X).
More especially, Theorem 15 reveals that the accuracy 

measure of a set increases as the thresholds increases.

Definition 38 Suppose IS = (U,A,V , f ) is a PFCIS . For any 
X ⊆ U , the accuracy measure of X in POMRS is described 
as:

Definition 39 Assume IS = (U,A,V , f ) is a PFCIS . For any 
X ⊆ U , the accuracy measure of X in WPOMRS is given by:

According to formulas (67) and (68), one can gain the 
following important conclusions.

Theorem 16 Assume  IS = (U,A,V , f ) is a PFCIS . The fol-
lowing relations hold.

Proof From Definition 31 and Definition 32, there exist 
m∑
i=1

Ri
PO(X) ⊇

m∑
i=1

Ri
PO�

(X) , 
m∑
i=1

Ri
PO(X) ⊆

m∑
i=1

Ri
PO�

(X),

then 

m∑
i=1

Ri
PO(X)

m∑
i=1

Ri
PO(X)

≥

m∑
i=1

Ri
PO� (X)

m∑
i=1

Ri
PO� (X)

.

(66)�OP(X) ≤ �OP� (X)

(67)�PO(X) =

m∑
i=1

Ri
PO(X)

m∑
i=1

Ri
PO(X)

(68)�PO� (X) =

m∑
i=1

Ri
PO�

(X)

m∑
i=1

Ri
PO�

(X)

(69)�PO� (X) ≤ �PO(X)

Thus, �PO� (X) ≤ �PO(X).
In particular, Theorem 16 further reveals that the accu-

racy measure of a set increases with the increase of the 
thresholds.

6  Conclusions and Future Work

In order to describe more specifically and accurately the 
attitudes of the agents towards the issue set, the Pythagorean 
fuzzy numbers are used to express the attitudes of agents 
on issues, and the agents are trisected with a pair of thresh-
olds by combining Bayes risk theory. In particular, a three-
way conflict analysis model building on multi-granulation 
Pythagorean fuzzy rough approximations is also established 
by combining conflict analysis with multi-granulation rough 
approximations, which produces a novel model of trisecting 
agents set in high-dimensional data.

In this paper, we establish Pythagorean fuzzy three-way 
conflict models from a theoretical perspective. In future 
work, we will explore the improvement of our conflict model 
by incorporating other correlation coefficients, like the 
Pythagorean fuzzy correlation coefficient proposed by Thao 
[45]. It is important to note that conflict analysis is closely 
linked to the process of consensus building in group decision 
making. Methods such as the threshold-based value-driven 
method [46] and the method based on stochastic multi-cri-
teria acceptability analysis [47] will serve as valuable refer-
ences for studying the consensus strategy conflict model. 
Furthermore, our objective is to thoroughly investigate the 
multi-scale decision-making problem within the conflict 
information system, aiming to achieve optimal decisions 
aligned with the interests of agents under the influence of 
multiple factors. On the other hand, from an application per-
spective, we will apply conflict analysis model in industrial 
scenarios and other fields to address some specific applica-
tions, such as the conflict issues arising from group decision-
making in the context of Shipping Industry 4.0 [48].

In particular, it is worth mentioning that in decision-mak-
ing, decision actions of agents are often affected by various 
factors, including the uncertain degree of agents, personal 
preferences and linguistic information. Notable research 
results include using some special Sugeno-like operators to 
handle the involved preference and uncertainty in both input 
vector and fuzzy measures [49], as well as a proportional 
interval T2 hesitant fuzzy TOPSIS approach to address lan-
guage decision making under uncertainty [50]. These find-
ings will also serve as important references for our future 
work on constructing a general conflict model.
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Appendix

1. Proof of Theorem 3

Proof  (A) R(aA|x, y) ≤ R(aN|x, y)
⇔ �

AP
k(M,N) + �

AN
(1 − k(M,N)) ≤ �

NP
k(M,N) + �

NN
(1 − k(M,N))  .  

Thus, k(M,N) ≥
�AN−�NN

(�AN−�NN )+(�NP−�AP)
.

⇔ �
AP
k(M,N) + �

AN
(1 − k(M,N)) ≤ �

CP
k(M,N) + �

CN
(1 − k(M,N)) .  There-

fore, k(M,N) ≥
�AN−�CN

(�AN−�CN )+(�CP−�AP)
.

⇔ �
NP

k(M,N) + �
NN

(1 − k(M,N)) ≤ �
CP

k(M,N) + �
CN

(1 − k(M,N)) 
Then, there exists

⇔ �
CP

k(M,N) + �
CN

(1 − k(M,N)) ≤ �
AP
k(M,N) + �

AN
(1 − k(M,N)) 

Thus, k(M,N) ≤
�AN−�CN

(�AN−�CN )+(�CP−�AP)
.

R(aC|x, y) ≤ R(aN|x, y)
⇔ �

CP
k(M,N) + �

CN
(1 − k(M,N)) ≤ �

NP
k(M,N) + �

NN
(1 − k(M,N)) 

Hence, k(M,N) ≤
�NN−�CN

(�NN−�CN )+(�CP−�NP)
,

where

R(aA|x, y) ≤ R(aC|x, y)

(N)R(aN|x, y) ≤ R(aA|x, y)

⇔ �NPk(M,N) + �NN(1 − k(M,N)) ≤ �APk(M,N) + �AN(1 − k(M,N))

R(aN|x, y) ≤ R(aC|x, y)

�NN − �CN

(�NN − �CN) + (�CP − �NP)
≤ k(M,N) ≤

�AN − �NN

(�AN − �NN) + (�NP − �AP)

(C)R(aC|x, y) ≤ R(aA|x, y)

� =
�AN − �NN

(�AN − �NN) + (�NP − �AP)

� =
�AN − �CN

(�AN − �CN) + (�CP − �AP)

� =
�NN − �CN

(�NN − �CN) + (�CP − �NP)

2. Proof of Proposition 2

Proof For any x ∈ Ri
O(X),

x ∈ R1
O(X) ∨ R2

O(X) ∨⋯ ∨ Rm
O(X) , then

Equivalently,

∨⋯ ∨ km(M,N) ≥ �}.

Thus,x ∈
m∑
i=1

Ri
O(X).

(2) For any x ∈ Ri
O(X) , then.

x ∈ R1
O(X) ∨ R2

O(X) ∨⋯ ∨ Rm
O(X) and then we have.

x ∈ U −
{
y ∈ U|k

1
(M,N) ≤ �

}
∨ x ∈ U −

{
y ∈ U|k

2
(M,N) ≤ �

} 
∨⋯ ∨ x ∈ U −

{
y ∈ U|km(M,N) ≤ �

}
.

Equivalently,

∧⋯ ∧ x ∈
{
y ∈ U|km(M,N) > 𝛽

}
.

Hence, x ∈
m∑
i=1

Ri
O(X).

(3) For ∀x ∈
m∑
i=1

Ri
O(X), i = 1, 2,⋯ ,m

⇔ x ∈
m⋃
i=1

Ri
O(X).

(4) For ∀x ∈
m∑
i=1

Ri
O(X)

⇔ x ∈
{
y ∈ U|k1(M,N) > 𝛽

}
∨ x ∈

{
y ∈ U|k2(M,N) > 𝛽

}

∨⋯ ∨ x ∈
{
y ∈ U|km(M,N) > 𝛽

}  

⇔ x ∈
m⋃
i=1

Ri
O(X).

x ∈
{
y ∈ U|k1(M,N) ≥ �

}
∨
{
y ∈ U|k2(M,N) ≥ �

}
∨⋯ ∨

{
y ∈ U|km(M,N) ≥ �

}

x ∈ {y ∈ U|k1(M,N) ≥ � ∨ k2(M,N) ≥ �

x ∈
{
y ∈ U|k1(M,N) > 𝛽

}
∧ x ∈

{
y ∈ U|k2(M,N) > 𝛽

}

⇔ x ∈
{
y ∈ U|k1(M,N) ≥ � ∨⋯ ∨ km(M,N) ≥ �

}

⇔ x ∈
{
y ∈ U|k1(M,N) ≥ �

}
∨⋯ ∨ x ∈

{
y ∈ U|km(M,N) ≥ �

}

⇔ x ∈ R1
O(X) ∨ x ∈ R2

O(X) ∨⋯ ∨ x ∈ Rm
O(X)

⇔ x ∈ U −
{
y ∈ U| m

∧
i=1

ki(M,N) ≤ �

}

⇔ x ∈ U − {y ∈ U|k1(M,N) ≤ � ∧ k2(M,N) ≤ �

∧⋯ ∧ km(M,N) ≤ �}

⇔ x ∈ {y ∈ U|k1(M,N) > 𝛽 ∨ k2(M,N) > 𝛽

∨⋯ ∨ km(M,N) > 𝛽}
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3. Proof of Theorem 6

Proof  (1) For any x ∈
m∑
i=1

Ri
SO(X) , by Definition 24, there 

exist.

∨⋯ ∨ x ∈
{
y ∈ U|km(M,N) ≥ �min

m

}
.

Equivalently,

∨⋯ ∨ km(M,N) ≥ �min
m

}.
Then we have

∨⋯ ∨ km(M,N) ≥ �min
m

}.
Obviously,

∨⋯ ∨ x ∈ U −
{
y ∈ U|km(M,N) ≤ �max

m

}
.

Hence, x ∈
m∑
i=1

Ri
SO(X).

(2) (2a) From (1), there exist.
m∑
i=1

R
i

SO(X) ⊆ � and � ⊆
m∑
i=1

R
i

SO(X).

Hence, 
m∑
i=1

R
i

SO(X) = �. 

(2b) We try to disproof it. Assume 
m∑
i=1

R
i

SO(X) ≠ � , then, 

∃x ∈
m∑
i=1

R
i

SO(�)  .  H e n c e , 
{
y ∈ U| m

∨
i=1

ki(M,N) > 𝛽min

i

}
∩ � ≠ �.

Therefore, the assumption is not true.

Thus, 
m∑
i=1

R
i

SO(X) = �.

(3) (3a) If 𝛼1 < 𝛼2 and x ∈
m∑
i=1

Ri�2
SO(X) , then there exists 

x ∈
{
y ∈ U| m

∨
i=1

ki(M,N) ≥ �min
i2

}
 , and then.

x ∈
{
y ∈ U| m

∨
i=1

ki(M,N) ≥ �min
i1

}
.

Thus, 
m∑
i=1

Ri𝛼2
SO(X) ⊆

m∑
i=1

Ri𝛼1
SO(X).

x ∈
{
y ∈ U|k1(M,N) ≥ �min

1

}

∨x ∈
{
y ∈ U|k2(M,N) ≥ �min

2

}

x ∈ {y ∈ U|k1(M,N) ≥ �min
1

∨ k2(M,N) ≥ �min
2

x ∈ {y ∈ U|k1(M,N) ≥ �min
1

∨ k2(M,N) ≥ �min
2

x ∈ U −
{
y ∈ U|k1(M,N) ≤ �max

1

}

∨x ∈ U −
{
y ∈ U|k2(M,N) ≤ �max

2

}

(3b) If  �1 ≤ �2 and x ∈
m∑
i=1

Ri�2
SO(X) , there exists.

x ∈ U −
{
y ∈ U| m

∧
i=1

ki(M,N) ≤ �max
i

}
 , and then.

x ∈
{
y ∈ U| m

∨
i=1

ki(M,N) > 𝛽min
i2

}
.

Thus, x ∈
{
y ∈ U| m

∨
i=1

ki(M,N) ≥ �min
i1

}
.

Hence, 
m∑
i=1

Ri𝛽2
SO(X) ⊆

m∑
i=1

Ri𝛽1
SO(X).

4. Proof of Theorem 7

Proof (a) For any x ∈
m∑
i=1

Ri
O�

(X) , there exists.

x ∈
{
y ∈ U| m

∨
i=1

ki(M,N) ≥ �max
i

}
 , then.

x ∈
{
y ∈ U| m

∨
i=1

ki(M,N) ≥ �min
i

}
.

Hence, 
m∑
i=1

Ri
O�

(X) ⊆
m∑
i=1

Ri
SO(X).

(b) For any x ∈
m∑
i=1

Ri
O�

(X) , then.

x ∈ U −
{
y ∈ U| m

∧
i=1

ki(M,N) ≤ �min
i

}
 , then.

x ∈
{
y ∈ U| m

∨
i=1

ki(M,N) > 𝛽max
i

}
,

and then, x ∈
{
y ∈ U| m

∨
i=1

ki(M,N) > 𝛽min
i

}
.

Thus, x ∈
m∑
i=1

Ri
SO(X).

Hence, 
m∑
i=1

Ri
O�

(X) ⊆
m∑
i=1

Ri
SO(X).
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