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Abstract
The sine cosine algorithm (SCA) is widely recognized for its efficacy in solving optimization problems, although it encounters 
challenges in striking a balance between exploration and exploitation. To improve these limitations, a novel model, termed the 
novel sine cosine algorithm (nSCA), is introduced. In this advanced model, the roulette wheel selection (RWS) mechanism 
and opposition-based learning (OBL) techniques are integrated to augment its global optimization capabilities. A meticulous 
evaluation of nSCA performance has been carried out in comparison with state-of-the-art optimization algorithms, includ-
ing multi-verse optimizer (MVO), salp swarm algorithm (SSA), moth-flame optimization (MFO), grasshopper optimization 
algorithm (GOA), and whale optimization algorithm (WOA), in addition to the original SCA. This comparative analysis 
was conducted across a wide array of 23 classical test functions and 29 CEC2017 benchmark functions, thereby facilitating 
a comprehensive assessment. Further validation of nSCA utility has been achieved through its deployment in five distinct 
engineering optimization case studies. Its effectiveness and relevance in addressing real-world optimization issues have 
thus been emphasized. Across all conducted tests and practical applications, nSCA was found to outperform its competitors 
consistently, furnishing more effective solutions to both theoretical and applied optimization problems.

Keywords  Evolutionary algorithm · Stochastic optimization · Sine cosine algorithm · Roulette wheel selection · 
Opposition-based learning

1  Introduction

1.1 � Evolutionary Algorithm

In recent years, there has been a growing scholarly empha-
sis on the exploration of nature-inspired optimization algo-
rithms, primarily due to their remarkable capabilities in 
addressing complex optimization challenges. Within this 
context, the work of Mirjalili, Mirjalili [1] introduced the 

MVO algorithm, which draws inspiration from cosmological 
concepts. Their study not only demonstrates its competitive 
performance across benchmark assessments but also within 
real-world engineering scenarios, highlighting its poten-
tial to tackle complex challenges characterized by intricate 
search spaces. Similarly, Mirjalili [2] presented SCA, show-
casing its effectiveness through rigorous benchmark test-
ing and the optimization of an aircraft wing’s cross-section. 
The study emphasizes its promise in resolving intricate real-
world problems, particularly those constrained by both the 
complexity and the obscurity of their search domains.

It is noteworthy that the landscape of optimization algo-
rithms includes the differential evolution (DE) method 
developed by Storn and Price [3], renowned for its simplic-
ity and effectiveness in global optimization. Building on this 
trajectory, Mirjalili [4] introduced the MFO, inspired by the 
transverse orientation behavior of moths. The investigation 
demonstrates the algorithm’s competitiveness through com-
prehensive benchmark tests and applications in real-world 
engineering domains. Notably, Mirjalili and Lewis [5] 

 *	 Nghiep Trinh Nguyen Dang 
	 ndntrinh.sdh20@hcmut.edu.vn

	 Vu Hong Son Pham 
	 pvhson@hcmut.edu.vn

	 Van Nam Nguyen 
	 nvnam.sdh20@hcmut.edu.vn

1	 Faculty of Civil Engineering, Ho Chi Minh City University 
of Technology (HCMUT), Vietnam National University 
(VNU-HCM), Ho Chi Minh City, Vietnam

http://crossmark.crossref.org/dialog/?doi=10.1007/s44196-023-00350-2&domain=pdf


	 International Journal of Computational Intelligence Systems          (2023) 16:171 

1 3

  171   Page 2 of 25

pioneered the WOA, drawing inspiration from the intricate 
social behavior of humpback whales. Their work resonates 
with the algorithm’s competitive prowess, illustrated through 
exhaustive assessments of mathematical optimization land-
scapes and the intricacies of structural design problems.

Adding further to this diverse spectrum, Saremi, Mir-
jalili [6] proposed GOA, deriving insights from the collec-
tive behavior of grasshopper swarms. Their study provides 
compelling evidence of its efficacy in solving optimization 
challenges, supported by rigorous benchmarking exercises 
and practical applications to intricate structural optimiza-
tion scenarios. Finally, the work of Mirjalili, Gandomi [7] 
unveiled SSA, inspired by the cooperative swarming behav-
ior of salps. Their comprehensive exploration demonstrates 
the algorithm’s effectiveness in both single and multi-objec-
tive optimization landscapes, validated through mathemati-
cal function evaluations and real-world engineering design 
complexities.

In evolutionary algorithms reliant on population-based 
methods, the optimization process is commonly divided into 
two critical phases, irrespective of the algorithm’s specific 
characteristics [8, 9]. The initial phase, often referred to as 
exploration, is designed to scan the search landscape and 
identify high-potential regions. In this phase, significant 
shifts in directions are made, potentially leading to nota-
ble results. The subsequent phase, known as exploitation, 
focuses on refining the existing choices based on the data 
that has been gathered during the exploration phase. These 
data are employed to facilitate the algorithm’s convergence. 
Achieving a judicious balance between exploration and 
exploitation is considered essential for the effective accom-
plishment of comprehensive optimization by the algorithm.

The ongoing advancements in algorithmic design and 
optimization have captured significant scholarly attention 
[10]. This focus is substantiated by the commonly held belief 
that no single algorithm can universally address diverse opti-
mization challenges. Consequently, a strong motivation has 
been observed among researchers to either augment exist-
ing methodologies or develop innovative algorithms capable 
of competing effectively with established solutions. In the 
specific area of multi-facility production scheduling, Pham, 
Trang [11] introduced an integration of the gray wolf opti-
mizer (GWO) and the dragonfly algorithm (DA) to enhance 
optimization processes. In a similar vein, Son and Nguyen 
Dang [12] proposed an MVO model aimed at simultane-
ous time and cost optimization in small-scale scenarios. In 
the realm of environmental impact, Qiao, Lu [13] unveiled 
a hybrid algorithm that merges the lion swarm optimizer 
with a genetic algorithm (GA). The algorithm was found to 
improve both the stability and accuracy of carbon dioxide 
emissions forecasts, outperforming existing models. Regard-
ing structural optimization, a study by Altay, Cetindemir 
[14] evaluated the SSA and introduced a modified version, 

termed modified SSA (MSSA), for optimizing truss system 
structures. The study found that, unlike SSA, MSSA effec-
tively addresses convergence issues and proves especially 
effective for discrete problems. In the domain of construc-
tion, Pham and Soulisa [15] proposed a hybrid ant-lion 
optimizer (ALO) algorithm. This algorithm demonstrated 
improved capabilities for site layout planning by combining 
optimization techniques with heuristic methods. Meanwhile, 
Goksal, Karaoglan [16] introduced a heuristic solution for 
the vehicle routing problem, an NP-hard problem, by uti-
lizing a PSO algorithm enhanced with variable neighbor-
hood descent (VND) for local searches. Furthermore, Son, 
Duy [17] introduced a novel optimization algorithm that 
merges the DA and PSO to control construction material 
costs effectively.

1.2 �  Sine Cosine Algorithm

Since its inception in 2016, the SCA has garnered significant 
attention as a potential optimization technique. Its applica-
tions span diverse fields, addressing an array of complex 
issues. For example, in the realm of engineering, Shang, 
Zhou [18] unveiled a modified SCA to expedite convergence 
speed and promote population diversity. This modification 
involved redefining the position update formula and incor-
porating a Levy random walk mutation strategy for solving 
intricate engineering design problems. In the field of electri-
cal networks, Raut and Mishra [19] introduced an SCA vari-
ant specifically tailored for the power distribution network 
reconfiguration (PDNR) problem. The algorithm aimed to 
minimize power loss as its sole objective. In a similar vein, 
Reddy, Panwar [20] presented a binary SCA aimed at opti-
mizing the profit-based unit commitment (PBUC) problem 
in competitive electricity markets, demonstrating enhanced 
solution quality and convergence rates compared to exist-
ing methods. Within the sphere of bioinformatics and envi-
ronmental science, Sahlol, Ewees [21] employed an SCA-
optimized neural network model to enhance the prediction 
accuracy of oxidative stress biomarkers in fish liver tissue. 
Specifically, the model demonstrated improved performance 
when assessing the impact of varying selenium nanoparticle 
concentrations. For community detection and system model-
ling, Zhao, Zou [22] presented a discrete SCA tailored for 
community detection in complex networks. The algorithm 
showed superior effectiveness compared to existing methods 
like FM, BGLL, and GA on real-world network data. Aydin, 
Gozde [23] utilized both WOA and SCA for estimating criti-
cal parameters in photovoltaic (PV) cell models, targeting 
improved accuracy in system analysis and electrical genera-
tion efficiency.

Given the diverse nature of optimization problems, it is 
widely acknowledged that there is no universally applica-
ble optimization algorithm competent in addressing diverse 
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optimization problems [10]. As a result, there have been 
numerous investigations aimed at improving the effective-
ness of the SCA. For instance, Cheng and Duan [24] pro-
posed a hybrid version that combines SCA and the cloud 
model to handle benchmark test functions with different 
dimensions. Bureerat and Pholdee [25] developed a hybrid 
model that combines SCA and DE for detecting structural 
damage. Turgut [26] proposed a model that integrates the 
SCA with the backtracking search algorithm to effectively 
address multi-objective problems in heat exchanger design. 
Bairathi and Gopalani [27] improved SCA by integrating the 
opposition-based mechanism to instruct multi-layer neural 
networks. Qu, Zeng [28] introduced an upgraded version 
of the SCA by incorporating a neighborhood search tech-
nique and a greedy Levy mutation. Son and Nguyen Dang 
[29] proposed a hybrid SCA model to optimize simultane-
ously time and cost in large-scale projects. Finally, Pham 
and Nguyen [30] proposed an integrated SCA version with 
tournament selection, OBL, and mutation and crossover 
methods to handle cement transport routing.

1.3 �  The Motivation of this Study

Since its introduction, the SCA has witnessed growing popu-
larity across various scientific disciplines, a trend primarily 
attributed to its straightforward methodology. However, the 
algorithm has been criticized for its tendency toward pre-
mature convergence, a drawback often ascribed to an inad-
equately defined exploitation strategy within its search land-
scape [31]. As a result, academic interest has been piqued 
in the development of enhanced versions of the SCA frame-
work, viewed as potential solutions for overcoming the intri-
cate challenges frequently encountered in optimization tasks.

Numerous efforts have been undertaken to enhance the 
efficacy of the SCA, encompassing a range of strategies 
including its fusion with OBL [27], its integration with 
tournament selection [30], incorporation of the Levy flight 
approach [18, 28], and hybridizations with other algorithmic 
paradigms [25, 26, 28]. However, the integration of both 
the RWS and OBL methodologies to achieve a harmonious 
balance between the exploration and exploitation phases 
remains an underexplored area. This comprehensive inte-
gration aims to culminate in the pursuit of global optimiza-
tion. Within the research landscape, this study endeavors to 
address this notable gap by embarking on a journey to unify 
the RWS and OBL techniques. This unification not only 
seeks to bridge an existing research void but also aims to 
present a streamlined and efficient tool for tackling optimi-
zation challenges, catering to a distinct requirement within 
the research panorama.

In the following section, the formulation of the nSCA 
is detailed. Section 3 is devoted to an exhaustive evalua-
tion of the algorithm’s convergence properties, including an 

analysis of its performance metrics and behavioral patterns. 
Section 4 provides an empirical substantiation of the model’s 
efficacy, achieved through its application in five real-world 
optimization case studies. Finally, the key findings of the 
research are summarized in Sect. 5, where potential avenues 
for future academic inquiry are also delineated.

2 � Novel Version of Sine Cosine Algorithm

2.1 �  Roulette Wheel Selection (RWS)

The RWS mechanism is extensively employed across vari-
ous optimization algorithms, including cuckoo search (CS), 
PSO, DE, GA, and ant colony optimization (ACO), marking 
its prominence as a commonly adopted technique in optimi-
zation disciplines. Pandey, Kulhari [32] introduced a roulette 
wheel-based cuckoo search clustering method for sentiment 
analysis. This method was found to outperform existing clus-
tering methods like K-means and GWO in terms of mean 
accuracy, precision, and recall across nine sentimental 
datasets. Zhu, Yang [33] introduced a ranking weight-based 
RWS method to enhance the performance of comprehensive 
learning PSO. Experimental results indicate that this method 
surpasses other selection techniques in overall optimization 
efficiency. Yu, Fu [34] presented an improved RWS method 
designed for GA, targeting the traveling salesman problem. 
The method showed enhanced result precision and faster 
convergence rates. Ho-Huu, Nguyen-Thoi [35] introduced 
ReDE, a variant of the DE algorithm enhanced with RWS 
and elitist techniques. This variant was aimed at optimizing 
truss structures with frequency constraints, and numerical 
results suggest it outperforms several existing optimization 
methods. Lloyd and Amos [36] conducted the first com-
prehensive analysis of Independent Roulette (I-Roulette), 
an alternative to standard RWS in parallel ACO. The study 
revealed its capability for dynamic adaptation and faster 
convergence, especially when implemented on high-perfor-
mance parallel architectures like GPUs.

2.2 �  Opposition‑Based Learning (OBL)

The OBL technique has garnered significant attention for its 
wide-ranging applicability and effectiveness in various opti-
mization applications. Originally introduced by Tizhoosh [37] 
in 2005, OBL serves as a novel framework for computational 
intelligence, creating complementary solutions to existing 
ones. Subsequent work has extended the utility of OBL in dif-
ferent computational algorithms, thereby yielding promising 
results in terms of faster convergence and improved perfor-
mance. For example, Verma, Aggarwal [38] proposed a modi-
fied firefly algorithm that incorporates OBL. This innovation 
not only enhances initial candidate solutions but also employs 
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a dimension-based approach for updating the positions of indi-
vidual fireflies. Experimental results confirmed faster conver-
gence and superior performance in high-dimensional problems 
when compared to existing evolutionary algorithms. Similarly, 
Upadhyay, Kar [39] presented an opposition-based harmony 
search algorithm aimed at optimizing adaptive infinite impulse 
response system identification. They reported faster conver-
gence rates and superior mean square error fitness values when 
compared to traditional optimization methods such as GA, 
PSO, and DE. In the realm of project management, Luong, 
Tran [40] introduced a novel algorithm termed opposition-
based multiple objective differential evolution. This algorithm 
employs opposition numbers to address the time–cost-quality 
trade-off in construction projects, thereby improving both 
exploration and convergence rates. Wang, Wu [41] proposed 
an enhanced PSO algorithm named GOPSO, which incor-
porates generalized opposition-based learning along with 
Cauchy mutation. This approach was specifically designed to 
mitigate the problem of premature convergence in complex 
optimization scenarios. Ewees, Abd Elaziz [42] introduced 
OBLGOA, an enhanced GOA that incorporates OBL at two 
distinct stages. This implementation was shown to improve 
solution quality and reduce time complexity. The algorithm 
outperformed ten well-known optimization algorithms across 
twenty-three benchmark functions and four engineering prob-
lems. In summary, OBL has been effectively integrated into 
a variety of optimization algorithms, consistently offering 
advantages in terms of speed and performance.

2.3 �  Novel Version of SCA (nSCA)

In the nSCA algorithm, the location of each solution is speci-
fied by an array of variables. These arrays collectively con-
stitute sets of solutions, which are systematically organized 
in a matrix format, as described in Eq. (1). Similarly, the sets 
of opposite solutions generated during the exploration stage 
are also presented in a matrix layout, as delineated in Eq. (2). 
These matrix-based representations facilitate the management 
and assessment of solutions within the algorithm, thereby ena-
bling more effective exploration and optimization of the search 
landscape.

(1)S =

⎡
⎢⎢⎢⎣

s1
1
s2
1

… sd
1

s1
2
s2
2

… sd
2

…

s1
N

…

s2
N

…

…

…

sd
N

⎤
⎥⎥⎥⎦
,

(2)S∗ =

⎡
⎢⎢⎢⎣

s1∗
1

s2∗
1

… sd∗
1

s1∗
2

s2∗
2

… sd∗
2

…

s1∗
N

…

s2∗
N

…

…

…

sd∗
N

⎤
⎥⎥⎥⎦
.

In the initial population generation phase, the OBL 
method is utilized to create opposite solutions, as illus-
trated in Fig. 1. The specific process for incorporating 
OBL within nSCA is outlined in the accompanying pseu-
docode presented in Table 1. Subsequently, a fitness func-
tion evaluates both the randomly generated solutions and 
their oppositional counterparts. This evaluation identifies 
superior and inferior solutions. The algorithm retains the 
more performant solutions while discarding the less effec-
tive ones, thereby ensuring a consistent population size 
throughout the optimization process.

The opposite solution s∗ of the solution s ∈ [bl, bu] can 
be identified as follow:

where bl and bu denote the lower and upper boundary of 
alternative s, respectively.

Given a solution S characterized by d parameters, where 
each parameter constrained within [bl,j, bu,j] , an opposition 
solution S∗ = (s∗

1
, s∗

2
, s∗

3
,… , s∗

d
) can be defined as follow:

where bl,j and bu,j show the lower and upper limits of the jth 
dimension, respectively.

Upon refreshing the solution set during the initial 
population creation phase, the solutions undergo sorting 
to identify the current best-performing candidate. Subse-
quently, each solution's normalized fitness score is com-
puted. This computation is integral to the functioning of 
the RWS mechanism, as depicted in Fig. 2. The formula 
for calculating the normalized fitness score is articulated 
in Eq. (5), while the mathematical representation of the 
RWS mechanism is provided in Eq. (6). These computa-
tional processes and mechanisms are pivotal in guiding the 
algorithm's solution selection and subsequent exploratory 
activities.

(3)s∗ = bu + bl − s,

(4)s∗
j
= bu,j + bl,j − sj,

Fig. 1   The OBL concept



International Journal of Computational Intelligence Systems          (2023) 16:171 	

1 3

Page 5 of 25    171 

Table 1   Pseudocode of the 
nSCA



	 International Journal of Computational Intelligence Systems          (2023) 16:171 

1 3

  171   Page 6 of 25

In Eqs. (5) and (6), NF(Si) and F(Si) denote the normal-
ized fitness value and the fitness value of the ith solution, 
Si, respectively. The notation sj

i
 represents the jth parameter 

of the ith solution, while sj
1
 refers to the jth parameter of the 

current best-performing solution. The variable σ2 is a ran-
dom number that falls within the range of 0 to 1.

The partitioning of the optimization process into explora-
tion and exploitation phases is a recurring theme in the exist-
ing literature, particularly in relation to population-based 
stochastic algorithms [8]. During the exploration phase, 
the optimization algorithm utilizes a higher degree of ran-
domness to facilitate the combination of diverse solutions, 

(5)NF
�
Si
�
=

F
�
Si
�

2

�∑N

1
F
�
Si
�2 ,

(6)s
j

i
=

{
s
j

1
𝜎2 < NF

(
Si
)

s
j

i
𝜎2 ≥ NF

(
Si
) .

swiftly identifying promising areas within the search space. 
In contrast, the exploitation phase concentrates on the 
refinement of existing solutions through incremental adjust-
ments, exhibiting significantly reduced levels of stochastic 
variability relative to the exploration stage. Within the SCA 
framework, specific mathematical expressions, represented 
by Eq. (7), govern the updating of agent positions in both 
exploration and exploitation stages. These equations are piv-
otal as they guide the search mechanism of the SCA, thereby 
enabling efficient exploration and targeted exploitation of 
the search landscape.

where st
j
 represents the position of the solution in the jth 

dimension at the tth iteration; σ1 defines the direction of 
movement; σ3 is a uniformly distributed random variable 
ranging between 0 and 1; σ4 serves as a stochastic variable 

(7)st+1
j

=

{
st
j
+ 𝜎1 × sin

(
𝜎4

)
×
|||𝜎5Pt

j
− st

j

|||𝜎3 < 0.5

st
j
+ 𝜎1 × cos

(
𝜎4

)
×
|||𝜎5Pt

j
− st

j

|||𝜎3 ≥ 0.5
,

Fig. 2   The RWS concept

Fig. 3   The exploration and 
exploitation mechanisms of the 
SCA
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that regulates the extent of movement toward or away from 
the target, while σ5 acts as a randomly determined weight for 
the destination; the position of the target solution in the jth 
dimension is denoted by Dt

j
 , and the absolute value is sym-

bolized by ||.
Figure 3 presents a detailed model to elucidate the efficacy 

of sine and cosine functions within the interval [− 2, 2]. These 
trigonometric functions serve as versatile tools for navigational 
purposes, either by confining movement within the ranges 
defined by them or by facilitating extensions beyond these 
boundaries. Such flexibility is conducive to steering toward the 
desired objectives effectively. Importantly, the figure delineates 
the dynamic ranges of the sine and cosine functions, which 
play a crucial role in updating the positions of potential solu-
tions. Furthermore, Eq. (7) introduces a stochastic variable, 
denoted as σ4, with a range between 0 and 2π. The inclusion 
of this stochastic element imbues the algorithm with a degree 
of randomness, thereby enhancing its exploratory capabilities. 
This feature allows for a more thorough evaluation of potential 
solutions within the given search landscape.

During each iteration cycle, the range of the sine and cosine 
functions, as outlined in Eq. (7), is adaptively modified to 
achieve a balanced trade-off between exploration and exploi-
tation. This is further illustrated in Fig. 4. This dynamic adjust-
ment is specifically engineered to effectively identify prom-
ising regions within the search space, thus facilitating more 
efficient discovery of the optimal solution. The guidelines 
for this modification process are set forth in Eq. (8), where 
the constant v is designated a value of 2. In this equation, Icur 
symbolizes the current iteration count, and Imax represents the 
maximum number of iterations permitted.

In the exploitation stage, as detailed in the pseudocode 
for nSCA presented in Table 1, solution updates are carried 

(8)�1 = v − Icur
v

Imax

.

out in accordance with Eq. (7). Following these updates, a 
jumping condition, denoted as JC in Eq. (9), is activated 
to dynamically generate an opposite solution in accordance 
with Eq. (10). It is noteworthy that this approach deviates 
from the methodology employed in the initial phase of popu-
lation generation. Subsequent to the generation of opposite 
solutions, the objective function is applied to both the origi-
nal solutions and the newly formed opposite solutions. The 
superior solution is retained, while the inferior one is elimi-
nated. This process ensures that the population size remains 
constant, as mandated by Eq. (11).

where Si represents the ith solution while S∗
i
 represents the 

opposite solution of the ith solution created by OBL; σ6 is 
a uniformly distributed random variable between 0 and 1.

3 � Convergence Analysis

In the field of optimization, encompassing the application of 
evolutionary algorithms and metaheuristics, the validation 
of algorithmic effectiveness is critically dependent on the 
use of specialized test cases. This is particularly important 
given the inherently stochastic nature of these methodolo-
gies, where achieving optimal results requires the careful 
selection of a diverse and appropriate set of test functions. 
The aim of this section is to evaluate the performance of 
the nSCA algorithm, as substantiated through its application 

(9)JC = −

(
Icur

Imax

)2

+ 2

(
Icur

Imax

)
,

(10)CreateoppositesolutionS∗
i
ofSiif𝜎6 < JC,

(11)Snew =

{
SiifF

(
Si
)
issuperiorsolution

S∗
i
ifF

(
S∗
i

)
issuperiorsolution

.

Fig. 4   The range of sine and 
cosine exhibits a decreasing 
pattern
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to 23 classical test functions, as well as the CEC2017 set. 
Each of these test functions has unique characteristics, 
designed to enable an in-depth assessment of the algorithm’s 
performance.

3.1 � Convergence Analysis on Classical Benchmark 
Functions

The efficacy of the nSCA algorithm was rigorously assessed 
using an extensive set of 23 test functions [43–45]. These 

Table 2   23 classical benchmark test functions

Type Function Dim Range fmin

Uni-modal f1(x) =
∑n

i=1
x2
i

10 [− 100, 100] 0
Uni-modal f2(x) =

∑n

i=1
��xi�� +

∏n

i=1
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∑n

i=1

�∑i
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2 [− 5, 5] 0.398

Fixed f18(x) =
[
1 +

(
x1 + x2 + 1

)2
(19 − 14x1 + 3x2

1
− 14x2 + 6x1x2 + 3x2

2
)
]

×
[
30 + (2x1 − 3x2)

2 ×
(
18 − 32x1 + 12x2

1
+ 48x2 − 36x1x2 + 27x2

2

)]
2 [− 2, 2] 3

Fixed f19(x) = −
∑4

i=1
ciexp

�
−
∑3

j=1
aij(xj − pij)

2
�

3 [0, 1] − 3.86

Fixed f20(x) = −
∑4

i=1
ciexp

�
−
∑6

j=1
aij(xj − pij)

2
�

6 [0, 1] − 3.32

Fixed
f21(x) = −

∑5

i=1

��
X − ai

��
X − ai

�T
+ ci

�−1 4 [0, 10] − 10.1532

Fixed
f22(x) = −

∑7

i=1

��
X − ai

��
X − ai

�T
+ ci

�−1 4 [0, 10] − 10.4028

Fixed
f23(x) = −

∑10

i=1

��
X − ai

��
X − ai

�T
+ ci

�−1 4 [0, 10] − 10.5363
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functions were grouped into three distinct categories, as out-
lined in Table 2: unimodal, multimodal, and fixed functions. 
The unimodal category consists of functions with a single 
global optimum and no local optimum, serving as a basis to 
evaluate the algorithm's capacity for rapid convergence and 
focused exploitation. In contrast, multimodal functions fea-
ture multiple local optima in addition to a global optimum, 
enabling a thorough assessment of the algorithm’s capability 
to navigate around local optima for effective exploration of 
the search space. Finally, the fixed category includes modi-
fied versions of both unimodal and multimodal functions, 
which are altered through operations such as rotation, shift-
ing, and bias. These composite functions are designed to 

evaluate the algorithm's adaptability and performance in 
complex optimization landscapes.

To rigorously evaluate the performance capabilities of 
the nSCA algorithm in optimization tasks, an ensemble of 
25 search agents was employed to locate the global opti-
mum within a suite of 23 test functions. This experiment 
was conducted over a span of 300 iterations. The perfor-
mance of nSCA was subsequently benchmarked against a 
selection of leading metaheuristic algorithms, including 
SSA, MVO, MFO, WOA, GOA, and the original SCA. Due 
to the stochastic components intrinsic to these algorithms, 
each was executed 30 times to ensure result reliability. 
Key statistical metrics, including average values (avg) and 

Table 3   Findings of unimodal test functions

Algorithm/
function

f1 f2 f3 f4 f5 f6 f7

nSCA avg 0.000E + 00 0.000E + 00 7.397E − 20 4.104E − 14 6.490E + 00 8.300E − 02 4.987E − 04
std 0.000E + 00 0.000E + 00 1.553E − 19 3.122E − 14 3.414E − 01 1.173E − 01 1.783E − 04

SCA avg 9.622E − 06 2.223E − 05 1.442E + 00 9.930E − 02 1.075E + 01 5.542E − 01 3.874E − 03
std 1.861E − 05 6.164E − 05 4.677E + 00 1.527E − 01 1.338E + 01 1.592E − 01 3.327E − 03

MFO avg 1.938E − 06 6.667E − 01 9.506E + 02 5.972E + 00 6.306E + 03 3.639E − 06 1.805E − 02
std 3.866E − 06 2.494E + 00 2.136E + 03 7.560E + 00 2.238E + 04 5.468E − 06 1.100E − 02

MVO avg 5.341E − 02 6.829E − 02 4.659E − 01 1.733E − 01 1.821E + 02 4.938E − 02 5.073E − 03
std 2.785E − 02 2.342E − 02 2.501E − 01 6.474E − 02 4.293E + 02 2.584E − 02 3.297E − 03

WOA avg 5.886E − 39 1.841E − 28 6.534E + 04 4.670E + 01 2.846E + 01 1.124E + 00 8.049E − 03
std 2.303E − 38 4.220E − 28 1.714E + 04 2.969E + 01 3.106E − 01 4.292E − 01 9.725E − 03

SSA avg 1.643E − 09 1.146E − 01 6.111E − 01 1.387E − 02 1.649E + 02 1.662E − 09 3.515E − 02
std 7.488E − 10 3.335E − 01 1.310E + 00 3.211E − 02 2.165E + 02 7.119E − 10 2.286E − 02

GOA avg 1.951E − 07 2.091E + 00 5.783E − 03 1.148E − 03 2.641E + 03 1.081E − 07 7.726E − 02
std 3.497E − 07 2.780E + 00 2.836E − 02 3.726E − 03 1.110E + 04 1.123E − 07 1.209E − 01

Table 4   Findings of multi-
modal test functions

Algo-
rithm/
function

f8 f9 f10 f11 f12 f13

nSCA avg  − 3.038E + 03 0.000E + 00 8.882E − 16 0.000E + 00 2.502E − 02 1.663E − 01
std 2.271E + 02 0.000E + 00 9.861E − 32 0.000E + 00 8.652E − 03 5.582E − 02

SCA avg  − 2.070E + 03 2.422E + 00 8.854E − 02 1.191E − 01 1.537E − 01 3.442E − 01
std 1.371E + 02 4.851E + 00 4.696E − 01 1.271E − 01 6.262E − 02 1.092E − 01

MFO avg  − 3.194E + 03 2.482E + 01 1.220E + 00 1.437E − 01 1.465E − 01 4.769E − 03
std 4.049E + 02 1.122E + 01 3.689E + 00 8.912E − 02 4.153E − 01 5.449E − 03

MVO avg  − 2.874E + 03 1.979E + 01 3.408E − 01 4.563E − 01 1.537E − 01 1.697E − 02
std 3.771E + 02 8.600E + 00 5.965E − 01 1.600E − 01 3.025E − 01 9.071E − 03

WOA avg  − 9.375E + 03 3.780E + 00 7.046E − 15 8.115E − 03 5.758E − 02 1.016E + 00
std 1.908E + 03 2.035E + 01 3.991E − 15 4.370E − 02 2.799E − 02 4.184E − 01

SSA avg  − 2.689E + 03 1.691E + 01 1.023E + 00 1.773E − 01 1.742E + 00 3.580E − 03
std 4.119E + 02 7.542E + 00 9.615E − 01 1.109E − 01 2.077E + 00 5.472E − 03

GOA avg  − 1.553E + 03 1.238E + 01 9.102E − 01 1.951E − 01 9.537E − 02 3.980E − 03
std 2.531E + 02 5.821E + 00 1.124E + 00 1.158E − 01 2.005E − 01 5.381E − 03
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standard deviations (std), were calculated, and are presented 
in Tables 3, 4, 5 and 6. This comprehensive approach pro-
vides valuable insights into the comparative effectiveness of 
nSCA and other algorithms in optimization contexts.

In the realm of unimodal test functions, as evidenced 
by the results in Table 3, nSCA holds a marked advantage 
over its competitors. Specifically, within the scope of uni-
modal optimization, nSCA’s exploitation capabilities sur-
pass those of SCA, MFO, MVO, WOA, SSA, and GOA in 
most test functions. This data effectively emphasizes nSCA’s 
proficiency in handling unimodal optimization challenges. 
Regarding multimodal optimization, Table 4 provides data 
that confirm nSCA’s superior performance over SCA, 
MFO, MVO, WOA, SSA, and GOA in most test cases. 
This impressive showing reinforces nSCA’s capabilities in 

effectively navigating complex search spaces and avoiding 
local optima. Lastly, when examined in the context of fixed 
test functions, nSCA shows performance metrics that are on 
par with those of SCA, WOA, MVO, SSA, GOA, and MFO, 
as illustrated in Tables 5 and 6. These results lend further 
support to nSCA’s considerable versatility and competitive 
edge when compared to other state-of-the-art optimization 
algorithms.

Additional performance metrics such as the convergence 
curve, average solution fitness, trajectory of the first solu-
tion, and search history were scrutinized to provide a more 
nuanced assessment of nSCA’s effectiveness. The study 
employed a configuration of 300 iterations and 25 search 
agents to examine three representative test functions (f1, 
f9, and f21). Each of these functions represents a different 

Table 5   Findings of composite 
test functions

Algorithm/
function

f14 f15 f16 f17 f18

nSCA avg 9.980E − 01 4.877E − 04  − 1.032E + 00 3.979E − 01 3.000E + 00
std 2.701E − 10 1.153E − 04 1.296E − 08 3.869E − 07 8.893E − 07

SCA avg 2.130E + 00 9.769E − 04  − 1.032E + 00 4.033E − 01 3.000E + 00
std 1.863E + 00 3.634E − 04 1.215E − 04 8.638E − 03 6.540E − 04

MFO avg 2.544E + 00 2.052E − 03  − 1.032E + 00 3.979E − 01 3.000E + 00
std 2.189E + 00 3.748E − 03 0.000E + 00 1.110E − 16 3.347E − 15

MVO avg 1.031E + 00 5.467E − 03  − 1.032E + 00 3.979E − 01 8.400E + 00
std 1.784E − 01 8.224E − 03 1.438E − 06 2.104E − 06 2.020E + 01

WOA avg 3.752E + 00 6.887E − 04  − 1.032E + 00 3.979E − 01 3.001E + 00
std 3.082E + 00 3.874E − 04 6.999E − 08 6.024E − 05 1.510E − 03

SSA avg 1.659E + 00 4.414E − 03  − 1.032E + 00 4.026E − 01 3.000E + 00
std 9.677E − 01 7.240E − 03 8.968E − 14 4.462E − 03 4.017E − 13

GOA avg 3.057E + 00 1.032E − 02  − 1.032E + 00 3.979E − 01 5.700E + 00
std 3.399E + 00 2.029E − 02 2.306E − 12 4.712E − 12 1.454E + 01

Table 6   Findings of composite 
test functions (continued)

Algorithm/
function

f19 f20 f21 f22 f23

nSCA avg  − 3.862E + 00  − 3.199E + 00  − 8.800E + 00  − 8.989E + 00  − 8.825E + 00
std 1.513E − 03 7.798E − 02 2.495E + 00 2.586E + 00 2.887E + 00

SCA avg  − 3.853E + 00  − 2.942E + 00  − 1.805E + 00  − 2.136E + 00  − 3.131E + 00
std 3.664E − 03 2.013E − 01 1.696E + 00 1.431E + 00 1.469E + 00

MFO avg  − 3.863E + 00  − 3.217E + 00  − 6.308E + 00  − 6.529E + 00  − 7.338E + 00
std 2.665E − 15 8.801E − 02 3.465E + 00 3.267E + 00 3.698E + 00

MVO avg  − 3.863E + 00  − 3.263E + 00  − 6.116E + 00  − 8.140E + 00  − 7.891E + 00
std 7.066E − 06 6.360E − 02 2.796E + 00 3.280E + 00 3.332E + 00

WOA avg  − 3.848E + 00  − 3.208E + 00  − 7.436E + 00  − 7.472E + 00  − 7.485E + 00
std 3.527E − 02 9.835E − 02 2.601E + 00 3.042E + 00 3.003E + 00

SSA avg  − 3.863E + 00  − 3.223E + 00  − 7.570E + 00  − 6.917E + 00  − 8.287E + 00
std 8.404E − 06 7.535E − 02 3.441E + 00 3.765E + 00 3.471E + 00

GOA avg  − 3.538E + 00  − 3.265E + 00  − 4.813E + 00  − 6.006E + 00  − 5.225E + 00
std 3.546E − 01 6.617E − 02 3.075E + 00 3.436E + 00 3.364E + 00
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Fig. 5   Convergence curve, 
average fitness of all solutions, 
trajectory of the first solution, 
and search histories of functions 
f1, f9 and f21

Function f1 Function f9 Function f21
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category: unimodal, multimodal, and composite, as depicted 
in Fig. 5. Analysis of the convergence curve and average 
fitness reveals a consistent improvement in the quality of 
the search agents over successive iterations. This observa-
tion underscores nSCA’s capability to enhance the quality of 
initially randomized solutions in specific optimization tasks.

Analysis of the trajectory of the first solution underscores 
nSCA’s abilities in both convergence and local search opti-
mization. This is supported by the notable fluctuations in 
average fitness levels during the exploration phase and the 
relatively stable metrics seen in the exploitation stage, as 
cited in reference [46]. Further, the search histories asso-
ciated with functions f1, f9, and f21 substantiate nSCA’s 
aptitude for identifying and concentrating on high-potential 
regions within the search space. The incorporation of RWS 
and OBL mechanisms proves to be beneficial, facilitating 
initial exploration and contributing to the ultimate conver-
gence of optimal solutions initially identified during the 
exploration phase.

Figures 6, 7 and 8 display the convergence patterns for 
the 23 test functions, obtained over 150 iterations employing 
25 search agents. The findings suggest that more efficient 
convergence for the majority of the test functions analyzed 
is achieved by the nSCA in comparison to other algorithms 
such as the original SCA, MVO, MFO, SSA, GOA, and 
WOA.

3.2 � CEC2017 Benchmark Test Functions

The CEC2017 test functions constitute a specialized set 
of benchmarks, introduced at the 2017 IEEE Congress on 
Evolutionary Computation (CEC), focusing on the optimi-
zation of real parameters. Building upon the groundwork 
established by previous benchmark suites, the CEC2017 col-
lection is designed to present a diverse range of challenges 
to optimization algorithms. These functions are generally 
considered to provide more realistic problem scenarios in 
comparison to the traditional set of 23 benchmark functions.

Spanning both unimodal and multimodal optimization 
landscapes, the CEC2017 suite also encompasses separable 
and non-separable problem domains. Moreover, it incor-
porates shifted and rotated variations, thereby offering a 
comprehensive environment for the testing of optimization 
algorithms. This extensive array of test scenarios enables 
researchers to conduct in-depth evaluations, thereby dis-
cerning the merits and limitations of various optimization 
methods under different conditions.

The efficacy of nSCA is evaluated using the IEEE 
CEC2017 benchmark suites [47]. These test functions are 
categorized into four distinct groups: unimodal, multi-
modal, hybrid, and composition. Table 7 offers a compre-
hensive breakdown of the definitions associated with the 
CEC2017 benchmark challenges. To increase the level of 

complexity and rigorously assess the capabilities of the pro-
posed method in handling complex optimization problems, 
all functions within the CEC2017 suite are configured as 
30-dimensional problems.

Tables 8 and 9 provide an in-depth statistical compari-
son between nSCA and other swarm-based optimization 
algorithms such as SSA, MVO, MFO, WOA, GOA, and the 
original SCA. To ensure a rigorous and unbiased evaluation, 
each algorithm was executed 30 times on a variety of bench-
mark functions. Statistical metrics like mean values (avg) 
and standard deviations (std) were subsequently calculated 
from these multiple runs. For the purposes of this study, a 
cohort of 50 search agents was deployed, each limited to a 
maximum of 300 iterations. A careful analysis of the data 
presented in Tables 8 and 9 clearly shows that nSCA consist-
ently outperforms its counterparts, specifically SSA, MVO, 
MFO, WOA, GOA, and the original SCA, in various bench-
mark categories including unimodal, multimodal, hybrid, 
and composition functions.

4 � Engineering Optimization Challenges

The purpose of this section is to assess the performance 
of nSCA as evidenced through its deployment in five real-
world technical optimization problems, each characterized 
by varying inequality constraints. The primary focus lies in 
evaluating the capability of the algorithm to manage these 
constraints effectively throughout the optimization process.

4.1 � Cantilever Beam Design Challenge

The objective of this optimization task is to achieve mini-
mization of the weight of a cantilever beam, which is con-
structed from hollow square blocks. The structure consists of 
five such blocks, with the first block being fixed in position 
and the fifth subjected to a vertical load. A visual represen-
tation of the five parameters that determine the cross-sec-
tional geometry of the blocks is provided in Fig. 9. Detailed 
formulations for addressing this problem can be found in 
Appendix 1.

The findings from an exhaustive analysis of this task are 
summarized in Table 10, which provides a comprehensive 
breakdown of key performance indicators. The data con-
vincingly demonstrate that the nSCA algorithm consist-
ently yields results that are either commensurate with or 
superior to those of leading optimization algorithms such 
as COA [52], RFO [51], GOA [6], MVO [1], ALO [50], 
CS [48] and SOS [49]. These findings strongly substanti-
ate the algorithm’s capability to address and optimize com-
plex, constraint-bound problems effectively. Additionally, 
the results underscore the algorithm's aptitude for real-world 
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Fig. 6   Convergence behavior of 
nSCA, SCA, SSA, MVO, MFO, 
WOA, and GOA for unimodal 
test functions



	 International Journal of Computational Intelligence Systems          (2023) 16:171 

1 3

  171   Page 14 of 25

Fig. 7   Convergence behavior of nSCA, SCA, SSA, MVO, MFO, WOA, and GOA for multimodal test functions
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Fig. 8   Convergence behavior of nSCA, SCA, SSA, MVO, MFO, WOA, and GOA for composite test functions
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engineering applications, highlighting its proficiency in nav-
igating intricate problem landscapes.

4.2 � Pressure Vessel Design Challenge

The primary objective of this optimization task is the reduc-
tion of manufacturing costs associated with the fabrication 
of a pressure vessel. A representation of the vessel’s unique 
design, featuring one flat and one hemispherical end, is 
illustrated in Fig. 10. The variables subject to optimiza-
tion encompass the inner radius (R), shell thickness (Ts), 
length of the cylindrical section exclusive of the head (L), 

and the head's thickness (Th). These variables are pivotal in 
establishing the optimal design of the vessel. Specific math-
ematical equations and constraints have been formulated to 
encapsulate the dual aim of cost minimization and design 
requirement adherence. Comprehensive formulations for this 
task can be found in Appendix 1.

The outcomes of a comprehensive evaluation of this prob-
lem are summarized in Table 11, which offers a detailed 
analysis of various performance metrics. The data presented 
in this table confirm the reliable effectiveness of the nSCA 
algorithm, often matching or even surpassing other well-
established optimization methods such as SCSO [58], RFO 

Fig. 8   (continued)
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[51], AOA [57], GSA [1], MVO [1], ACO [56], ES [55], 
DE [54], and PSO [53]. These results robustly endorse the 
capabilities of nSCA in proficiently navigating the search 
space, an ability further augmented by the integration of 
roulette wheel selection (RWS) and opposition-based learn-
ing (OBL). Additionally, the findings underscore the algo-
rithm’s versatility, demonstrating its suitability for applica-
tion in engineering contexts, particularly in instances where 
the attributes of the search domain are either ambiguous or 
poorly defined.

4.3 � Three‑Bar Truss Design Challenge

The primary objective of this challenge is the weight reduc-
tion of the truss structure, to be achieved within the bounda-
ries of various constraints. Successful truss design neces-
sitates the consideration of essential limitations, including 
those related to stress, deflection, and buckling factors. 
The engineering characteristics pertinent to this issue are 

illustrated in Fig. 11. Although the objective function may 
appear straightforward, it is governed by multiple intricate 
constraints, rendering the achievement of an optimal solu-
tion notably challenging. Detailed formulations relevant to 
this problem are provided in Appendix 1.

Table 12 provides an exhaustive comparison between the 
nSCA and various state-of-the-art optimization methods, 
including GOA [6], MVO [1], ALO [50], MBA [63], CS 
[48], PSO-DE [62], DEDS [61], as well as models put forth 
by Ray and Saini [61] and Tsai [62]. The data strongly sug-
gest that nSCA consistently performs at a level comparable 
to the best algorithms in the field, thereby establishing itself 
as a formidable competitor in achieving optimal outcomes.

4.4 � Gear Train Design Challenge

The objective of this technical task, illustrated in Fig. 12, 
is the minimization of the gear ratio through the optimiza-
tion of four discrete variables: the tooth counts on gears nA, 

Table 7   CEC2017 benchmark functions

Type Function Name n Range fmin

Unimodal F1 Shifted and Rotated Bent Cigar Function 30 [− 100, 100] 100
Unimodal F2 Shifted and Rotated Zakharov Function 30 [− 100, 100] 200
Multimodal F3 Shifted and Rotated Rosenbrock’s Function 30 [− 100, 100] 300
Multimodal F4 Shifted and Rotated Rastrigin’s Function 30 [− 100, 100] 400
Multimodal F5 Shifted and Rotated Expanded Scaffer’s F7 Function 30 [− 100, 100] 500
Multimodal F6 Shifted and Rotated Lunacek Bi_Rastrigin Function 30 [− 100, 100] 600
Multimodal F7 Shifted and Rotated Non-Continuous Rastrigin’s Function 30 [− 100, 100] 700
Multimodal F8 Shifted and Rotated Levy Function 30 [− 100, 100] 800
Multimodal F9 Shifted and Rotated Schwefel’s Function 30 [− 100, 100] 900
Hybrid F10 Hybrid Function 1 (N = 3) 30 [− 100, 100] 1000
Hybrid F11 Hybrid Function 2 (N = 3) 30 [− 100, 100] 1100
Hybrid F12 Hybrid Function 3 (N = 3) 30 [− 100, 100] 1200
Hybrid F13 Hybrid Function 4 (N = 4) 30 [− 100, 100] 1300
Hybrid F14 Hybrid Function 5 (N = 4) 30 [− 100, 100] 1400
Hybrid F15 Hybrid Function 6 (N = 4) 30 [− 100, 100] 1500
Hybrid F16 Hybrid Function 7 (N = 5) 30 [− 100, 100] 1600
Hybrid F17 Hybrid Function 8 (N = 5) 30 [− 100, 100] 1700
Hybrid F18 Hybrid Function 9 (N = 5) 30 [− 100, 100] 1800
Hybrid F19 Hybrid Function 10 (N = 6) 30 [− 100, 100] 1900
Composition F20 Composition Function 1 (N = 3) 30 [− 100, 100] 2000
Composition F21 Composition Function 2 (N = 3) 30 [− 100, 100] 2100
Composition F22 Composition Function 3 (N = 4) 30 [− 100, 100] 2200
Composition F23 Composition Function 4 (N = 4) 30 [− 100, 100] 2300
Composition F24 Composition Function 5 (N = 5) 30 [− 100, 100] 2400
Composition F25 Composition Function 6 (N = 5) 30 [− 100, 100] 2500
Composition F26 Composition Function 7 (N = 6) 30 [− 100, 100] 2600
Composition F27 Composition Function 8 (N = 6) 30 [− 100, 100] 2700
Composition F28 Composition Function 9 (N = 3) 30 [− 100, 100] 2800
Composition F29 Composition Function 10 (N = 3) 30 [− 100, 100] 2900
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nB, nC and nD. The gear ratio is utilized as a measure of the 
relationship between the angular speeds of the output and 
input shafts. Incrementation by units of one characterizes 
these discrete variables. Emphasis in the problem formula-
tion is placed on establishing constraints for the permissible 
range of these variables. Detailed specifications related to 
this challenge are delineated in Appendix 1.

Table 13 presents an in-depth comparison between the 
nSCA and a range of well-known optimization techniques. 
The data in this table highlight a remarkable similarity in 
the performance of nSCA to that of leading optimization 
methods, including MVO [1], ISA [66], CS [48], MBA [63], 
ABC [63], as well as models developed by Deb and Goyal 
[65] and Kannan and Kramer [64]. These results strongly 
affirm the effectiveness of the proposed nSCA algorithm, 
demonstrating its capabilities even when faced with chal-
lenges involving discrete variables. The proficiency of 
nSCA in managing discrete variables expands its range of 

applicability and emphasizes its suitability for addressing 
a diverse array of optimization problems across various 
disciplines.

4.5 � Welded Beam Design Challenge

The overarching aim of this engineering task is the mini-
mization of manufacturing costs associated with a welded 
beam. An overview of the system and structural param-
eters relevant to this challenge is provided in Fig.  13, 
emphasizing four principal design variables: the length 
of the attached bar (l), weld thickness (ℎ), the thickness 
of the bar (b), and the height of the bar (t). For the design 
to be considered feasible, the beam must satisfy seven 
specific constraints when subjected to a top-applied load. 
These constraints encompass various factors, such as side 
constraints, end deflection of the beam (δ), shear stress 
(τ), bending stress in the beam (θ), and the buckling load 

Table 8   Results of different algorithms on CEC 2017 test functions

Algorithm/
function

nSCA SCA MFO MVO

avg std avg std avg std avg std

f1 1.673E + 06 5.238E + 05 2.476E + 09 5.951E + 08 8.998E + 10 1.364E + 10 7.955E + 09 7.955E + 09
f2 2.033E + 02 1.264E + 00 2.223E + 04 3.760E + 03 1.818E + 05 2.033E + 02 2.024E + 04 2.024E + 04
f3 3.410E + 02 1.981E + 01 6.730E + 02 5.558E + 01 2.631E + 04 3.410E + 02 1.230E + 03 1.230E + 03
f4 6.406E + 02 4.522E + 01 3.529E + 03 5.403E + 02 9.054E + 04 6.406E + 02 1.122E + 04 1.122E + 04
f5 5.000E + 02 4.236E − 04 5.000E + 02 1.991E − 03 5.000E + 02 5.000E + 02 5.000E + 02 5.000E + 02
f6 7.056E + 03 4.454E + 03 2.505E + 04 7.862E + 03 7.053E + 04 7.056E + 03 2.392E + 04 2.392E + 04
f7 7.001E + 02 1.709E − 01 7.008E + 02 2.173E − 01 7.053E + 02 7.001E + 02 7.002E + 02 7.002E + 02
f8 8.096E + 02 4.336E + 00 8.036E + 02 9.177E − 01 8.778E + 02 8.096E + 02 8.138E + 02 8.138E + 02
f9 3.903E + 03 7.371E + 02 7.253E + 03 3.487E + 02 8.068E + 03 3.903E + 03 5.246E + 03 5.246E + 03
f10 6.458E + 04 3.440E + 04 1.017E + 05 1.532E + 04 3.610E + 07 6.458E + 04 1.124E + 06 1.124E + 06
f11 1.321E + 07 1.133E + 07 1.063E + 08 3.438E + 07 9.059E + 09 1.321E + 07 5.156E + 08 5.156E + 08
f12 7.148E + 05 3.690E + 05 3.980E + 07 1.212E + 07 9.857E + 09 7.148E + 05 4.184E + 08 4.184E + 08
f13 2.372E + 05 1.577E + 05 4.551E + 05 2.070E + 05 9.227E + 06 2.372E + 05 1.663E + 06 1.663E + 06
f14 3.103E + 05 1.236E + 05 6.645E + 06 3.256E + 06 5.068E + 09 3.103E + 05 2.501E + 08 2.501E + 08
f15 2.120E + 04 1.393E + 04 3.634E + 05 4.336E + 05 1.822E + 09 2.120E + 04 1.110E + 07 1.110E + 07
f16 1.898E + 04 1.139E + 04 5.566E + 04 1.777E + 04 2.214E + 12 1.898E + 04 6.087E + 04 6.087E + 04
f17 1.077E + 05 2.545E + 04 1.534E + 05 9.205E + 04 5.207E + 06 1.077E + 05 1.040E + 06 1.040E + 06
f18 1.231E + 05 5.499E + 04 4.547E + 08 4.226E + 08 5.496E + 13 1.231E + 05 1.007E + 10 1.007E + 10
f19 2.521E + 03 3.037E + 02 3.348E + 03 3.244E + 02 1.986E + 04 2.521E + 03 3.242E + 03 3.242E + 03
f20 2.370E + 03 1.358E + 02 4.111E + 03 5.749E + 02 7.309E + 04 2.370E + 03 6.899E + 03 6.899E + 03
f21 2.276E + 03 4.110E + 00 2.371E + 03 1.468E + 01 3.603E + 03 2.276E + 03 2.410E + 03 2.410E + 03
f22 2.580E + 03 1.023E + 02 9.680E + 03 9.584E + 02 4.918E + 04 2.580E + 03 1.512E + 04 1.512E + 04
f23 2.637E + 03 8.176E + 01 6.396E + 03 6.000E + 02 2.938E + 04 2.637E + 03 1.025E + 04 1.025E + 04
f24 2.825E + 03 1.424E + 01 3.068E + 03 3.961E + 01 1.338E + 04 2.825E + 03 3.174E + 03 3.174E + 03
f25 3.336E + 03 1.447E + 01 3.712E + 03 7.921E + 01 3.558E + 03 3.336E + 03 3.672E + 03 3.672E + 03
f26 3.129E + 03 2.173E + 01 3.345E + 03 3.687E + 01 3.339E + 03 3.129E + 03 3.258E + 03 3.258E + 03
f27 2.884E + 03 1.855E + 02 3.254E + 03 3.602E + 01 4.566E + 03 2.884E + 03 3.418E + 03 3.418E + 03
f28 6.838E + 04 2.680E + 04 2.513E + 08 2.280E + 08 1.260E + 12 6.838E + 04 2.028E + 08 2.028E + 08
f29 4.549E + 06 1.069E + 07 1.692E + 08 1.331E + 08 1.876E + 11 4.549E + 06 7.344E + 08 7.344E + 08
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on the bar (Pc). Comprehensive formulations pertinent to 
this task are outlined in Appendix 1.

Table 14 presents a comprehensive comparison between 
the nSCA and various other cutting-edge optimization tech-
niques. The findings presented in the table offer compelling 

evidence that the nSCA consistently achieves superior out-
comes when juxtaposed with established algorithms, includ-
ing SSA [68], RFO [51], MVO [1], GSA [1], CPSO [1], HS 
[53], and GA [67]. The outcomes elucidated in Table 14 dis-
tinctly illustrate that the nSCA proficiently identifies optimal 

Table 9   Results of different 
algorithms on CEC 2017 test 
functions (continued)

Algorithm/
function

WOA SSA GOA

avg std avg std avg std

f1 1.173E + 10 4.452E + 09 3.071E + 08 2.929E + 08 2.956E + 10 9.237E + 09
f2 3.673E + 04 8.689E + 03 1.784E + 04 1.657E + 04 5.578E + 04 1.473E + 04
f3 1.715E + 03 6.542E + 02 1.908E + 03 2.571E + 03 4.670E + 03 2.149E + 03
f4 2.681E + 04 7.889E + 03 1.316E + 04 4.742E + 03 4.233E + 04 1.131E + 04
f5 5.000E + 02 5.886E − 03 5.000E + 02 6.230E − 03 5.000E + 02 5.350E − 03
f6 8.931E + 03 5.754E + 03 5.636E + 03 5.043E + 03 2.185E + 04 1.046E + 04
f7 7.007E + 02 4.485E − 01 7.003E + 02 3.207E − 01 7.012E + 02 7.512E − 01
f8 8.223E + 02 8.944E + 00 8.154E + 02 5.883E + 00 8.267E + 02 9.067E + 00
f9 6.227E + 03 1.046E + 03 6.795E + 03 1.656E + 03 6.475E + 03 7.326E + 02
f10 2.917E + 05 7.841E + 05 3.683E + 06 1.335E + 07 1.764E + 05 5.627E + 04
f11 5.249E + 07 6.431E + 07 1.578E + 09 2.915E + 09 1.088E + 09 1.019E + 09
f12 1.407E + 08 1.761E + 08 6.667E + 08 2.042E + 09 1.329E + 09 1.832E + 09
f13 1.601E + 06 1.632E + 06 6.281E + 06 8.579E + 06 3.452E + 05 4.985E + 05
f14 2.814E + 07 1.275E + 08 1.133E + 08 3.035E + 08 1.720E + 08 2.098E + 08
f15 2.640E + 06 6.244E + 06 4.074E + 05 7.356E + 05 7.325E + 05 1.125E + 06
f16 8.209E + 04 4.352E + 04 1.957E + 13 7.809E + 13 8.121E + 04 4.987E + 04
f17 8.981E + 04 3.157E + 04 1.227E + 06 3.242E + 06 7.440E + 04 2.249E + 04
f18 1.514E + 09 2.366E + 09 2.108E + 08 1.027E + 09 6.913E + 09 7.999E + 09
f19 9.784E + 03 2.739E + 03 1.288E + 04 4.114E + 03 7.149E + 03 2.670E + 03
f20 1.634E + 04 7.044E + 03 1.209E + 04 6.494E + 03 2.574E + 04 1.137E + 04
f21 3.564E + 03 6.592E + 02 3.699E + 03 6.781E + 02 3.834E + 03 1.109E + 03
f22 2.580E + 04 1.206E + 04 2.173E + 04 1.507E + 04 3.682E + 04 1.030E + 04
f23 1.565E + 04 6.379E + 03 1.137E + 04 8.621E + 03 2.315E + 04 6.395E + 03
f24 3.434E + 03 2.334E + 02 3.956E + 03 9.404E + 02 4.441E + 03 8.919E + 02
f25 4.227E + 03 6.850E + 02 8.381E + 03 2.883E + 03 4.084E + 03 1.198E + 03
f26 3.778E + 03 2.764E + 02 4.033E + 03 3.799E + 02 3.462E + 03 2.093E + 02
f27 3.482E + 03 2.881E + 02 4.784E + 03 1.483E + 03 4.138E + 03 5.127E + 02
f28 2.356E + 08 4.259E + 08 8.230E + 11 3.834E + 12 4.714E + 08 4.628E + 08
f29 6.502E + 08 8.684E + 08 3.880E + 09 7.263E + 09 2.369E + 09 2.520E + 09

Fig. 9   Cantilever beam design challenge
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solutions even within the confines of complex constrained 
challenges.

The remarkable performance of the nSCA in effec-
tively navigating intricate problem spaces serves to 
underscore its potential in addressing practical engineer-
ing applications marked by multifaceted and intricate 
constraints. This further underscores the significant role 

that the nSCA plays as a valuable instrument within the 
domain of engineering optimization. Its capabilities offer 
promising avenues for the enhancement of problem-solv-
ing strategies and the facilitation of effective decision-
making processes.

5 � Conclusion

This study introduces an innovative approach that syn-
ergistically merges the roulette wheel selection (RWS) 
mechanism with opposition-based learning (OBL) to 
enhance the efficacy of the sine cosine algorithm (SCA) in 
navigating intricate search spaces. This integration gives 
rise to a novel iteration of the SCA, referred to as nSCA. 
The comprehensive assessment of nSCA performance is 
meticulously conducted through comparative experiments 
involving a range of state-of-the-art algorithms, including 
MVO, MFO, SSA, WOA, GOA, and the original SCA. To 
rigorously gauge its capabilities, 23 benchmark test func-
tions are employed, offering a thorough benchmarking of 
nSCA performance. Additionally, the practical effective-
ness of nSCA is demonstrated by successfully address-
ing five distinct engineering optimization problems. 

Table 10   Comparison findings of cantilever beam design challenge

Optimization technique Optimal parameters Optimal weight

x1 x2 x3 x4 x5

CS [48] 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999
SOS [49] 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996
ALO [50] 6.01812 5.31142 4.4883 3.49751 3.49751 3.49751
MVO [1] 6.023940221548 5.30601123355 4.4950113234 3.4960223242 2.15272617 1.3399595
GOA [6] 6.011674 5.31297 4.48307 3.50279 2.16333 1.33996
RFO [51] 6.00845 5.30485 4.49215 3.4984 2.14463 1.334954
COA [52] 6.017257314 5.307150983 4.491255551 3.508156789 2.149913022 1.33996
nSCA (This study) 5.944606 4.865280 4.503500 3.492579 2.134620 1.303342

Fig. 10   Pressure vessel design challenge

Table 11   Comparison findings 
of pressure vessel design 
challenge

Optimization technique Optimal parameters Optimal cost

Ts Th R L

PSO [53] 0.8125 0.4375 42.09127 176.7465 6061.078
DE [54] 0.8125 0.4375 42.09841 176.6377 6059.734
ES [55] 0.8125 0.4375 42.09809 176.6405 6059.746
ACO [56] 0.8125 0.4375 42.10362 176.5727 6059.089
MVO [1] 0.8125 0.4375 42.09074 176.7387 6060.807
GSA [1] 1.125 0.625 55.98866 84.4542 8538.836
AOA [57] 0.830374 0.416206 42.751270 169.345400 6048.784400
RFO [51] 0.81425 0.44521 42.20231 176.62145 6113.3195
SCSO [58] 0.7798 0.9390 40.3864 199.2918 5917.46
nSCA (this study) 0.779260 0.386883 40.358599 199.486844 5895.086
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The outcomes underscore the superiority of nSCA 
when compared to alternative evolutionary computation 
approaches, highlighting its ability to generate exception-
ally competitive solutions across both benchmark test 
functions and real-world engineering optimization chal-
lenges. These compelling findings emphasize the value of 
nSCA as an indispensable tool in the domain of engineer-
ing optimization, promising significant contributions to 

problem-solving strategies and decision-making processes. 
Given these substantial insights, it is evident that nSCA 
presents an impactful and robust approach well-equipped 
to address intricate optimization challenges encountered 
in real-world scenarios.

Appendix 1

Cantilever Beam Design

Consider:

Minimize:

Subject to:

Variable range:

Pressure Vessel Design Problem

Consider:

Minimize:

Subject to:

�⃗x =
[
x1x2x3x4x5

]
.

f
(
�⃗x
)
= 0.6224

(
x1 + x2 + x3 + x4 + x5

)
.

g
(
�⃗x
)
=

61

x3
1

+
27

x3
2

+
19

x3
3

+
7

x3
4

+
1

x3
5

− 1 ≤ 0.

0.01 ≤ x1, x2, x3, x4, x5 ≤ 100.

�⃗x =
[
x1x2x3x4

]
=
[
TsThRL

]
.

f
(
�⃗x
)
= 0.6224x1x3x4 + 1.7781x2x

2

3
+ 3.1661x2

1
x4 + 19.84x2

1
x3.

Fig. 11   Three-bar truss design challenge

Table 12   Comparison findings of three-bar truss design challenge

Optimization tech-
nique

Optimal parameters Optimal weight

x1 x2

Ray and Saini [59] 0.795 0.395 264.3
Tsai [60] 0.788 0.408 263.68
DEDS [61] 0.788675 0.408248 263.8958
PSO-DE [62] 0.788675 0.408248 263.8958
CS [48] 0.78867 0.40902 263.9716
MBA [63] 0.788565 0.40856 263.8959
ALO [50] 0.788663 0.408283 263.8958
MVO [1] 0.78860276 0.40845307 263.8958499
GOA [6] 0.788898 0.40762 263.8959
nSCA (this study) 0.788675135 0.408248290 263.8958434

Fig. 12   Gear train design chal-
lenge
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Variable range:

g1
(
�⃗x
)
= −x1 + 0.0193x3 ≤ 0,

g2
(
�⃗x
)
= −x2 + 0.00954x3 ≤ 0,

g3
(
�⃗x
)
= −𝜋x2

3
x4 −

4

3
𝜋x3

3
+ 1296000 ≤ 0,

g4
(
�⃗x
)
= x4 − 240 ≤ 0.

0 ≤ x1, x2 ≤ 99,

10 ≤ x3, x4 ≤ 200.

Table 13   Comparison findings of gear train design challenge

Optimization technique Optimal parameters Optimal gear ratio

nA nB nC nD

Kannan and Kramer 
[64]

33 15 13 41 2.1469E − 08

Deb and Goyal [65] 49 16 19 43 2.7019E − 12
ABC [63] 49 16 19 43 2.7009E − 12
MBA [63] 43 16 19 49 2.7009E − 12
CS [48] 43 16 19 49 2.7009E − 12
ISA [66] N/A N/A N/A N/A 2.7009E − 12
MVO [1] 43 16 19 49 2.7009E − 12
nSCA (this study) 43 16 19 49 2.7009E − 12

Fig. 13   Welded beam design 
challenge

Table 14   Comparison findings 
of welded beam design 
challenge

Optimization technique Optimal parameters Optimal cost

h l t b

GA [67] 0.1828 4.0483 9.3666 0.2059 1.82455147
HS [53] 0.2442 6.2231 8.2915 0.2443 2.3807
CPSO [1] 0.202369 3.544214 9.04821 0.205723 1.72802
GSA [1] 0.182129 3.856979 10 0.202376 1.87995
MVO [1] 0.205463 3.473193 9.044502 0.205695 1.72645
RFO [51] 0.21846 3.51024 8.87254 0.22491 1.86612
SSA [68] 0.2057 3.4714 9.0366 0.2057 1.72491
nSCA (this study) 0.204248 3.282510 9.035460 0.205798 1.697358



International Journal of Computational Intelligence Systems          (2023) 16:171 	

1 3

Page 23 of 25    171 

Three‑Bar Truss Design Problem

Consider:

Minimize:

Subject to:

Variable range:

where l = 100 cm, P = 2 KN/cm2, σ = 2 KN/cm2.

Gear Train Design Problem

Consider:

Minimize:

Variable range:

Welded Beam Design Problem

Consider:

Minimize:

�⃗x =
[
x1x2

]
=
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A1A2

]
.

f
�
�⃗x
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2
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�
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)2

.

12 ≤ x1, x2, x3, x4 ≤ 60.

�⃗x =
[
x1x2x3x4

]
= [hltb].

f
(
�⃗x
)
= 1.10471x2

1
x2 + 0.04811x3x4

(
14.0 + x2

)
.

Subject to:

Variable range:

where
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