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Abstract
It is a challenge to assemble an enormous amount of metagenome data in metagenomics. Usually, metagenome cluster 
sequence before assembly accelerates the whole process. In SpaRC, sequences are defined as nodes and clustered by a paral-
lel label propagation algorithm (LPA). To address the randomness of label selection from the parallel LPA during clustering 
and improve the completeness of metagenome sequence clustering, Spark-based parallel label diffusion and label selection 
community detection algorithm is proposed in the paper to obtain more accurate clustering results. In this paper, the impor-
tance of sequence is defined based on the Jaccard similarity coefficient and its degree. The core sequence is defined as the 
one with the largest importance in its located community. Three strategies are formulated to reduce the randomness of label 
selection. Firstly, the core sequence label diffuses over its located cluster and becomes the initial label of other sequences. 
Those sequences that do not receive an initial label will select the sequence label with the highest importance in the neigh-
bor sequences. Secondly, we perform improved label propagation in order of label frequency and sequence importance to 
reduce the randomness of label selection. Finally, a merge small communities step is added to increase the completeness of 
clustered clusters. The experimental results show that our proposed algorithm can effectively reduce the randomness of label 
selection, improve the purity, completeness, and F-Measure and reduce the runtime of metagenome sequence clustering.

Keywords Metagenome · Sequence clustering · Label diffusion · Spark graphx · Community detection

1 Introduction

In metagenomics, assembling large amounts of sequence 
data obtained by sequencing is a meaningful way to ana-
lyze microbial communities [1]. In the face of new viruses, 
metagenomics can greatly help uncover the properties of 

new viruses and early therapeutic warning [2]. However, 
an efficient and scalable method is needed to assemble the 
sequences due to a large amount of metagenome sequence 
data and complex assembly algorithms [3]. In order to 
achieve this goal, the idea of clustering sequence before 
assembly has been proposed in recent years, as shown in 
Fig. 1. So clustering for sequence becomes the focus of 
research before assembly [4].

Regarding sequence clustering for machine learning-
based. Kévin et al. [5] proposed a rank-flexible machine 
learning-based approach. The method labels sampled frag-
ments according to a given classification level and learns 
sequence classification model tailored to this resolution 
level. Liang et al. [6] reported DeepMicrobes, an algorithm 
for short-read metagenome sequences classification. Regard-
ing deep learning, an NMF-based generalized deep learning 
multi-view clustering (GDLMC) algorithm was proposed by 
Wang et al. In GDLMC, the implemented sequential updates 
the elements in the matrix guided by the learning rate [7]. 
Furthermore, in GDLC, the gradient values corresponding 
to the element updates were transformed into generalized 
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weights and generalized deviations [8]. Regarding sequence clustering for community detection, SpaRC [9] is proposed 
based on a parallel LPA [10] to cluster metagenome sequence. Lu et al. [11] used the Louvain algorithm [12] instead of 

LPA in SpaRC. The Louvain algorithm improved the com-
pleteness of clustering to a small extent. Regarding other 
clustering schemes, a pre-assembled binning method based 
on sparse dictionary learning and elastic network regulari-
zation was proposed by Kyrgyzov et al. [13]. This method 
exploits the sparsity and nonnegativity constraints inherent 
to k-mer count data and eliminates the interpretability prob-
lems associated with SVD.

SpaRC can cluster metagenome sequences and help alle-
viate assembly dilemmas [9]. It has shown high efficiency, 
high scalability, and flexible deployment in the face of mas-
sive data. SpaRC uses the parallel LPA to cluster and divide 
different sequences, while LPA is a community detection 
algorithm based on label propagation [10]. In the initial 
stage of LPA, a unique label is tagged to each node, and in 
each subsequent iteration, each node selects the one with 
the most labels among its neighbor nodes as its community 
label. One is randomly selected if multiple neighbors are 
tied for the first number of community labels. Therefore, 
LPA suffers from a random selection of labels. With the 
continuous iteration of the algorithm, a tiny error caused by 
this randomness will be cumulated throughout the operation 
and cannot be corrected in the whole process.

To address the randomness of label selection during 
clustering and improve the completeness of metagenome 
sequence clustering. This paper proposes a parallel label 
diffusion and label selection community detection algo-
rithm (PLDLS) based on SpaRC [14]. The algorithm uses 

multiple metrics to calculate the importance of node to 
select core node, and core node diffusion and fast label 
selection are performed [15]. Then random nature of 
label propagation is reduced using label frequency com-
bined with node importance. Last, the small communities 
resulting from clustering errors are merged. To solve the 
problem of low computational efficiency due to single-
computer processing [16]. The algorithm was deployed on 
Spark [17], whose fast in-memory computation improves 
the computational efficiency of sequence clustering.

This paper is organized as follows. Section 2 describes 
the steps and characteristics of PLDLS. Section 3 describes 
the datasets, hardware and software environments used for 
the experiments and reports the experimental results and 
result analysis. Section 4 concludes the paper and sketches 
issues for future work.

2  The Spark‑Based Parallel Label Diffusion 
and Label Selection Community Detection 
Algorithm (PLDLS)

PLDLS, a parallel community detection algorithm in the 
spark framework, is designed to address the randomness 
of label selection during clustering and improve the com-
pleteness of metagenome sequence clustering. The algo-
rithm combines four steps of node scoring and core node 

Fig. 1  Metagenome assembly 
process
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selection, core node diffusion and fast label selection, 
improved label propagation, and merge small communities 
to cluster the graph. The following is a detailed description 
of each step. Figure 2 illustrates the PLDLS flowchart for 
metagenomic sequence clustering.

2.1  Data Preprocessing

To enable the community detection algorithm to deal with 
metagenome dataset, SpaRC [9] proposed to evaluate 
whether an edge can be formed by calculating the number 
of shared k-mers between a pair of sequences, thus consti-
tuting a graph.

The sequence is split into k-mer of specified length and is 
filtered out the same k-mers. Two sequences form an edge if 
they satisfy the same threshold of the number of k-mers [18]. 
The composed undirected graph is used as the input data for 
the community detection algorithm. Each node in the graph 
represents a sequence.

2.2  Node Scoring and Core Node Selection

To avoid the randomness of label diffusion in the next stage 
[15]. The Jaccard similarity coefficient [19] and the degree of 
the nodes are used in the algorithm to define the importance of 
the nodes. The higher than average node importance is defined 
as the core node. Core nodes are strongly connected to other 
nodes in the same community.

The Jaccard similarity coefficient measures the degree of 
similarity between two sets. It reflects the complete similarity 
of elements between two nodes by calculating the ratio of the 
intersection of the neighbor nodes to their union. The similar-
ity between nodes is calculated by (1).

where Ni and Nj denote the set of neighbor of nodes i and j.
The node scoring phase requires two values to calculate the 

node importance value.
The first value is the sum of the similarity of nodes. The 

strength of the connection between node i  with neighbors is 
essential in determining whether node i is a core node in this 
community. Nodes with higher similarity have stronger ties 
with their neighbor nodes. The sum of similarity between node 
i  and neighbor nodes is calculated by (2).

where similaritysum(i) is the sum of similarity between node 
i and its neighbor nodes. Ni is the set of neighbor nodes of 
node i . j is a node in Ni.

The second value is the degree of node. The degree of 
node is defined as the number of neighbors of this node, 
and higher degree of node indicates that this node has more 
connections with neighbor nodes [20].

The importance value can be obtained by combining the 
strength of the node relations with its neighbors (sum of 
similarity) with the degree of the node. The importance of 
node i is calculated by (3).

Example 1: suppose there is now an initial community 
network, as shown in Fig. 3. The average node importance 
is 4.25, where nodes B, C, E, and H are the core nodes. 
Figure 3 is the initial graph where each node importance 
has been calculated. In node B, B denotes the node ID, and 
6 denotes the node importance.

(1)similarityJaccard
i,j

=
|Ni ∩ Nj|
|Ni ∪ Nj|

(2)similaritysum(i) =
∑

j∈Ni

similiarityJaccard
i,j

(3)NI(i) = similaritysum(i) × deg(i)2

Fig. 2  The flowchart of PLDLS for metagenome sequence clustering



 International Journal of Computational Intelligence Systems          (2023) 16:175 

1 3

  175  Page 4 of 12

2.3  Core Node Diffusion and Fast Label Selection

In this section, based on the core node selection in the 
previous section, the non-core nodes will select the label 
of the core node that satisfies the conditions as their 
labels [14]. Since all the nodes have received the labels 
assigned by the core nodes after the diffusion step, the 

label selection will be more accurate in the improved label 
propagation phase.

There are two stages of core node diffusion. In the first-
level diffusion stage, the importance of the neighbors of 
the core node is first calculated based on Eq. (3), and the 
node with the maximum importance is selected as the 
essential neighbor of the core node (first-level core node) 
[14]. The earliest selected node is selected if there is more 
than one maximum value. Then, the importance values of 
core node and first-level core node are calculated using 
Eq. (3). If the core node is less than the importance of the 

first level core node, the label of the core node is changed 
to the label of the first level core node. Last, the label of 
the node with the largest importance value between the 
two nodes is used as their common neighbors label.

In the second-level diffusion stage, in the beginning, 
the neighbor nodes of the first-level core nodes (first-level 

Algorithm 1  Data preprocess-
ing

Fig. 3  Example diagram of node scoring and core node selection

Algorithm 2  Node scoring and 
core node selection
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neighbor nodes) are found. Secondly, the similarity 
between the first-level core node and the first-level neigh-
bor node is calculated using Eq. (1). If the importance of 
the first-level core node is greater than the importance of 
the first-level neighbor node, and the similarity between 
them is greater than 0.5. In that case, the label of the first-
level neighbor node is updated to the label of the first-
level core node. Similarity greater than 0.5 indicates that 
more than half of the neighbors between the two nodes 
overlap [21], which suggests that the two nodes originally 
belonged to the same community.

After the above two diffusion processes, most of the 
nodes have been given attributed labels. The untagged 
nodes will choose the most important node among the 
neighbor nodes as the label.

Example 2: continuation of Example 1. The highest 
importance among the neighbor of the core nodes are 
selected as the first-level core nodes according to Fig. 3. 
In (a) of Fig. 4, The labels of nodes C and E are updated 
to labels L1 and L2, respectively. Since the importance 
of core nodes B and H is lower than that of the first-level 
core nodes C and E, nodes B and H labels are updated to 
L1 and L2, respectively.

In (b) of Fig. 4, the label of the node with the highest 
importance between the core node and the first level core 
node is selected as the labels of their common neighbors. 
Nodes C and E have the highest importance, so the com-
mon neighbor node A of nodes B and C change their labels 
to L1. The common neighbor nodes F and G of nodes E 
and H change their labels to L2.

In (c) of Fig. 4, the similarity of first-level neighbor 
nodes D and C is more significant than 0.5, and the impor-
tance of first-level core node C is greater than that of node 
D. So the label of node D is changed to label L1 of node C.

2.4  Improved Label Propagation

Spark provides the Pregel API [21], a large-scale graph com-
putation framework, in the GraphX component. The algo-
rithm uses the Pregel API to compute the graph during the 
improved label propagation phase.

After the above stage, all nodes have updated their initial 
labels. In this stage, the improved parallel label propagation 
process performs several iterations [19]. All nodes will cal-
culate the label frequency of neighbor nodes synchronously, 
and then the label with the highest frequency is selected 
and updated as its label. If there is more than one label 
with the highest frequency, the node label with the highest 
importance is selected by calculating the node importance 
according to Eq. (3). The first label received is selected if 
the highest importance has more than one equal. Until the 
labels of all nodes no longer change.

Example 3: continuation of Example 2. Take Fig. 5 as an 
example. Node D receives two labels L1 and L2. Since the 
labels have the same frequency, then node D selects label L2 
of node E with the highest importance as its label.

Fig. 4  a, b is an example diagram of the first-level diffusion stage; c is an example diagram of the second-level diffusion stage
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2.5  Merge Small Communities

After the improved label propagation, most of the nodes 
received the final label. However, there are still some nodes 
that belong to the same community that are divided into 
several small communities. These small communities cause 
a decrease in completeness, so merge small communities is 
needed.

In this section, communities with smaller than average 
community values are categorized as small communities. 
The node with the highest degree in each small communities 

is selected as the backup node. If the neighbor node with 
the highest degree has a different label than the backup 
node, then label of all nodes in the backup node community 
are updated to the label of neighbor node with the highest 
degree. If they are the same, no update is required. This 
completes the merging of communities and forms the final 
community.

Example 4: continuation of Example 3. Taking Fig. 6 
as an example, all nodes in Fig. 5 in the previous section 
are divided into two communities. The average commu-
nity size is 4. The label L1 community is defined as a small 

Algorithm 3  Core node diffu-
sion and fast label selection

Fig. 5  Example diagram of 
label propagation step
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community. Node C is selected as a backup node for the 
small community. Node D is a neighbor node whose degree 
is more significant than node C, and both are labeled differ-
ently. So the community label belonging to backup node C 
is updated to label L2. The final result is shown in Fig. 6.

3  Experiments

3.1  Dataset and Experimental Environment

Table 1 describes the three datasets from CAMI2 [22]. 
CAMI2 is a simulation dataset from the second CAMI Chal-
lenge (https:// data. cami- chall enge. org/ parti cipate). This 
dataset contains 64 samples with different genome cover-
age. The first dataset is from the human microbiome. The 
second dataset uses mouse gut sample16, and the third uses 
mouse gut sample18.

The algorithms are programmed in Scala programming 
language and publicly available to download from https:// 

github. com/ xuyan gwu20 23/ Metag enome Clust ering. The 
detailed equipment and configuration of each computational 
nodes are Memory: 16 GB; Disks: 64 GB; Java version: 
JDK1.8; Scala version: 2.12; Hadoop(HDFS) version: 3.1.1; 
Spark version: 3.2.0.

3.2  Evaluation Indicators

This paper evaluates the results using four metric measures: 
purity, completeness, F-Measure, and run-time.

Purity indicates the degree to which a cluster contains the 
same genome after clustering, and the purity metric for the 

Fig. 6  Example diagram of 
merge small communities step

Table 1  Dataset

Dataset Read length(bp) Read number Size(GB)

Human Sample_15 150 × 2 250,000 0.8 G
MouseGut Sample_16 150 × 2 400,000 1.1 G
MouseGut Sample_18 150 × 2 400,000 1.2 G

https://data.cami-challenge.org/participate
https://github.com/xuyangwu2023/MetagenomeClustering
https://github.com/xuyangwu2023/MetagenomeClustering
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results is divided into median purity and average purity. The 
purity is calculated by (4).

Completeness indicates the extent to which sequences of 
the same genome are clustered in a single cluster. As with 
purity, the completeness measure for the results is divided 
into median and average completeness. The completeness 
is calculated by (5).

The F-Measure is derived from the combination of purity 
and integrity and is calculated by (6).

where P is purity, R is completeness, and � is the parameter 
that adjusts the weights of both equal to 1.

3.3  Comparative Experimental

To validate the effectiveness of PLDLS in metagenome 
sequence clustering, this paper validates the performance 
of four algorithms, PLDLS, LPA [9], Louvain [12], and 
COPRA [23], on three different datasets. COPRA is based 
on improving the LPA to discover overlapping communities.

Since the actual community segmentation results of this 
test dataset are known, this paper evaluates the performance 
of cluster results in four aspects: purity, completeness, 
F-Measure, and time.

(4)Pj =
maxai1∑n

i=1
ai1

, 1 ≤ j ≤ m

(5)Ci =
maxa1j
∑m

j=1
1j
, 1 ≤ i ≤ n

(6)F� =
(�2 + 1)P.R

�2.P + R

3.3.1  The Purity of Clustering

Regarding purity, the average purity of PLDLS is signifi-
cantly higher than the other algorithms on the three datasets. 
However, the median purity of PLDLS on the Human Sam-
ple 15 and MouseGut Sample 18 datasets is slightly lower 
than that of LPA. This occurs mainly because LPA clusters 
too many low-purity clusters, resulting in a lower average 
purity than PLDLS. As shown in Table 2.

Figure 7 shows the purity distribution maps derived from 
the MouseGut Sample16 dataset on the four algorithms. 
Where (a) is the clustering result derived by PLDLS. Most 
clusters have their purity concentrated between 90 and 
100%, and only a few are below 80%. (b) is the clustering 
result from the LPA, most of the clusters are concentrated 
between 80 and 100% purity, and a considerable number 
of clusters are below 80% region. (c) and (d) is the purity 
distribution obtained by COPRA and Louvain; nearly half 
of the clusters are below 80% purity.

We counted the purity data of the ten most significant 
clusters in the PLDLS and LPA for the MouseGut Sample16 
dataset. The data show that although three of the ten most 
significant clusters in the LPA have higher purity than the 
PLDLS, the overall purity of the clusters in the PLDLS is 
higher. The specific results are shown in Fig. 8.

3.3.2  The Completeness of Clustering

Table 3 shows the completeness of the four algorithms on 
the three datasets. The results show that the median and 
average completeness metrics of PLDLS on the three data-
sets are significantly higher than the other algorithms by 
about 25–60%.

Figure  9 shows the completeness distribution of the 
MouseGut Sample16 dataset derived from the four algo-
rithms. The clustering completeness of the PLDLS is pri-
marily distributed above 40% and more concentrated in the 
80% region. The clustering completeness of the LPA and 
COPRA is primarily distributed below 40%. The complete-
ness of the Louvain is primarily distributed below 20%.

Figure 10 shows the completeness statistics of the top 
ten most significant clusters in the clustering results of the 
LPA and PLDLS on the MouseGut Sample16 dataset. From 
the data presented by the results in the figure, it can be seen 
that the completeness of the top ten most significant clusters 
found by the PLDLS is significantly higher than that of the 
top ten clusters found by the LPA.

3.3.3  The F‑Measure of Clustering

We compared the F-Measure of the PLDLS and the other 
three algorithms, as Table 4 shows. The F-Measure [24] 

Table 2  Purity comparison

Bold indicates the best record of four algorithms for each dataset

Dataset Algorithm Mean_Purity (%) Median_
Purity (%)

Human Sample15 PLDLS 87.12 96.30
LPA 86.94 96.53
COPRA 77.99 87.50
Louvain 81.11 89.30

MouseGut Sample16 PLDLS 96.29 98.34
LPA 92.98 97.76
COPRA 86.11 95.04
Louvain 76.44 94.44

MouseGut Sample18 PLDLS 96.58 98.07
LPA 94.76 99.21
COPRA 90.97 95.87
Louvain 74.56 75.00
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of PLDLS is significantly higher than the other algo-
rithms in the three datasets. The clusters formed by 
PLDLS after clustering are closer to the number of clus-
ters of the actual data, and the closer the clusters formed 
after clustering is to the number of real clusters, the better 
the clustering effect is.

Fig. 7  Purity distribution plots 
for the MouseGutSample16 
dataset. a is the purity distribu-
tion plot from the PLDLS, b is 
the purity distribution plot from 
the LPA, c is the purity distribu-
tion plot from the COPRA, and 
d is the purity distribution plot 
from the Louvain

0

50

100

150

1 2 3 4 5 6 7 8 9 10

The Purity of the Maximum Ten Clusters                      

LPA PLDLS

Fig. 8  LPA and PLDLS to find the ten clusters with the greatest 
purity

Table 3  Completeness comparison

Dataset Algorithm Mean_com-
pleteness (%)

Median_com-
pleteness (%)

Human Sample15 PLDLS 62.26 61.06
LPA 28.69 23.79
COPRA 5.28 4.33
Louvain 8.56 9.43

MouseGut Sample16 PLDLS 76.41 81.65
LPA 19.14 19.07
COPRA 8.59 7.95
Louvain 10.81 10.34

MouseGut Sample18 PLDLS 87.71 89.80
LPA 60.54 61.68
COPRA 19.65 21.27
Louvain 12.39 11.93
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3.3.4  The Runtime and Parallelism of Clustering

Spark uses Resilient Distributed Dataset (RDD) as the pri-
mary data structure. The data are partitioned and deployed 
on different nodes, where parallelism is the number of data 

partitions. According to research, the running efficiency of 
Spark-based programs is affected by parallelism, so we set 

Fig. 9  Completeness distribu-
tion of the MouseGut Sample16 
dataset. a is the completeness 
distribution from PLDLS, b is 
the completeness distribution 
from LPA, c is the completeness 
distribution from COPRA, and 
d is the completeness distribu-
tion from Louvain

0

50

100

150

1 2 3 4 5 6 7 8 9 10

The Completeness of the Maximum Ten  Clusters

LPA PLDLS

Fig. 10  LPA and PLDLS to find the ten clusters with the greatest 
completeness

Table 4  F-Measure comparison of four algorithms

Dataset Algorithm F-Measure Clusters

Human Sample15 PLDLS 0.72 343
LPA 0.42 4122
COPRA 0.10 7604
Louvain 0.15 52,434

MouseGut Sample16 PLDLS 0.85 143
LPA 0.31 872
COPRA 0.15 1390
Louvain 0.18 19,292

MouseGut Sample18 PLDLS 0.91 152
LPA 0.73 2028
COPRA 0.31 3622
Louvain 0.21 35,758



International Journal of Computational Intelligence Systems          (2023) 16:175  

1 3

Page 11 of 12   175 

different parallelism degrees to test the effect on the running 
time efficiency of the PLDLS.

We test the parallelism of the PLDLS on MouseGut Sam-
ple18, as shown in Fig. 11. The experimental results show 
that when the value of spark.default.parallelism is taken to be 
no more than six times of Executor-Cores, the program runs 
with an error of no more than 1 min. If it exceeds six times, 
the program runtime increases significantly. If the parallel-
ism is set too high, many small tasks will be generated, and 
these small tasks will take up more resource overhead. Too 
few partitions will cause the cluster resources not to be fully 
utilized, making the algorithm performance suffer. 

Figure 12 records the clustering runtimes of the four algo-
rithms on the MouseGut18 dataset.

In general, the serial experiments show that PLDLS runs 
slower than Louvain and COPRA. However, the complete-
ness, purity, and F-Measure metrics of clustering are bet-
ter than Louvain, COPRA, and LPA. If a trade-off is made 
between time and clustering effectiveness, the PLDLS is 
more suitable for sequences clustering.

4  Conclusion

In this paper, spark-based label diffusion and label selection 
community detection algorithm for metagenome sequence 
clustering is developed. To reduce the randomness in the 

sequence clustering process, firstly, the algorithm selects 
the core sequence based on the importance of the sequence, 
then selects core sequence and spreads the labels of core 
sequence to other sequences. Secondly, the algorithm per-
forms improved label propagation based on label frequency 
and sequence importance. Finally, the small communities 
are merged.

Experimental evaluation of purity and completeness 
proves that although the proposed method has a slower run-
ning time than COPRA, Louvain, our algorithm improves 
the purity of the clustering results and significantly improves 
the completeness of the clusters without degrading the 
purity. In future work, we want to combine parameter opti-
mization models for metagenome sequence clustering with 
existing tools.
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