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Abstract
Natural language processing (NLP) based on deep learning provides a positive performance for generative dialogue system, 
and the transformer model is a new boost in NLP after the advent of word vectors. In this paper, a Chinese generative dialogue 
system based on transformer is designed, which only uses a multi-layer transformer decoder to build the system and uses the 
design of an incomplete mask to realize one-way language generation. That is, questions can perceive context information 
in both directions, while reply sentences can only output one-way autoregressive. The above system improvements make 
the one-way generation of dialogue tasks more logical and reasonable, and the performance is better than the traditional 
dialogue system scheme. In consideration of the long-distance information weakness of absolute position coding, we put 
forward the improvement of relative position coding in theory, and verify it in subsequent experiments. In the transformer 
module, the calculation formula of self-attention is modified, and the relative position information is added to replace the 
absolute position coding of the position embedding layer. The performance of the modified model in BLEU, embedding 
average, grammatical and semantic coherence is ideal, to enhance long-distance attention.

Keywords Relative position embedding · Natural language processing · Attention mechanism

1 Introduction

Natural Language Processing (NLP) is a critical area of 
research that aims to enable machines to emulate human lan-
guage and engage in seamless conversations with humans. 
This encompasses the capacity to read, comprehend, and 
fluently use language, master, and apply knowledge, and 
engage in logical thinking and inference [1–3]. Improved 
language intelligence through deep learning methods not 
only enhances a computer's ability to comprehend language 

but also facilitates emotional expression and logical reason-
ing. Consequently, there are numerous potential applications 
for natural language processing solutions based on deep 
learning.

In the field of NLP, the adoption of recurrent neural net-
works (RNN) [4], attention mechanisms [5], and transform-
ers [6] within end-to-end dialogue systems has significantly 
elevated the language comprehension and expression capa-
bilities of these systems. In the earlier stages, RNN-based 
language models (RNNLM) gained prominence, achieving 
breakthroughs in NLP tasks. However, researchers soon 
encountered challenges related to long-range dependen-
cies during model training. This arose from the tendency 
of weight parameters in RNN-based models to approach 
extremes, resulting in slow convergence and imprecise train-
ing outcomes. The introduction of long–short-term memory 
(LSTM) [7–10] addressed this issue. LSTM, a variant of 
RNN, is better suited for processing lengthy sequences due 
to its architectural design, which incorporates three gate 
structures (input gate, output gate, and forgetting gate) for 
controlling information flow.

The concept of sequence-to-sequence (Seq2Seq) [11, 
12] models emerged in 2014 as a method to generate 
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sequences based on given input sequences. Initially applied 
to machine translation, Seq2Seq models addressed the 
challenge of handling variable-length input and output 
sequences. Over time, these models have shown promise in 
other NLP tasks, such as text summarization and dialogue 
generation. However, during the decoding phase, limita-
tions were identified. The initial approach relied heavily 
on the last hidden layer state of the encoder, resulting in 
suboptimal information utilization [13]. In addition, when 
processing long input sequences, the fixed-length seman-
tic vector struggled to retain critical feature information, 
leading to reduced accuracy. To overcome these issues, 
attention mechanisms were introduced [14].

The concept of attention mechanisms was initially pro-
posed by Bahdanau et al. for machine translation and later 
improved by Luong et al. [15, 16]. Drawing inspiration 
from human selective attention, attention mechanisms 
mimic the human process of rapidly scanning and focus-
ing on relevant information while disregarding irrelevant 
details. In the context of deep learning, attention mecha-
nisms act as a resource allocation mechanism [17–19]. 
They dynamically redistribute the weight of information 
based on its importance, ensuring that critical informa-
tion is given higher weight, while less important informa-
tion is assigned lower weight. This feature extraction and 
sequential data analysis capability has found applications 
in various fields, including language modeling and image 
processing [20, 21].

Attention mechanism in the decoding process [22], each 
output not only depends on the fixed-size semantic vector 
encoded by the encoder, but also depends on the hidden 
layer state of the previous output unit and the corresponding 
hidden layer state of the current output unit in the decoding 
process. Attention is introduced into the Seq2Seq model to 
solve the problem that the original RNN often loses part 
of the input sequence information, and the accuracy of the 
model is improved. In the specific translation task [23, 24], 
the decoding phase is to translate one word by one word in 
the time series. When decoding one word, it will not have the 
same association with all the words in the source sequence. 
In the decoder phase, the selected reference contributes the 
most to the semantic vector of the current sequence word, 
rather than uniformly referring to all the semantic vectors.

The introduction of attention mechanisms into Seq2Seq 
models aimed to address limitations in retaining input 
sequence information and improve model accuracy. Dur-
ing the decoding phase, rather than uniformly considering 
all input semantic vectors, attention mechanisms enable 
the model to selectively focus on the most relevant refer-
ence for the current sequence word. Prior to this develop-
ment, the most effective language models were based on 
Seq2Seq architecture with LSTM for modeling. However, 
this approach lacked parallel computing capabilities during 

training, limiting the model's ability to meet the computa-
tional demands of increasingly larger corpora.

To fill the vacancy mentioned above. In this research, we 
introduced the implementation of a transformer-based gen-
erative dialogue system tailored for Chinese text. Theoretical 
foundations of the basic methods and process design were 
proposed. We designed a multi-turn generative dialogue 
system with an end-to-end structure that encodes natural 
language sentences into the model's vector space and gen-
erates sequences as output through the generative dialogue 
system's decoding process. When modeling and training the 
system, multi-turn statements were input in segments, and 
a self-regressive method was used to create a unidirectional 
generative language model. Generated words were continu-
ously appended to the input until an end token was reached. 
We introduced a novel method to enhance long-distance 
attention within the dialogue system, replacing absolute 
position encoding in the position embedding module with 
relative position encoding. To test the effectiveness of rela-
tive position encoding in mitigating long-range information 
decay, we conducted experiments using multi-turn dialogue 
data sets, including the STC label data set and test data 
set. We compared the results with classical dialogue base-
line models. The experimental results indicated that as the 
sequence length increased, accuracy improved, and the loss 
value decreased. This aligns with the expected outcomes of 
introducing relative position encoding, demonstrating that 
relative position encoding is better suited to handling long-
text sequences compared to absolute position encoding. This 
underscores the effectiveness of our research optimization. 
In conclusion, the use of relative position encoding miti-
gates the issue of weak long-distance information, thereby 
enhancing the dialogue system's understanding of long-
range information.

2  Related Work

2.1  End‑to‑end Dialogue Systems

Tomas et al. proposed a language model RNNLM based on 
RNN in 2010[25, 26]. The model uses the vector of hidden 
states to record the historical information of word sequences. 
Hidden states can obtain long-range dependencies in the lan-
guage. In the past, language models can only use the sliding 
window information of the front and back n words to predict 
the target words, while the advantage of the cyclic neural 
network is to fully use the context information to predict 
the target words. Sundermeyer et al. Introduced LSTM into 
the language model in 2012 and proposed LSTM–RNNLM 
[27]. The article mentions that LSTM has advantages over 
feed-forward neural networks, because it can utilize long-
term contextual information. However, standard gradient 
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descent algorithms do not perform well in learning long-
term dependencies due to the instability of gradient com-
putation. To solve this problem, the article introduces an 
improved RNN architecture, namely, LSTM. LSTM controls 
the flow of information by introducing input gates, forget 
gates, and output gates, thereby avoiding the problems of 
gradient disappearance and gradient explosion.

2.2  Seq2Seq Eencoder–Decoder Model

Seq2Seq is an encoder–decoder model [28]. The encoder 
and decoder are two cyclic neural networks, using the above-
mentioned LSTM or its variant GRU. The recurrent neural 
network is an autoregressive network structure. The out-
put of the last time in the sequence is the input of the next 
time. The function of the first recurrent neural network is 
to embed the input sequence into the fixed-length semantic 
vector space. The vector represents the characteristics of the 
input sequence. The network is named encoder. The other 
task of RNN is to generate the output sequence from the 
fixed-length vector. The network is named decoder. Seq2Seq 
model based on recurrent neural network (LSTM or GRU) 
has achieved good results.

In their research, Tianyu Liu et al. proposed a novel 
structure-aware seq2seq model for generating table-to-text 
descriptions [29]. This model improves generation perfor-
mance by introducing an attention mechanism and a dual 
attention mechanism. The model can better utilize the struc-
tural information of the table and generate descriptions 
related to the content of the table. The results show that the 
model outperforms traditional statistical language models 
and basic seq2seq models in generative performance.

2.3  Transformer‑Based Language Model

In 2017, the language model based on the transformer began 
to try not to rely on RNN and LSTM modeling [30]. Trans-
former was proposed by Google in its paper on machine 
translation tasks, and achieved very good translation results, 
which consists of a positionwise feed-forward network 
(FFN) layer and a multi-head attention layer. FFN is used in 
each position separately, which can guarantee the position 
information of each symbol in the input sequence during 
operation. The latter makes the model focus on informa-
tion from different representation subspaces from different 
positions [31].

Transformer uses the self-attention mechanism to model 
the language model. Compared with RNN, self-attention 
mechanism not only increases the training parameters, but 
also realizes the parallelization through the complexity of 
space and parameters [32], which greatly accelerates the 
training efficiency of the model. In addition to being more 
parallelizable, the transformer establishes long-distance 

dependence through the self-attention mechanism. Trans-
former model is unable to process long sequences due to its 
self-attention operation, which scales quadratically with the 
sequence length [33]. Relative position coding originated 
from Google's paper [34]. Shan et al. restricted the scope 
of self-attention to reduce the hybrid network model’s con-
sumption of memory and calculations and use the relative 
position encoding to improve robustness of the model. It is 
generally believed that relative position coding is inspired by 
absolute position coding [35]. Relative position information 
coding does not completely model the position information 
of each input but considers the relative distance between the 
current position and the position to be noticed when calcu-
lating attention, because natural language generally depends 
more on relative position. Therefore, relative position coding 
usually has excellent performance, and it is more flexible.

3  Methods

In this section, we will provide a detailed overview of the 
fundamental methods and process design employed in our 
study. The entire multi-turn generative dialogue system has 
been devised as an end-to-end structure. It takes natural lan-
guage sentences, encodes them into a model vector space, 
and generates sequences as output through the generative 
dialogue system's decoding process. Furthermore, we pro-
pose the use of relative position encoding for self-attention 
computations, replacing the absolute position encoding in 
the dialogue system. This modification enhances long-range 
attention capabilities.

3.1  Dialogue System Implementation

First, a dialogue model network based on encoder–decoder 
is proposed, and the autoregressive model is adopted in the 
implementation process. In the autoregressive model, the 
statements in the dialogue system are defined as the follow-
ing equation:

where X is a natural language sentence. xi represents 
the word vector of the ith word, so the problem turns 
into encoding these sequences. Suppose the question is 
X = (a, b, c, d, e, f ) , target output is Y = (P,Q,R, S, T) , the 
encoder–decoder structure of a basic dialogue system is 
shown in Fig. 1.

On the left of Fig. 1 is the encoder of the dialogue system, 
which is responsible for encoding the variable length input 
sequence as long as possible into a fixed-length semantic 
vector. Theoretically, this fixed-length vector should contain 
all the useful information of the input sentence. The decoder 

(1)X = (x1, x2,… , xt)
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of the dialogue system is responsible for decoding the vector 
just encoded into our desired output sequence. Unlike the 
encoder, the decoder must be "unidirectional and recursive", 
because the decoding process is recursive. The specific pro-
cess is as follows:

1) All output terminals start with the general identi-
fier < CLS > tag and end with the < SEP > tag. These two 
identifiers are also regarded as one word;

2) Input < CLS > to the decoder, then obtain the hidden 
layer vector, mix this vector with the output of the decoder, 
and then input it to the interpreter. The result of the inter-
preter should be output as p;

3) Then input P into the decoder to obtain a new hidden 
layer vector, mix it with the output of the encoder again, and 
input it into the interpreter, which should output Q;

4) Recurse successively until the output of the interpreter 
is < SEP > .

In the decoding process of the decoder, the output lan-
guage model is shown in the following equation:

The so-called one-way language model, in a narrower 
sense, should be called positive language model. The cru-
cial factor is that we cannot get "future" data. For example, 
in Eq. (2), there is no additional input during predicting P; 
When forecasting Q, you can only enter P; when forecasting 
R, you can enter P, Q; and so on.

As shown in Fig.  2, assume that the desired output 
result is Y =  , when 

(2)
p(P,Q,R, S, T) = p(P)p(Q|P)p(R|P,Q)p(S|P,Q,R)p(T|P,Q,R, S)

the decoder outputs, first the prediction result starts with 
the < CLS > identifier, input < CLS > into the decoder to 
get "气", continue to input into the encoder to get y in turn 
Y = 。

In the basic architecture, the transformer model is used 
to implement Seq2Seq. At this time, some key prior knowl-
edge is introduced: considering that the input language and 
output language are Chinese, the hidden layer of encoder 
and decoder can share parameters and share the same set 
of word vectors, which will greatly reduce the number of 
parameters. The dialogue system is realized through multi-
layer transformer decoder.

Considering that the dialogue system is suitable for multi-
ple rounds of dialogue tasks, there is a context sentence seg-
ment with multiple rounds in the dialogue in the input text, 
which is expressed in English segment. The dialogue system 
introduces segment-level recurrence mechanism (SLRM), 
which stores the information of the previous segment every 
time and splices it with the information of the current seg-
ment. Suppose that there are two segments with length L in 
a sample data text, expressed as s� =

(
x�,1, x�,2,… , x�,L

)
 and 

s�+1 = (x�+1,1, x�+1,2,… , x�+1,L) . Suppose the hidden layer 
information stored in s� is represented as h� ∈ RL×D , D rep-
resents the dimension of the hidden layer vector, then the 
calculation method of s�+1 is as Eqs. (3)–(5):

SG represents a stop gradient, which means that the 
parameters of the previous segment remain unchanged. The 
length of the hidden layer is increased through sequence 
splicing, and then the whole enters the transformer model 
for training. The specific process of transformer is shown 
in Fig. 3.

To sum up, the network structure of the dialogue sys-
tem is mainly composed of the input layer, feature splicing 
layer, transformer decoder layer and output layer. The spe-
cific steps are:

1) Each data sample is spliced by multiple rounds of 
dialogue text. The LCCC (large-scale cleaned Chinese 
conversation) corpus data [36] preprocessing process is 
used to splice multiple rounds of dialogue into a language 
sequence for natural language processing, that is, first, take 
the [CLS] tag as the starting character, extract continuous 
dialogue sentences and fill in the input sample, insert the 
[SEP] tag between the sentences of different speakers, and 
set the maximum length. Note that the sequence length of 
the input sample is N.

(3)h̃�+1 =
[
SG

(
h�
)
◦h�+1

]

(4)q�+1, k�+1, v�+1 = h̃�+1Wq, h̃�+1Wk, h̃�+1Wv

(5)h�+1 = Transformer(q�+1, k�+1, v�+1)

Fig. 1  Seq2Seq structure of dialogue system

Fig. 2  Unidirectional language model
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2) To encode the data samples, first organize all words 
into a word table. By default, the word is the minimum gran-
ularity unit of the word vector. After the word table is estab-
lished, record the number of word tables as V, and convert 
each word into a single hot coding vector to obtain N × V 
size matrix as a training sample. The specific operation is 
to set the value at the index i dimension to 1 and the others 
to 0. Taking Fig. 2 as an example, it is assumed that the 
processed sample is Y =  , 
then N = 6, V = 6. The unique heat code in this scenario is 
described as the following equation:

3) Learn the word embedding matrix W  , and transform 
the unique hot coding into a word vector suitable for the 
subsequent transformer model by initializing it into a ran-
dom word embedding matrix. The word embedding matrix 
XWE = XW of N × D is obtained by embedding the input 
words of the unique encoding into the network, where D 
represents the embedding dimension of the word embed-
ding vector, and W is the word embedding matrix, with 
the size of V × D.

4) Add segment embedding code. Segment embedding 
code indicates different roles of dialogue, which is rep-
resented by SegmentID. The specific vector content is a 
D-dimensional line vector filled with all 0 or all 1, where 
0 or 1, respectively, represents the questioner or respond-
ent, and N D-dimensional row vectors are spliced into a 

(6)

segment embedding matrix XSE of D × N according to the 
statement sequence.

5) To enhance the word vector representations with 
position coding information, a different approach is 
required when compared to cyclic neural networks. The 
transformer model, unlike cyclic neural networks, relies on 
the self-attention module and does not employ recursive 
operations. Consequently, it is unable to naturally cap-
ture timing information within the input text sequence and 
lacks inherent positional information for different word 
vectors in sentences. To address this limitation, the posi-
tion information for each word needs to be incorporated 
into the word vectors. This enables the transformer model 
to distinguish the temporal sequence relationships among 
words within the current word order. To achieve this, posi-
tion embedding is introduced, with the dimension of the 
position embedding set to N × D. The method employed 
is the trigonometric function-based absolute position cod-
ing, often referred to as sinusoidal position coding [37, 
38]. This technique integrates positional information into 
the input by performing a linear transformation using 
both sine and cosine functions, as shown in the following 
equation:

Equation (7) is the absolute position information cod-
ing formula; k represents the position of the word in the 
sentence. The value range is (0, N). d represents the dimen-
sion of the position vector, pk,2i , pk,2i+1 represents the 
(2i)th , (2i + 1)th components of the position coding vector, 

(7)

⎧⎪⎨⎪⎩

pk,2i = ���(
k

10000
2i
d

)

pk,2i+1 = ���(
k

10000
2i
d

)

Fig. 3  Flow chart of trans-
former-based generative 
dialogue system
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respectively, that is, the coding is calculated by sine func-
tion and cosine function in even dimension and odd dimen-
sion, respectively, to get XPE . Thus, timing information with 
periodic changes is generated. The position is embedded 
in the dimension of the length n of the sample sequence. 
With the increase of the dimension number, the cycle will 
become slower and slower. Therefore, the model containing 
position texture information will be generated in even and 
odd dimensions. From this, the dependence between posi-
tions and the timing characteristics of natural language can 
be learned.

6) Feature fusion, calculate the matrix after adding loca-
tion information and segmentation information, as shown in 
the following equation:

To avoid data loss, three information matrices can be 
spliced together 

(
XWE XSE XPE

)
 , due to formula (7), the 

three information matrices are added directly, as shown in 
the following equation:

7) Input XE into language expression layer is stacked by 
several layers of transformer decoder units, and the specific 
calculation of each layer module is as Eqs. (10)–(12):

Introduce the self-attention mechanism to calculate the 
attention moment matrix Z. First, XE is multiplied by three 
D × D size weight matrices WQ,WK ,WV to obtain the query 
matrix Q, key matrix K and value matrix V:

The specific formula of attention mechanism is as the 
following equation:

Suppose a sentence is X = (x1, x2, x3, x4) , that is, there 
are four-word vectors in the statement. After the operation 
from Eqs. (10) to (12), the respective query vector Q , key 
vector K and value vector V  are obtained, respectively. As 
shown in Fig. 4:

When calculating the self-attention vector of the first word 
x1 , it is necessary to calculate the dot product between the 
key vector of all words and the query vector of the current 

(8)
�
XWE XSE XPE

�⎛⎜⎜⎝

WE

WS

WP

⎞
⎟⎟⎠
= XWEWE + XSEWS + XPEWP

(9)XE = XWE + XSE + XPE

(10)Q = XEW
Q = [q1, q2,… , qN]

(11)K = XEW
K = [k1, k2,… , kN]

(12)V = XEW
V = [v1, v2,… , vN]

(13)Attention(Q,K,V) = softmax

�
QKT

√
dk

�
V

word x1 to get the score. Each score is divided by the square 
root of 

√
dk to get Si, i = 1, 2, 3, 4 . Then, calculate Softmax 

to normalize the scores of all words to ai, i = 1, 2, 3, 4.
This study adds a multi-head attention matrix to the Q , 

K , and V  matrices to improve the attention unit's ability to 
extract multiple semantics of a word [39–43]. The sche-
matic diagram of multi-head attention is shown in Fig. 5. 
In this example, the implementation process of multi-head 
attention mechanism is to define the super parameter h = 3 
to represent the number of heads, divide D into h parts, 
and divide Q, K and V into parts 

(
Qi,Ki,Vi

)
, i = 1, 2, 3 

through linear mapping, calculate attention for each part. 
The process is shown in Eqs. (14)–(16):

Fig. 4  Specific process of attention calculation

Fig. 5  Multi-head attention
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W0 is the weight of the linear layer, the h attention features 
are spliced and linearly projected to obtain the attention fea-
ture matrix Z.

Then connect the residuals, and the specific implemen-
tation is to add Z with XE get the attention matrix and get 
XA = Z + XE . At the same time, layer normalization is per-
formed. The function of standard normalization is to treat 
the hidden layer in the network as standard normal distribu-
tion and speed up the convergence of loss function in the 
training process. Obtain X′

A , as the following equation:

Parameters ui and �i , respectively, represent the mean 
and standard deviation of each element xij , ϵ, is a minimum 
constant to prevent numerical calculation problems caused 
by division by 0, and α and β are trainable parameters to 
compensate for information loss caused by normalized.

Transfer the residual and normalized matrix X′
A to the 

feed-forward layer. The feed-forward module is a multi-layer 
perceptron (MLP), which has a hidden layer. The hidden 
layer matrix is obtained by two-layer linear mapping and 

(14)Qi = QW
Q

i
,Ki = KWK

i
,Vi = VWV

i
, i = 1,… , h

(15)headi = Attention
(
Qi,Ki,Vi

)
, i = 1,… , h

(16)
Z = MultiHead(Q,K,V) = Concat(head1, head2,… , headh)W0

(17)
LayerNorm(x) = � ×

xij − ui√
�2

i
+ �

+ �

activation with the activation function ReLU, as shown in 
the following equation:

For matrix XH is then connected with the residuals and 
added with X′

A to obtain X�
H = X�

A + XH . The X′
H matrix is 

normalized and a new embedded matrix XE is output.
After the multi-layer transformer module, the matrix XTE 

of D × N is output. The processing steps of the multi-layer 
transformer module are summarized as follows: first, it is 
processed through the self-attention layer, and then trans-
ferred to the neural network layer. After the current trans-
former module is processed, it then transfers the vector to 
the next transformer module.

8) In the output layer, when the last transformer mod-
ule generates the output, the model multiplies the output 
vector by the word embedding matrix W. Each row of the 
word embedding matrix corresponds to the word embed-
ding vector in the model word table, and the attention score 
corresponding to each word in the word table is obtained by 
multiplication [44–46].

Finally, Softmax is used to predict word in the output 
dictionary, and the model uses cross entropy to update the 
parameters. In this way, the model completes a round and 
outputs a word. The model then continues to recurse until 
a complete sequence is generated, the upper limit n of the 
sequence is reached, or the terminator < SEP > is generated. 
Finally, the complete basic structure of the system is shown 
in Fig. 6. Table 1 shows the specific network parameters of 
the transformer-based generative dialogue system.

(18)X
H
= ReLU(Linear(Linear(X�

A
)))

Fig. 6  Structure diagram of 
generative dialogue system 
based on transformer
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As mentioned above, the transformer architecture can 
learn global information. The key lies in the self-attention 
mechanism. The self-attention mechanism calculates the 
encoded input sequence with each other to obtain the cosine 
similarity and form a similarity matrix of size n2 . which 
represents the length of the input sentence sequence [X, X]. 
Compared with the spatial complexity O(n) of RNN, the 
spatial complexity of the self-attention matrix is O

(
n2
)
. The 

complexity of space and parameters realizes parallelism, and 
the increase of parameters of the self-attention matrix can 
contain more statement information, rather than the limita-
tion of the result caused by the fixed-length semantic vector.

Each column of the attention matrix represents 
input and each row represents output. The matrix 
represents the correlation between input and out-
put. Suppose you input "你想吃啥" and the reply is "
白切鸡", then the above statements are spliced into 

 
by language sequence preprocessing. When train-
ing unidirectional generative language model, input 

 , and predict in turn 

 until < SEP > appears. Considering that current 
input cannot take advantage of "future" information. To 
generate a unidirectional language sequence, the input and 
output are staggered by one bit, as shown in Fig. 7a:

The white square represents 0. The first line indicates 
that "你" can only be related to the starting mark < CLS > , 
the second line indicates that "想t" is related to the starting 
mark < CLS > and "你", and so on.

But the above model will also add the input 
 to the prediction range, 

which belongs to additional constraints. The only thing that 
really needs prediction is .Therefore, this study 
refers to the idea of Mask for UNILM [23]. Design incom-
plete mask, only mask  part, reserve information of 

 part. As shown in Fig. 7b:
The attention of the input part obtains two-way context 

information, while the output part is one-way attention. There-
fore, in the process of complementing the length of blank 
remaining sentences and mask in the maximum sentence 
length, 0 is generally filled in. This process is called padding. 
However, there will be problems during Softmax. The reason 
is e0 = 1 is an effective number. In this way, the padded part of 
Softmax participates in the operation, which is equivalent to 
allowing the invalid part to participate in the operation, which 
has an impact on Softmax calculation and results in deviation. 
Currently, it is necessary to cover up these invalid parts and 
do not participate in the calculation. The specific method is 
to add a large negative offset to the invalid part, as shown in 
Eqs. (19)–(21):

(19)zillegal = zillegal + biasillegal

(20)biasillegal → −∞

Table 1  Network structure of dialog model based on transformer

Order Layer Dimension

(1) Embeddings V = 13,088 D = 384
(2) Positional Encoding 256 384
(3) Segement Encoding 256 384
(4) Attn/c_attn 256 384 × 3
(5) Attn/c_proj 256 384
(6) Add&Norm 256 384
(7) Mlp/c_fc 768 384 × 4
(8) Mlp/c_proj 384 × 4 384
(9) Add&Norm 256 384

Fig. 7  Mask design. a Mask 
of one-way language model; b 
incomplete mask of this dialog 
system
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After the calculation of Eqs. (19)–(21), the masking part 
will not be affected after participating in Softmax calculation, 
and the calculation increment is still 0, to avoid the influence 
of invalid area on training accuracy.

3.2  Absolute Position Information Coding

The transformer-based attention model is the dot product 
of the similarity between vectors in the matrix, there is no 
timing information added by the recursive process of RNN. 
In most cases, the previous solution is to integrate the loca-
tion information into the input, which constitutes the general 
practice of absolute location coding. However, when dealing 
with multiple rounds of QA dialogue, the dialogue length 
should be unlimited in theory, but the design of absolute 
location coding limits the length of the dialogue text, and the 
above memory effect is not ideal in the long text.

The following analyzes several commonly used absolute 
position codes.

1) One of the most concise schemes of absolute position 
coding is to directly train the position coding as a trainable 
parameter without designing the position coding formula. 
If the maximum length of the vector is N and the coding 
dimension is D, then initialize an N × D matrix as posi-
tion vector to update with the training process. The current 
BERT, GPT and other models use this kind of coding. The 
earliest Facebook paper in 2017 used this method [47].

However, for this training absolute position coding, its 
disadvantage is that it has no scalability. If the maximum 
length formula of pre training is set to 512, it can only pro-
cess sentences with a length of 512 at most. There is no 
matching location information for locations longer than 512.
The solution is to randomly initialize the position code of 
more than 512, and then conduct training fine-tuning.

2) Trigonometric function is another scheme of position 
coding, also known as sinusoidal position coding [30]. The 
coding is calculated by sine function and cosine function in 
even and odd dimensions, respectively, to generate timing 
information with periodic changes. The position is embed-
ded in the dimension of length N of the sample sequence. 
With the increase of the dimension number, the cycle will 
become slower and slower. Therefore, the model contain-
ing position texture information is generated in even and 
odd dimensions, as shown in Fig. 8. Thus, the dependency 
between positions and the timing characteristics of natural 
language can be learned.

It can be seen from Fig. 8 that the position coding of 
trigonometric function is characterized by the periodic gen-
eration law according to the time sequence. However, with 
the increase of dimension serial number, the periodic change 

(21)ezillegal → 0

will be slower and slower, which leads to the decline of the 
discrimination of position information for the input of long 
text in multiple rounds of dialogue.

3) Theoretically, the reason why the RNN model does 
not need location coding is that it naturally has the possi-
bility of learning location information. Therefore, assum-
ing that a layer of RNN is added before the input word 
vector enters the model, and then input into the trans-
former module, the location information can be obtained 
theoretically, and the location coding is no longer needed. 
Similarly, RNN model training can be used to learn abso-
lute position coding. ICML2020's paper [48] continues to 
develop this idea and proposes to model the position cod-
ing by means of differential equation (ODE). This method 
is called FLOATER. FLOATER belongs to recursive call 
model, so this differential equation is also called neural 
differential equation. In terms of basic theory, recursive 
location coding also has better scalability, and it also has 
better flexibility than trigonometric location coding. Obvi-
ously, recursive location coding sacrifices a certain degree 
of parallelism and will bring a speed bottleneck in theory.

In addition, language model performance improve-
ment techniques other than positional encoding continue 
to develop. Hassan I. Abdalla et al. [49, 50] proposed a 
scheme to improve text classification neural network 
using BoW, and improve the performance of text recog-
nition and matching by integrating similarity measures 
with machine learning models. Internal evaluation of the 
ensemble model against the baseline model demonstrates 

Fig. 8  Schematic diagram of timing information
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that the above method has good optimization performance 
for neural networks for NLP.

3.3  Design of Relative Position Information Coding

In this section, we will solve the problem of location infor-
mation by introducing the design of relative location coding 
representation and detailing this process. A new attention 
calculation method of relative position coding is introduced 
to replace the absolute position coding of position embed-
ding layer.

The disadvantage of absolute position coding is that it 
will produce remote attenuation. The larger the relative dis-
tance, the weaker the correlation between the inputs. The 
reason why periodic trigonometric functions appear and 
show attenuation trend is that the integral from high-fre-
quency oscillation asymptotically approaches 0.

The assumed model is f (… , xm,… , xn,…) , where, xm,xn 
represent the mth and nth input words, respectively. Now, 
we discuss the generality, and set f  as a scalar function for 
calculation. This study uses transformer-based attention 
mechanism, so the function f  has the characteristics of total 
symmetry, that is, for any m and n , there are shown in the 
following equation:

Full symmetry is the main reason why transformer cannot 
recognize the position. Specifically, the function naturally 
satisfies the identity f (x, y) = f (y, x) , so that it is impossible 
to distinguish whether the input is (x, y) or (y, x) from the 
result.

Therefore, to break this symmetry, it is necessary to add a 
position coding information. One feasible scheme is to add a 
position determined coding vector to each position, as shown 
in the following equation:

In general, assuming that all position encoding vectors 
are not the same, full symmetry does not hold. This means 
that we can use f̃  instead of f  to address the input from 
positional timing information. To simplify the problem, we 
only consider the position encoding at two positions, m and 
n , and introduce it as a perturbation term, expanding it to 
the second-order Taylor term, as shown in the following 
equation:

From Eq.  (24), item 1 is independent of location, 
items 2 to 5 only depend on a single location, so they 

(22)f
(
… , xm,… , xn,…

)
= f (… , xn,… , xm,…)

(23)
f̃
(
… , xm,… , xn,…

)
= f (… , xm + pm,… , xn + pm,…)

(24)

�f ≈ f + p⊤
m

𝜕f

𝜕xm
+ p⊤

n

𝜕f

𝜕xn
+

1

2
p
⊤

m

𝜕2f

𝜕x2
m

+
1

2
p
⊤

n

𝜕2f

𝜕x2
n

+ p⊤
m

𝜕2f

𝜕xmxn
pn

only depend on absolute location information, and item 
6 owned the theinteractionitemofpm, pn at the same time, 
record it asp⊤

m
Ipn , it will be analyzed later, and it is 

expected to express certain relative position information 
on this basis.Suppose I is the identity matrix, at this time 
p⊤
m
Ip⊤

n
= p⊤

m
pn =< pm, pn > is the inner product of two posi-

tion codes. It is hoped that in this simple example, this 
item represents the relative position information, that is, 
there is a function g as the following equation:

Here, pm, pn is a d-dimensional vector, assuming d = 2, 
then for a two-dimensional vector, it is derived with the 
help of the complex number, that is, the vector [x, y] is 
regarded as the complex number x + yi . According to the 
algorithm of complex number multiplication, get the fol-
lowing equation:

p∗
n
 is the conjugate complex of pn . Re represents the real 

part of the complex number. To satisfy Eq. (26), it can be 
assumed that there is a complex number qm−n , as shown in 
the following equation:

In this way, taking the real part on both sides and we can 
obtain the following equation:

To solve this equation, the exponential form of the com-
plex number can be used. Suppose pm = rme

i�m , p∗
n
= rne

−i�n , 
qm−n = Rm−ne

iΦm−n , then we can get the following equation:

For Eq. (28), substitute n = m to get rm2 = R0 , rm is a con-
stant, set to 1 for simplicity; for the second equation, let 
n = 0, then �m − �0 = Φm , if �0 = 0, then  �m = Φm, which 
is the same as �m − �n = �m−n . Substitute n = m-1, then 
�m − �m−1 = �1 . So that 

{
�m

}
 is an arithmetic sequence. 

Therefore, the solution of position coding in two-dimen-
sional case is shown in the following equation:

Because the inner product has the characteristic of lin-
ear superposition, the higher dimensional even dimensional 
position coding can be expressed as a combination of mul-
tiple two-dimensional position codes to obtain formula (39).

Equation (31) choose �i = 10000
−2i∕d , this form has a 

good property: it makes < pm, pn > tends to 0 when |m–n| 

(25)⟨pm, pn⟩ = g(m − n)

(26)⟨pm, pn⟩ = Re[pmp
∗
n
]

(27)pmp
∗
n
= qm−n

(28)rmrne
i(�m−�n) = Rm−ne

iΦm−n

(29)
{

rmrn = Rm−n

�m − �n = Φm−n

(30)pm = eim� ⇔ pm =
(
���m�

���m�

)
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gets larger. The larger the relative distance, the weaker the 
correlation. The reason is that the high-frequency oscillation 
integral gradually tends to 0, i.e., Eq. (32):

The general attention with absolute position coding is 
as Eqs. (33)–(35):

SoftMax is used to normalize the row dimension j, xi , 
pi are line vectors, pi indicates the added location informa-
tion. Preliminary expand qikTj  , the expansion is shown in 
the following equation:

To introduce relative position information, the structure 
of Eq. (36) is modified to the following equation:

That is, remove the position of the first item and the 
position information of second item piWK is changed to 
binary position vector RK

i,j
 . Then, expand the following 

equation:

(31)pm =

⎛
⎜⎜⎜⎜⎜⎝

eim�0

eim�1

…

e
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(37)ai,j = softmax(xiWQ(xjWK + RK
i,j
)
T
)

Change piWV to RV
i,j

 , get the following equation:

As can be seen from the formula above, the so-called rela-
tive position is to change the vector that originally depends 
on binary coordinates (i, j) to only depend on the relative 
position distance i − j , and usually needs to be truncated to 
adapt to different arbitrary distances. Therefore, the expres-
sion of RK

i,j.
 is shown in Eqs. (40) and (41):

Through the above modification, although only a limited 
number of position coding information are obtained, the 
relative position of any length can be expressed, pK , pV is 
the relative position code of trigonometric function formula. 
The specific definition of relative position code is shown in 
Eqs. (42) and (43):

4  Experiments and Results

The purpose of this experiment is to test the role of relative 
position coding in long-distance multi-round conversation 
scenarios, and to verify whether relative coding is better 
than absolute position coding in slowing down the decline 
of long-distance information.

4.1  Data Set and Environment

The pre-training of all models in this experiment used the 
LCCC corpus [36] as the training data set. In this study, the 
Chinese dialogue data set STC (short text conversation) [51] 
is selected for evaluation experiments, and the Chinese gen-
erative dialogue system and some classical dialogue baseline 
models are compared.

The short text dialogue corpus STC published by 2015 
Huawei Noah's Ark laboratory is required to predict the 
reply under a given number of rounds of contextual dialogue 

(38)Oi =
∑
j
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∑
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ai,j(xjWV + piWV )

(39)Oi =
∑
j

ai,j(xjWV + RV
i,j
)

(40)RK
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= pK[clip(i − j, pmin, pmax)]
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= pV [clip(i − j, pmin, pmax)]

(42)pij[2k] = ���(
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2k

dz

)
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10000
2k

dz
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corpus. The data set contains 4.43 million Chinese dia-
logues. Each post has an average of 20 different replies, and 
there is a semantic gap between each reply, which is the 
main difference from the traditional parallel data set.

This section mainly uses the division method in STC 
and selects its test data as the test data set for this study. 
Compared with the labeled data set, the test data are char-
acterized by sparse roles. As there is no labeled data set, 
the whole data set is manually labeled, and the tagger will 
actively guide the topic to talk about the characterization 
information. Therefore, most of the responses in the data set 
are characterization-related. However, in a real conversation 
scenario, it often does not involve a lot of characterization 
information in every chat. From this point of view, the test 
data set is closer to the characterization conversation in a 
real man–machine conversation.

The experimental environment used for the experiment 
are some open-source frameworks, including TensorFlow 
2.1.0, keras2.3.1, bert4Keras0.9.8. Specifically, the experi-
mental operation environment is shown in Table 2.

4.2  Experimental Evaluation Criteria

In this study, we first use the accuracy of generated tags 
(ACC) to evaluate the effectiveness of relative position cod-
ing, and then use objective and subjective evaluation meth-
ods for the final model.

In terms of objective evaluation indicators, we apply sev-
eral commonly used dialogue evaluation methods, including 
PPL (perplexity score) [52], BLEU [53], Greedy Matching 
[54–56] and Embedded Average [57]. Some experiments 
show that the evaluation methods based on word embedding 
have higher correlations with human [58].

In the manual evaluation index [59], Grammatical and 
Semantic Continuity, Context Relevance and amount of 
information are used. 200 replies were sampled for each 
model, and 2 marked students were invited to manually 
evaluate these replies.

4.3  Performance of Chinese Dialogue System Based 
on Transformer

In this experiment, the model features a 12-layer trans-
former decoder architecture, with individual characters as 

the smallest unit for word embeddings. It employs 12 multi-
head attention heads, a vocabulary size of 13,088, character 
vector dimensions set at 384, and a maximum context length 
of 256 characters. The batch size used is 16. For training 
optimization, the dialogue system utilizes the Adam opti-
mizer with a primary learning rate of 2 × 10

−5 . The training 
is conducted over 100 epochs on the LCCC-base data set.

To validate the effectiveness of the proposed generative 
dialogue system in this study, three methods are introduced 
for comparison with the baseline model: Attn-Seq2Seq, 
transformer, and GPT. The baseline model is described as 
follows:

Attn-Seq2Seq [36]: This model is based on the tradi-
tional Seq2Seq architecture with the addition of an attention 
mechanism. It also employs a multi-turn dialogue approach 
to concatenate multiple segments, similar to the dialogue 
system in this chapter. It uses the < CLS > and < SEP > iden-
tifiers to segment the segments, and these specific identifi-
ers have corresponding word embeddings. The concatenated 
history dialogue is encoded and decoded using a bidirec-
tional LSTM as the basic unit for Seq2Seq.

Transformer [60]: The transformer model serves as the 
foundational architecture. This model has found broad appli-
cations in machine translation and dialogue generation. To 
ensure fairness in training the transformer model, a 12-layer 
transformer is used and trained for 100 epochs on the LCCC-
base data set.

GPT-chatbot [61]: This model is based on the GPT2 
architecture for generative dialogue. Each training data 
are "sequentially concatenated" following the approach of 
Microsoft's DialoGPT. The concatenated data are then input 
into the network for training. The model consists of 12 lay-
ers of GPT and is trained for 100 epochs on the LCCC-base 
data set.

All transformer-based models share the same parameter 
settings for the encoder and decoder structures. They are 
essentially like the GPT model parameters. The vocabulary 
size is 13,088, word vector dimensions are 384, the maxi-
mum context length is 256, and the batch size is 16.

By conducting experiments, the objective evaluation 
index experimental results as shown in Table 3 are obtained:

Table 3 displays the results of different language mod-
els in terms of perplexity (PPL), BLEU-2, BLEU-4, Dist-1, 
and Dist-2. A lower perplexity indicates smoother sentence 

Table 2  Experimental 
environment

Processer Intel(R) Core(TM) i7-9800X CPU @ 3.80 GHz

Memory 64 GB
Graphics card NVIDIA GeForce GTX2080Ti
Operating system Ubuntu 18.04.3 LTS
Development environment Pycharm + Anaconda
Open source framework TensorFlow2.1.0、Keras2.3.1、BERT4Keras0.9.8
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generation and better relevance to the topic. The best PPL 
is achieved by the dialogue model in this chapter, which, 
although only slightly outperforms the GPT2-chatbot, still 
holds an advantage. This can be attributed to the effec-
tiveness of adding partial masking. In terms of perplexity 
performance, it surpasses other language models to some 
extent.

In BLEU-2 and BLEU-4 evaluations, this language model 
performs best in BLEU-4 but falls short of transformer in 
BLEU-2. This difference can be explained by the fact that 
BLEU was originally developed as an evaluation metric for 
translation, and it tends to favor shorter translation results. It 
may not handle morphologically rich sentences well, mak-
ing it less friendly for generative dialogue models. Finally, 
in terms of diversity as measured by Dist-1 and Dist-2, this 
experimental model outperforms all baseline models.

In the human evaluation metrics, 200 responses were 
sampled for each model, and two annotators were invited to 
conduct manual evaluations on these responses. The results 
of the subjective evaluation metrics are presented in Table 4 
as follows:

The experimental results from the manual subjective 
evaluations demonstrate that the dialogue system designed 
in this study outperforms the baseline models across all 
three metrics. The dialogue system in this chapter is capable 
of generating high-quality dialogue responses. It not only 
produces responses with sufficient information but also 

maintains good fluency in the sentences and relevance to the 
context. It surpasses other baseline models, confirming the 
effectiveness of the generative dialogue system developed 
in this research.

4.4  Relative Position Encoding Performance 
Verification

To test whether the relative position coding can slow down 
the weakness of long-distance information, this segment 
selects the label data set and test data set of multi-round 
dialogue test data set STC for experiments.

In this section, we choose the dialogue system imple-
mented in segment 3.1 as baseline. Then, multiple models 
are used for comparative experiments. Finally, the two opti-
mization methods of relative position coding in this paper 
and word-character fusion [62] embedding are applied to the 
generative dialogue system at the same time, and compared 

with the baseline model, as shown in Table 5.
First, in the model of this section using relative position 

coding, the results under different conditions are verified 
by increasing the sequence length and changing the size of 
batch size. As shown in Table 6

At the same time, the attentional decline trend images at 
different relative distances are expressed. The attentional 
decline results using different �t are shown in Figs. 9 and 
10 below.

except �t = t is abnormal and intersects with the x-axis, 
other trends are basically the same. The power function 
decreases faster in a short distance, while the exponential 
function decreases faster in a long distance. Therefore, 
choosing �t = 10000

−t is a compromise.
Through the comparative experiments of several models, 

the objective evaluation index experimental results as shown 

Table 3  Objective evaluation index experimental results

Model PPL BLEU-2 BLEU-4 Dist-1 Dist-2

Attn-Seq2Seq 37.23 4.51 0.94 8.5 11.94
Transformer 22.30 6.72 3.14 8.8 12.11
GPT-chatbot 20.52 5.69 2.78 8.1 11.73
Ours 19.83 6.63 3.20 9.2 12.68

Table 4  Subjective evaluation results

Model Syntax-semantic 
coherence

Contextual 
relevance

Infor-
mation 
amount

Attn-Seq2Seq 1.13 0.92 1.17
Transformer 1.34 1.15 1.39
GPT-chatbot 1.59 1.20 1.40
Ours 1.64 1.33 1.42

Table 5  Experimental model 
setup

Baseline Char-word Model of this study

Token unit Chinese character Word-character fusion Chinese character
Location coding Absolute position Absolute position Relative position

Table 6  Model generates labels under different sequence lengths and 
batch sizes

Maxlen Batch size Loss ACC 

1 128 16 1.86 63.4%
2 256 16 1.78 64.6%
3 256 32 1.75 64.8%
4 512 16 1.66 66.2%
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in Table 7 are obtained. The experimental results of subjec-
tive evaluation indicators are shown in Table 8.

It can be seen from the experimental results that 
the final dialogue system using word-character fusion 
Embedding and relative position coding achieves the best 
results in all indicators.

5  Discussion

Through an analysis and comparison of the labels generated 
by the models under varying sequence lengths and batch 
sizes, some valuable insights can be gleaned. Specifically, it 
becomes evident that increasing the length of the sequence 

Fig. 9  Attentional decline 
results of different �

t
(short 

distance trend)

Fig. 10  Attentional decline 
results of different �

t
(long 

distance trend)

Table 7  Objective evaluation 
index experimental results

Models PPL BLEU-2 BLEU-4 Greedy Matching Embed-
ding 
Average

Baseline 19.83 6.63 3.20 65.89 78.94
Char-word 19.79 6.72 3.81 66.34 84.12
Model of this paper 18.56 6.90 4.12 66.28 86.13

Table 8  Labor evaluation index 
experiment results

Models PPL BLEU-2 BLEU-4 Greedy Matching Embed-
ding 
Average

Baseline 19.83 6.63 3.20 65.89 78.94
Char-word 19.79 6.72 3.81 66.34 84.12
Model of this paper 18.56 6.90 4.12 66.28 86.13
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leads to improved accuracy and smaller loss values. It indi-
cates that relative position encoding has better processing 
power for long text sequences compared to absolute position 
encoding, which aligns with the anticipated outcomes of the 
design involving relative position coding.

In terms of objective performance indicators, the 
model presented in this paper outperforms the baseline 
and character models in metrics, such as bleu-2, bleu-4, 
and embedding average. In addition, it outperforms the 
baseline model in greedy matching and perplexity (ppl), 
but lags somewhat behind in char word.

Although the model performs admirably in terms of gram-
matical and semantic coherence during manual evaluation, 
there is still a definite discrepancy in terms of contextual 
relevance and the amount of information when compared 
to the reference response. This emphasizes the significance 
of future research projects focused on context analysis and 
maintaining logical coherence in text generation.

These findings also demonstrate relative position cod-
ing's improved ability to handle lengthy text sequences as 
compared to absolute position coding. This observation 
underscores the effectiveness of the optimization approach 
employed in this study. In summary, this work showcases 
the proposal to incorporate relative position information into 
the self-attention formula within the transformer module, 
thereby enhancing long-distance attention mechanisms.

6  Conclusions

The main focus of this study is to theoretically present a 
design framework for a generative dialogue system based 
on the transformer architecture tailored for Chinese text. 
The use of transformer technology serves as the founda-
tional framework. To address the limitation of unidirec-
tional generation in language sequences and enable bidi-
rectional access to contextual information within input 
sentences, the application of partial masking is introduced.

The study also introduces training and optimization tech-
niques for the dialogue system, including teacher forcing and 
beam search, along with model pretraining on the LCCC 
data set. Comparative analyses are conducted against various 
baseline models, such as Attn-Seq2Seq, transformer, and 
GPT-chatbot to validate the effectiveness of this dialogue 
system in generating Chinese generative dialogues.

Subsequently, the paper addresses the issue of text 
length limitations associated with common absolute posi-
tion encoding. Building upon relative position encoding, 
the paper proposes a novel technique for relative position 
encoding tailored for Chinese text. In experiments, the 
transformer-based Chinese text generation dialogue model 
developed in this paper is used as the baseline model. 
The test data set in the short text dialogue corpus STC 

released by Huawei's Noah's Ark Laboratory was selected 
as the test data for the research task. Model performance is 
evaluated using both absolute and relative position encod-
ing. Experimental results demonstrate the feasibility of 
enhancing the system's ability to mitigate the phenomenon 
of long-distance information decay by introducing rela-
tive position encoding. Modification of the self-attention 
calculation formula within the transformer module, by 
incorporating relative position information to replace the 
absolute position encoding in the embedding layer, results 
in enhanced long-range attention capabilities.

In summary, this study's primary contributions lie in 
offering a theoretical framework for designing a genera-
tive dialogue system for Chinese text, and it introduces a 
novel approach for relative position encoding to address 
text length limitations. Experimental findings support the 
effectiveness of this approach in mitigating long-distance 
information decay, achieved through adjustments to the 
self-attention mechanism within the transformer module.
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