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Abstract
Fetal heart monitoring during pregnancy plays a critical role in diagnosing congenital heart disease (CHD). A noninvasive 
fetal electrocardiogram (fECG) provides additional clinical information for fetal heart monitoring. To date, the analysis of 
noninvasive fECG is challenging due to the cancellation of maternal QRS-complexes, despite significant advances in electro-
cardiography. Fetal QRS-complex is highly considered to measure fetal heart rate to detect some fetal abnormalities such as 
arrhythmia. In this study, we proposed a deep learning (DL) framework that stacked a convolutional layer and bidirectional 
long short-term memory for fetal QRS-complexes classification. The fECG signals are first preprocessed using discrete 
wavelet transform (DWT) to remove the noise or inferences. The following step beats and QRS-complex segmentation. 
The last step is fetal QRS-complex classification based on DL. In the experiment of Physionet/Computing in Cardiology 
Challenge 2013, this study achieved 100% accuracy, sensitivity, specificity, precision, and F1-score. A stacked DL model 
demonstrates an effective tool for fetal QRS-complex classification and contributes to clinical applications for long-term 
maternal and fetal monitoring.
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1  Introduction

Congenital heart disease (CHD) is the leading cause of still-
births worldwide, and it is the most common major congeni-
tal malformation [1, 2]. Over the last 80 years, diagnostic 
and therapy capacities for CHD have significantly increased 
due to improved diagnostic techniques [1, 3]. Regular fetal 
heart monitoring can enhance CHD diagnosis during preg-
nancy, enabling appropriate medical treatment to be deliv-
ered to the fetus to minimize detrimental consequences. 
Ultrasonography (USG), cardiotocography (CTG) and fetal 
phonocardiography (PCG) are the most common techniques 
for monitoring fetal well-being [4–6]. The techniques have 
their advantages and drawbacks. USG is a noninvasive imag-
ing test using high-frequency sound waves to create real-
time images or videos of fetal internal organs [7]. To moni-
tor contraction and fetal heart rate (FHR), CTG employs an 
ultrasound transducer and a uterine contraction pressure-
sensitive transducer [4]. In contrast to USG and CTG, fetal 
heart sounds are observed by auscultation using PCG, which 
obtains an acoustic recording from a mother’s abdomen [4]. 
However, the techniques mentioned above require extensive 
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training and limited availability of experts to train providers 
due to the relatively high costs [2, 4]. Furthermore, PCG has 
the lowest signal-to-noise ratio (SNR), making it difficult to 
find the fetus due to acoustic disturbance.

Due to the limitations of the techniques, the noninvasive 
fetal electrocardiogram (fECG) is a promising alternative 
tool for monitoring fetal heart activity. It has significant 
promise for providing morphological information on the 
pathological status of the fetal heart. Furthermore, it can 
offer an accurate assessment of FHR. The fECG provides 
vital data on the physiological status of fetal heart activity 
and the diagnosis of fetal cardiac disorders such as arrhyth-
mia. It is achieved by measuring the electrical activity of the 
fetal heart over time using mother’s skin electrodes [8–10]. 
The risk associated with measuring the noninvasive fECG 
signal is not observed, therefore it is more effective than the 
internal fECG signal [11].

In noninvasive fECG monitoring, the measurement of 
FHR is highly considered to detect abnormalities such as 
fetal hypoxia. Also, an irregular rhythm of the fetal heart 
is the most common cause of fetal arrhythmia, which most 
are caused by frequent ectopic beats [6]. Hence, the first 
step to diagnose those abnormalities is the effective tech-
niques needed to detect the location of fetal QRS-complexes. 
Changes in the width of the fetal QRS-complexes indicate 
more sophisticated fetal heart states [11]. However, detect-
ing fetal QRS-complex is arduous due to the characteristics 
of fECG having small signal energy relative to the maternal 
electrocardiogram (mECG), so undesired signal components 
appear [12]. In addition, the overlap of mECG and random 
electrical noise during acquisition presents an issue with 
fetal QRS-complex detection [13, 14].

Numerous computerized algorithms have been proposed 
to detect the fetal QRS-complexes, such as wavelet transform 
[8, 9], independent component analysis [10], principal com-
ponent analysis [12], adaptive neuro-fuzzy inference system 
[15], adaptive filtering [16] and so on. The algorithms above 
can be categorized based on signal processing techniques: 
adaptive filtering, linear decomposition and non-linear 
decomposition [12]. The drawbacks of those techniques still 
require a reference mECG signal to recreate the morphologi-
cal shape of the mECG, and the morphology of mECG is 
highly dependent on the location of the electrode [17]. Also, 
high computational complexity in non-linear decomposition 
algorithms has limited their use in real-time circumstances 
[4]. A feature analysis of human intervention is still needed, 
significantly involved in detecting fetal QRS-complexes [18, 
19].

Deep learning (DL) rises with excellent power, char-
acterized by learning features directly from data without 
human intervention [20]. At the same time, conventional 
signal processing algorithms fail to process natural data 

in their raw form [21]. Most QRS-complex detectors pre-
process the input ECG signal before extracting deep neural 
features or models and extract signal characteristics before 
extracting deep neural features. As a result, they do not 
get the benefits of employing DL. In this paper, we pro-
pose a hybrid convolution layer as a part of convolutional 
neural networks (CNN) and recurrent network algorithms, 
i.e., long short-term memory (LSTM). Both combined 
DL architectures have proven their superiority in many 
applications, specifically biomedical signal processing 
[22–28]. We have a hyperparameter tuned to generate the 
best model for QRS-complex processing. Lee et al. [11] 
have proposed CNN for fetal QRS-complex classification. 
They proposed seven convolution layers and achieved a 
sensitivity of 89.06%. Zhong et al. [4] have also explored 
CNN for fetal QRS-complex classification. The differences 
are the total of used convolution layers. They have used 
three convolution blocks. The accuracy was achieved by 
77.38%. Both previous studies show that using CNN for 
fetal QRS-complex classification can be considered. To 
clarify and highlight the strong features of this study, we 
have revised its contributions as follows:

•	 Proposes DL model with stacked a convolutional layer 
and bidirectional long short-term memory to enhance 
the accuracy of fetal QRS-complex classification;

•	 Generate the segmentation process of the fetal QRS-
complex based on the knowledge of QRS segmentation 
in adult ECG signal; and

•	 Experiences 68 fECG records for training, and valida-
tion. We have used five records as the unseen data to 
measure an objective evaluation of the best model.

The rest of this paper is organized as follows: Sect. 2 
presents the material and methods of this study. Section 3 
presents the results and discussion, respectively. Finally, 
the conclusions are presented in Sect. 4.

2 � Materials and Methods

The research methodology of this study consisted of three 
main steps; (i) the acquisition of fECG raw data from Non-
invasive fECG: The PhysioNet/Computing in Cardiology 
Challenge 2013 [29]; (ii) the fECG preprocessing (noise 
cancellation, beat and QRS-complex segmentation); (iii) 
hyperparameter tuning of DL model; and (iv) the perfor-
mance evaluation based on classification metric (accu-
racy, sensitivity, specificity, precision and F1-score). The 
visualization of research methodology of this study can be 
presented in Fig. 1.
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2.1 � Data Preparation

Noninvasive fECG: The PhysioNet/Computing in Cardiol-
ogy Challenge 2013 has been widely explored to generate 
the fetal QRS-complexes classification algorithm [29]. The 
dataset consisted of three data collection sets of one-minute 
fECG recordings (sets A, B, and C). However, in this study, 
only set A was used. The total is 75 ECG records which are 
digitized at 1000 samples per signal per second. The sample 
records can be presented in Fig. 2. Figure 2 shows the four 
leads of fECG records. We have only used a single lead for 
fetal QRS classification in this investigation.

2.2 � fECG Preprocessing

fECG recordings have low signal quality due to the effect 
of noninvasive abdominal recordings. Extracting the clean 
fECG recordings is arduous in fetal monitoring. Therefore, 
eliminating noise or artefacts is essential in clinical sign 
preparation. Discrete wavelet transform (DWT) has been 
implemented to remove fECG recordings from noise or 

commotion. DWT has powerful and excellences in denois-
ing the signal [30, 31]. The dominant frequency is often 
used to calculate the wavelet disintegration levels. It uses 
high and low pass elimination to reduce fECG recordings 
to the frequency range needed to construct progressive coils 
[32]. In this investigation, we have explored wavelet fami-
lies, i.e., symlets, daubechies, haar, and bior, to determine 
which wavelet type would produce the best results for signal 
denoising. Among the greatest signal-to-noise ratio (SNR) 
outcomes, daubechies wavelet was chosen for ECG signal 
denoising with SNR of 3.27882 decibels (refer to Table 1).

The next preprocessing of fECG processing is beat 
segmentation. It is the important step before classifica-
tion using the DL algorithm. In this step, we detect the 
R-peak from reference annotation marking the location of 
true fetal QRS-complex (ground truth). From R-peak, we 
segment the 0.25 s (s) to the left and 0.45 s to the right 
[33]. For QRS-complex segmentation, we have segmented 
as 0.10 s, as its normal width is around 70–100 ms. We 
segment left to R-peak as 0.5 s (R-peak to QRS-onset), 
and right to R-peak as 0.5 s (R-peak to QRS-offset). The 

Fig. 1   The research methodology of fetal QRS-complex classification
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segmentation process can be presented in Fig. 3. In this 
step, the labelling process has also done, which consists 
of QRS-complex and non-fetal QRS-complex. A labelling 
process was required to supervise learning of the proposed 
DL model. As a result, the input data 317,000 was labelled 
as QRS-complex, and the input data 126,800 was labelled 
as class non-fetal QRS-complex.

Fig. 2   The sample of fECG 
records

Table 1   The SNR results of 
wavelet families

Wavelet SNR (dB)

sym5 3.22496
sym6 3.26081
sym7 3.212197
sym8 3.258947
db2 3.27882
db4 3.220417
db5 3.197698
db6 3.216540
db7 3.25328
dior6_8 3.258391
haar 3.25328

Fig. 3   The segmentation process of beat and QRS-complexes
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2.3 � Hyperparameter Tuning DL Model

The one-dimensional forward propagation of CNN can be 
expressed as follows [34]:

where xl
k
 is the input, bl

k
 is the bias of the kth neuron at layer 

l, sl−1
i

 is the output of the ith neuron at layer l – 1, and wl−1
ik

 is 
the kernel from the ith neuron at layer l – 1 to the kth neuron 
at layer l.

The BiLSTM can be expressed as follows:

where to generate the output yt , the forward hidden layer hft  
and the backward hidden layer hb

t
 are combined.

The performance of the DL model depends on its hyper-
parameters. There are no specific rules or general ways to 
choose the best hyperparameters. The hyperparameters are 
set in a trial-and-error manner to minimize a validation error. 
In this investigation, we have generated three DL models. 
With the same parameter of learning rate of 10–5, batch size 
of 2, 300 epochs, Adam optimizer, and binary cross-entropy 
as loss function, we are firstly concerned with tuning the num-
ber of convolution layers (Table 2). For the first model, we 
experimented with CNN. The second model is a hybrid of 
one convolution layer and LSTM. The third model is a hybrid 
of one convolution layer and BiLSTM. From this experiment, 
we have investigated the effect of CNN, LSTM, and BiLSTM 
performance. 

3 � Results and Discussion

A 68 of 75 fECG records have been used to generate the 
fetal QRS-complexes classification model. The rest unused 
fECG records are not correctly annotated; therefore, they 
are excluded from DL model generation. A total of 68 fECG 
records consisted of 50, 13 and five fECG records for train-
ing, validation and testing set (unseen), respectively. To reduce 
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the data leakage problems, we have split fECG records based 
on patient (record-based). Table 3 presents the performance 
results of the DL model comparison using a validation set. 
Models 2 and 3 have 100% performance in accuracy, sensi-
tivity, specificity, precision and F1-score. To determine the 
classification task's bias and variance, we plotted the learning 
curve (refer to Fig. 4). The learning curve is related to a learn-
ing process that shows the progress over a specific metric's 
experience (accuracy and loss curves). The learning curve 
visualization indicates how well the model fits the training 
data, while the validation indicates how well the model fits 
new data. The other issues in the behaviour of model can be 
detected to avoid high bias (underfitting) and high variance 
(overfitting) if the biased model does not take into account 
relevant information, which leads to underfitting. Then, if the 
algorithm captures the training data well but performs poorly 
in new data so that it cannot generalize, it leads to overfitting.

Figure 4 visualizes the accuracy curves (Figs. 4a, c, and e) 
and loss curves (Fig. 4 b, d and f). Figures 4a and b show the 
right bias or good linear model for the data because there is 
no-showed overfitting or underfitting. Model 1 captures well 
the training and validation set. This is also seen in Figs. 4c–f 
in Models 2 and 3. The training and validation set converge 
to a value with an epoch of 300. However, the learning curve 
of Model 2 tends to fluctuate from epoch 0 to 50. The train-
ing and validation functions move noisily. It could be the 
case that the validation set struggles to model the training 
set. Unlike Model 3, the model performs a perfect linear 
model from the initial epoch. Hence, for the model of fetal 
QRS-complex classification, Model 3 is proposed.

To validate Model 3 as the proposed model, we have 
tested the model to a testing set (unseen). The unseen 
set is not used for the DL model generation. Measuring 
how the proposed model performs well to new data is 
fair. Five fECG recording records have used which con-
sisted of 34,000 fetal QRS-complex and 13,600 non-fetal 

Table 2   The hyperparameter 
tuning DL model

Model Layers Learning Rate Batch Size Optimizer Epochs

1 Convolution 8 × 3, strides = 1 + ReLU 10–5 2 Adam 300
2 Convolution 8 × 3, strides = 1 + ReLU—LSTM
3 Convolution 8 × 3, strides = 1 + ReLU—BiLSTM

Table 3   The performance results of DL model comparison using val-
idation set

Model Average Performance (%)

Accuracy Sensitivity Specificity Precision F1-score

1 71.4 0 100 0 0
2 100 100 100 100 100
3 100 100 100 100 100
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QRS-complex. The results can be presented in Fig. 5. Fig-
ure 5 shows the confusion matrix (CM) for unseen set. It 
shows the proposed model (Fig. 5c) is well-classified fetal 
QRS-complex and non-fetal QRS-complex. The CM is a 
performance measurement for classification tasks where 
output can be two or more classes. It combined predicted 
and actual values. As represented in Fig. 5 (c), the label 0 
as fetal QRS-complex can predict all actual values, as does 
label 1 as non-fetal QRS-complex. We have the visualiza-
tion of actual (expert annotation) and predicted (Models 
1–3) presented in Fig. 6. Green is presented as fetal QRS-
complex, and yellow is as non-fetal QRS-complex. The 
classification results of the proposed model are almost the 
same as the expert annotation.

This study examined fetal QRS-complex classification 
between our proposed model and existing DL approaches 
based on the same dataset (PhysioNet/computing in 
cardiology challenge 2013) (see Table 4). Krupa et al. 
[2] proposed Internet of Things (IoT)-based DL using 
time–frequency image of abdominal signals and com-
bined to pre-trained models MobileNet and ResNet18 for 
detection of fetal QRS-complex. The proposed model of 
fetal QRS-complex classification based on DL (segmen-
tation, training and classification) runs on the IoT cloud, 
and the output is communicated to the experts at the hos-
pital remotely. Overall, they achieved above 89% in all 
performance metrics. Zhong et al. [4] and Lee et al. [11] 
have explored CNN for fetal QRS-complex classification. 

Fig. 4   The plot of accuracy 
curves (a, c, e) and loss curves 
(b, d, and f) of DL models

(a) (b)
Model 1

(c) (d) 
Model 2

(e) (f)

Model 3
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Zhong et al. [4] proposed three convolution blocks (64, 
128 and 256 filters) and a dense block that takes a time 
series of 100 ms long fECG signals as input. They com-
pared a proposed CNN model to K-Nearest Neighbours 
(KNN), naïve Bayes (NB) and support vector machine 
(SVM). As a result, CNN outperformed those conventional 
algorithms with 77.38% accuracy. Difference to Zhong 
et al. [4], Lee et al. [11] proposed seven convolutional 
layers with two fully connected layers (SoftMax). They 
achieved average sensitivity of 89.06% using a test set.

Among the benchmark mentioned above, our proposed 
model is superior, with the outstanding results 100% for the 
unseen set. Though the results are promising, the limitation 
of this study is only used a single fECG database. We did 
not generalize the other fECG databases yet. In addition, 
the proposed architecture can be extended for complete fetal 
P-QRS-T wave classification. This additional insight can be 
valuable in understanding the overall fetal ECG patterns and 
potentially aid in diagnosing various fetal heart conditions, 

like arrhythmia. Therefore, future work requires extended 
exploration to generate a robust DL model for fetal P-QRS-T 
classification.

4 � Conclusion

We proposed the DL model from a hyperparameter tuning 
task. We generated the three DL models and compared the 
results between the DL models to obtain the best model for 
fetal QRS-complex classification. As a result, our proposed 
model has successfully classified fetal QRS-complex and 
non-fetal QRS-complex with 100% accuracy, sensitivity, 
specificity, precision and F1-score. In this study, we have 
also managed noise and inferences of fECG records using 
the DWT method. A sequence-to-sequence DL framework 
using a stacked convolutional layer and BiLSTM can be 
highly considered for implementation for noninvasive fECG 
monitoring in clinical practice.

(a) Model 1 (b) Model 2

(c) Model 3

Fig. 5   The plot of CM for unseen set for the best model (Models 1–3)
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(a) Model 1

(b) Model 2

(c) Model 3

Fig. 6   The sample plot of fetal QRS-complex classification between 
expert annotation and DL predicted models 1–3
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