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Abstract
Adeep convolution neural network image segmentationmodel based on a cost-effective active learningmechanism is proposed
and named PolySeg Plus. It is intended to address polyp segmentation with a lack of labeled data and a high false-positive rate
of polyp discovery. In addition to applying active learning, which assisted in labeling more image samples, a comprehensive
polyp dataset formed of five benchmark datasets was generated to increase the number of images. To enhance the captured
image features, the locally shared feature method is used, which utilizes the power of employing neighboring features together
with one another to improve the quality of image features and overcome the drawbacks of the Conditional Random Features
method. Medical image segmentation was performed using ResUNet++, ResUNet, UNet++, and UNet models. Gaussian
noise was removed from the images using a gaussian filter, and the images were then augmented before being fed into
the models. In addition to optimizing model performance through hyperparameter tuning, grid search is used to select the
optimum parameters to maximize model performance. The results demonstrated a significant improvement and applicability
of the proposed method in polyp segmentation when compared to state-of-the-art methods on the datasets CVC-ClinicDB,
CVC-ColonDB, ETIS Larib Polyp DB, KVASIR-SEG, and Kvasir-Sessile, with Dice coefficients of 0.9558, 0.8947, 0.7547,
0.9476, and 0.6023, respectively. Not only did the suggested method improve the dice coefficients on the individual datasets,
but it also produced better results on the comprehensive dataset, which will contribute to the development of computer-aided
diagnosis systems.

Keywords Colorectal cancer · Deep learning · Locally shared features · Polyps · Segmentation

1 Introduction

Colorectal cancer is recognized as a dangerous disease caus-
ing deaths worldwide, with nearly twomillion new cases and
1 million cancer deaths in the last 2 years [1]. Like any type
of cancer, healthy human body cells can turn into harmful
cells in the form lesions [2]. Colorectal cancer commonly
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arises from polyps of the colon or rectal epithelium, which
are non-cancerous neoplasms. Some polyps can develop into
precancerous lesions, which can lead to colorectal cancer.
Detecting and removing adenomas early (early screening)
will reduce the severity of colorectal cancer. In the USA,
colorectal cancer represents the third most common reason
causing cancer for men and women and the second reason
causing deaths for both genders [3].

Colorectal cancer, which is also called bowel cancer, has
several risk factors that have been approved by the American
Cancer Society. The most important risk factors are lifestyle-
related and changeable, such as being overweight or obese,
not being physically active, certain types of diet, and alco-
hol consumption. On the contrary, there are other factors
that cannot be changed over time, such as one’s age [4], his-
tory of a certain person or one of his family members with
polyps, cancer, or inflammatory bowel disease [5], as well as
an inherited syndrome.
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The Adenomas Detection Rate (ADR) measures the
frequency with which a practitioner detects precancerous
adenomas. A 1% rate is considered a good adenoma detec-
tion rate, which is accompanied by a 3% reduction in the risk
of having colorectal cancer [6, 7]. This rate is thought to be
influenced by two aspects: blind spots and human error. The
first aspect could be addressed using a broad scope, while
the second aspect is challenging, and researchers are very
interested in artificial intelligence to reduce human error.

A medical endoscopy decision support system follows a
standard procedure. The first step is often to prepare the tissue
region to be studied. Preprocessing may be required after an
image has been acquired to improve the quality of degraded
photos. Based on the application’s goal [8], the appropriate
features must then be located and extracted to detect polyps
or cancer. Somemethods, like classification, are intended for
Content-Based ImageRetrieval (CBIR) [9] orContent-Based
Video Retrieval (CBVR). The primary distinction between
automated decision support systems and CBIR/CBVR sys-
tems is that the output of a decision support system based
on automation [10] can be a suggestion for the last diagnosis
phase or more information for a diagnosis.

Medical image segmentation is the process of extracting
Regions of Interest (ROIs) from 3D image data such asMag-
netic Resonance Imaging (MRI) or Computed Tomography
(CT) scans [11]. The primary goal of the segmentation task is
to highlight areas of the anatomy needed for a specific study.
Segmentation of images consumes much time, but recent
advances in Artificial Intelligence (AI) tools are trying to
make repetitive tasks faster and more efficient.

The problem is to detect and remove precancerous ade-
nomas in patients with colorectal cancer, which significantly
reduces the severity of the disease. Factors such as lifestyle
risks and genetic syndromes contribute to the development
of the disease. Therefore, more efficient and accurate detec-
tionmethods are needed to reduce human error and eliminate
screening blind spots. Amedical endoscopy decision support
system using AI tools and image segmentation techniques
may improve adenoma detection rates and reduce the impact
of colorectal cancer.

The novelty and main work of this paper are as follows:

1. Reducing the high false-positive rates of polyp discovery
in SOTA algorithms.

2. Enhancing and improving the image quality in the pre-
processing phase using Gaussian filters.

3. Contributing to the shortage of labeled data (normal
images without polyps) problem by applying a cost-
effective active learning technique.

4. Creating a comprehensive polyp dataset by combining
six different datasets.

5. Applying Locally Shared Featured technique and inte-
grating it with deep learning models to improve their
performance and reduce computational time.

6. Hyperparameter tuning using grid search to enhance the
performance of the models.

The proposed study aims to develop an automated system
to help gastroenterologists segment polyps of various sizes
and decide whether to remove or leave the polyp after exam-
ination. A Gaussian filter is used in the preprocessing stage
to improve the image quality. We combine six different data
sets to create a comprehensive polyp data set and use active
learning techniques to address the lack of normal labeled data
(images without polyps). Grid search hyperparameter tuning
is performed to select the best parameters and optimize the
model. The ultimate goal is to improve the accuracy and
efficiency of polyp segmentation, giving gastroenterologists
better information to make informed polypectomy decisions.

The rest of the paper is organized as follows: Sect. 2,
introduces a brief introduction to medical image segmen-
tation techniques. Section3 describes the related work done
in polyp segmentation. Section 4 illustrates the datasets and
various methods, while Sect. 5 shows the different variations
of the proposed model architecture used in this study. Sec-
tion6 presents the results and experiments of the proposed
model and state-of-the-art (SOTA) models, in addition to
ablation studies. Section7 discusses the experiment results
in detail compared to previous work. Section8 discusses the
hypothesis and the limitations of the proposedmodel. Finally,
Sect. 9 is the study’s conclusion.

2 Background

The purpose of this section is to set the context and provide
the foundation for understanding medical image segmenta-
tion, computer-aided diagnosis, and their relation to the deep
learning field, that helps demonstrate the important terms in
the existing knowledge.

2.1 Medical Image Segmentation

One of the key benefits of medical image segmentation is
that it facilitates much more specific anatomical analysis of
data by separating only the areas that are required [12]. Seg-
mentation works with CT, MRI, as well as other types of
scans by producing a mask from the background image data.
Based on the task, users are able to work on their scans in
two or three dimensions colorectal polyp segmentation is
indeed a difficult task caused by variations in polyp form and
color intensity in colonoscopic frames [13]. Polyp segmenta-
tion was divided into three main methods by the researchers.
The first method is image processing-based segmentation,
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which does not employ any learning methods. The second
method involves extracting features first and then segment-
ing them using classifiers, as shown in Fig. 1 where on the
left side is the raw image, which is considered an input to the
model, while on the right side is the output, which is the seg-
mented image or ground truth (mask). In the third method,
approaches that perform segmentation using convolutional
neural networks are grouped together.

2.2 Computer-Aided Diagnosis (CAD)

Computer-aided detection is a computer-based framework
that assists medical physicians in making quick decisions
in the field of medical imaging [14]. Medical imaging is
concerned with information existing in images that medical
practitioners, such as gastroenterologists, must assess and
analyze in a short span of time, such as discovering polyps
that will aid in the decision of whether to leave or resect these
polyps. Image processing evaluation is an important task in
the medical sector because imaging is a basic method for
identifying any disease in its early phases, but image acqui-
sition should also not endanger the human body, such as
during endoscopic operations, X-ray, and MRI scans [15],
and so on. Images taken with great intensity of energy pro-
vide superior quality but endanger the body; thus, images are
captured with much less energy and in turn, will have poor
quality and low contrast, which will be a valuable area to
investigate by the researchers.

2.3 Deep Learning

Deep learning and machine learning are the foundations
of any CAD or medical decision support system. Deep
learning is based on combining low-level features, placing
higher-level abstract feature characteristics, and classifying
intangible objects. Deep learning methodology is derived by
researchers from different studies and experiments on arti-
ficial neural networks. The most used deep learning models
for processing and analyzing images are convolutional neu-
ral networks (CNNs) or deep convolutional neural networks
(DCNNs), in addition to the recurrent neural network (RNN),
model which is widely used in CNNs, with different network
frameworks, such as long short-term memory (LSTM) net-
works, a form of recurrent neural networks that is good at
learning order reliance in predicting sequence [16].

3 Literature Review

The purpose of this section is to highlight the progress made,
identify current problems, and establish the way for creative
approaches to the accurate segmentation and localization

of polyps by conducting a comprehensive review of earlier
works.

In 2020, Mandal et al. [17] developed a reliable and effec-
tive method for segmenting polyp regions. In their research,
fuzzy clustering was used to split polyp areas from healthy
areas in colonoscopic image frames by producing a distinc-
tive threshold level from the hue, saturation, and lightness
color space’sVchannel. There are several types of fuzzy clus-
tering that investigate cluster information, including hard and
soft clustering. Hard clustering divides the data into distinct
groups or distinct clusters, with each data object precisely
assigned to one of the groups. Soft clustering, on the other
hand, assigns each data object to one or perhaps more clus-
ters, with membership levels assigned during the process.
Their model achieved an accuracy of 98.80% compared to
three other studies proposed by Hwang et al., Alexandre
LA et al., and Kodogiannis et al., where their accuracy are
77.77%, 94.87% and 97.14%, respectively.

In 2021, Debesh Jha et al. [18] did thorough research
into segmenting colorectal polyps. They used many differ-
ent models such as ResUNet++, ResUNet, and UNet as
major models. These models were tested on six datasets,
which are CVC-ClinicDB, CVC-ColonDB, ETIS Larib
Polyp DB, Kvasir-SEG, ASU-Mayo Clinic Colonoscopy
Video Database and CVC-VideoClinicDB, with a total of
33,119 images. Data augmentation was applied to increase
the number of polyps, and they also reduced the complex-
ity by modifying the size of the images to 256 × 256.
They improved the results of the experimental model by
implementing augmentation at the test time and Conditional
Random Field (CRF) as a post-processing technique. After
testing the proposed model on different datasets, they con-
cluded that ResUNet++ is better at segmenting all different
types of polyps (large, small, and regular polyps), especially
smaller and sessile polyps. In addition, using ResUNet++
combined with the CRF improved precision and recall.

In 2021, Banik et al. [19] developed a polyp segmenta-
tion network called Polyp-Net that is based on fusion. They
enhanced the CNN with a network called a Binary Tree
Wavelet. The dataset used in this study is from a polyp
segmentation challenge called Endoscopic Vision held in
Singapore. For training, they used 300 frames, while for test-
ing, they used 612 frames. In the preprocessing phase, they
focused on noise in the frames such as blood vessels and
endoluminal folds by applying the Mumford-Shah-Euler in-
painting method. Since the resulting segmented image was
not promising in terms of an accurate region of interest, they
usedLocalGradientWeighting as a type ofLevel-SetMethod
(LSM) to overcome this problem. Their proposed model out-
performed CNN and achieved a precision and recall of 0.836
and 0.811, respectively, compared to UNet and ResNet-50.

In 2022,Qiu et al. [20] designed theBoundaryDistribution
Guided Network (BDG-Net) to segment polyps accurately.
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Fig. 1 Example of image and
ground truth of polyp
segmentation task

The research focused on enhancing segmentation by integrat-
ing many scale features since polyps have various sizes and
undefined boundaries. The suggested model consists of two
units. The first unit is for generating boundary distribution,
which is used to assemble high-level features and generate
a map of this boundary. The second unit is the Bound-
ary Distribution Guided Decoder (BDGD), which enhances
polyp segmentation using the previously generated BDM
and integrates that with many scale features. The training
set contained a total of 1450 images from CVC-ClinicDB
and Kvasir, while they used three different datasets for test-
ing, which are CVC300, ETIS, and CVC-ColonDB. They
contrasted their proposal with the state-of-the-art algorithms
such as SFA, PraNet, UNet, UNet++, ResUNet-mod, and
ResUNet++. The proposed method achieved a mean dice of
0.915, which outperformed the previously mentioned algo-
rithms.

In 2022, Mohapatra et al. [21] proposed a segmenta-
tion architecture called U-PolySeg that concatenates features
using dilated convolution. Due to their different sizes, the
images were resized to 416 × 416 pixels during the process-
ing step. A comprehensible transport module was applied to
remove specular reflections in the image, and the contrast
of the images was enhanced using contrast limited adaptive
histogram equalization. The architecture of UNet model was
modified to add more advanced blocks. Many experiments
were done to select the best parameters of the proposedmodel
to ensure its effectiveness. The dataset used was the Kvasir-
SEGdataset, which has 1000 images andmasks. Finally, they
compared their proposed model to ColonSegNet. The pro-
posed model achieved 0.9677, 0.9686, 0.8791, 0.9557, and
0.9229 in terms of global accuracy, dice coefficient, intersec-
tion over union, recall, and precision, respectively.

In 2022, Gautam et al. [22] constructed an encoder and
decoder structure and focused on multi-scale features by
applying squeeze and excitation modules. They modified the
skip connection by using Fusion Attention Blocks to min-
imize the semantic gap between both encoder and decoder
(FAB). To enrich and extract more features, a Multi-Scale

Information (MSI) block is applied, which will help in the
representation of relevant features. The Kvasir-SEG dataset
was used for training and testing, and due to the lack of
labeled data, data were augmented using a special library
called albumentations. The proposed model succeeded in
segmentingdifferent sizes of polyps and achieved adice score
of 85.15% compared to the other four models.

In 2022, Tran et al. [23] proposed a model that is an
output of a modification in the residual recurrent UNet archi-
tecture. The new model was implemented to minimize the
size of the model and the change convolutional filters in a
more flexible way; they named the new model the Modified
Residual Recurrent UNet model (MRR-UNet). Two varia-
tions of (MRR-UNet) were implemented: mRR1-UNet and
mRR2-UNet, thefirst version consisted of 16filters,while the
second version consisted of 32 filters. The datasets included
were three datasets: CVC-ColonDB, ETIS-LaribPolypDB,
and CVC-ClinicDB. For training purposes, all images were
resized to 224×224. Data augmentation was used because of
the limitations of the image numbers. Augmentation meth-
odswere used such as shearing, rotating, and flipping images.
Their model achieved an average dice of 93.54%.

To the best of our knowledge, the models mentioned in
previous research used various techniques to segment polyps,
but these studies ignored many aspects, such as improving
image quality and applying different processing techniques
that will improve model results, as well as an important per-
formance measure such as recall, in addition to the limited
amount of medical data.

In summary, there have been several research studies in
recent years that have attempted to develop reliable and effec-
tive methods for segmenting polyp regions in colonoscopic
images. These studies have used various techniques such
as fuzzy clustering, Binary Tree Wavelet, Local Gradient
Weighting, Boundary Distribution Guided Network. These
methods have been tested on different datasets, with varying
levels of success. Some have achieved higher accuracy, preci-
sion, and recall compared to other studies and state-of-the-art
algorithms. However, the best method for polyp segmen-
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tation may depend on the specific dataset and application.
Table 1 summarizes the literature studies as follows: dataset,
preprocessing, methodology, evaluation tools, advantages,
and disadvantages

In this study, we propose an enhancement to overcome
existing research gaps by designing a versatile and robust
model that is independent of a specific dataset. Additionally,
previous studies did not include the use of normal images
to address the shortage of normal labeled training data. To
address this, we implement Cost-Effective Active Learning
to increase the number of normal images. To further improve
the results, we enhance images usingGaussian filters. In con-
trast to a previous study that used CRF as a post-processing
technique, we utilize Locally Shared Features to improve
captured features and reduce training time. Finally, to opti-
mize themodel’s performance,weuse grid search to optimize
the model’s parameters.

4 Materials andMethods

This section includes detailed explanations of the datasets
used in this study as well as a variety of techniques, which
are divided into two main categories: deep learning and data
processing techniques.

4.1 Datasets

Six different datasets were used in this study: CVC-ClinicDB
[24],CVC-ColonDB[25],ETIS-LaribPolypDB[26],Kvasir-
SEG [27], and Kvasir-Sessile [27] with numbers of images
of 612, 380, 196, 1000, and 196 respectively, as shown in
Table 2 which shows each dataset with the corresponding
number of images and masks, then the total number of them.
We added 1500 normal images from HyperKvasir [28] to
make the model able to differentiate between images that
contain polyps and images without polyps, as shown in
Table 3 which shows the number of images and masks of
each dataset after adding normal images. Finally, to balance
the dataset, active learningwas used to annotate an additional
884 images from the unlabeled data found in theHyperKvasir
dataset, which contains 99,417 unlabeled images. Images
were added to the normal images to make 2384 total, and the
dataset was named the Comprehensive Polyp Dataset (CPD)
as shown in Table 4 which shows the number of images and
masks after adding the labeled images to the normal images.
Cost-sensitive uncertainty sampling was used as the label-
ing selection method. This method selects samples that are
model uncertain and cheap to label.

Table 2 Datasets containing polyps used in experiments

Dataset No. of images No. of masks

CVC-ClinicDB 612 612

CVC-ColonDB 380 380

ETIS Larib Polyp DB 196 196

Kvasir-SEG 1000 1000

Kvasir-Sessile 196 196

Total (images+ masks) 4768

Table 3 Datasets containing polyps used in experiments after adding
normal images

No. of images No. of masks

CVC-ClinicDB 612 612

CVC-ColonDB 380 380

ETIS Larib Polyp DB 196 196

Kvasir-SEG 1000 1000

Kvasir-Sessile 196 196

Normal images 1500 1500

Total (images+ masks) 7768

Table 4 Comprehensive polyp dataset

No. of images No. of masks

CVC-ClinicDB 612 612

CVC-ColonDB 380 380

ETIS Larib Polyp DB 196 196

Kvasir-SEG 1000 1000

Kvasir-Sessile 196 196

Normal images 2384 2384

Total (images+ masks) 9536

4.2 Methods

This section is divided into two subsections: the first pro-
vides a summary of various deep learning models, and the
second discusses various preprocessing techniques, includ-
ing conditional random fields, locally shared features, data
augmentation, and active learning.

4.2.1 Deep Learning Techniques

In this section, a brief introduction to the UNet, UNet++,
ResUNet, and ResUNet++ models and the mechanisms
behind those models, such as the attention mechanism, is
provided.
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UNet

Olaf Ronneberger et al. developed UNet in 2015 at the Uni-
versity of Freiburg, Germany, for image segmentation in the
medical field. Segmenting biomedical images is considered
one of the most commonly used methods for any seman-
tic segmentation task [29]. It is a fully convolutional neural
network trained with fewer training samples. UNet is a U-
shaped encoder–decoder network architecture consisting of
four encoder and four decoder blocks linked by a bridge,
as shown in Fig. 2 which shows the whole architecture of
UNet. The encoder network has half the spatial dimensions
and twice the number of filters for every encoder block.
Likewise, the decoder network doubles the spatial dimen-
sions while lowering the number of feature channels by half,
then comes a convolution after non-linear activation func-
tion called ReLU, which helps the network learn different
complex patterns in data, and its function can be denoted by:

ReLU (x) = max(0, x), (1)

where x = an input value
From the above function, the output of the activation func-

tion is the largest value between zero and the input data value.
The output is a positive number when the value of the input
data is greater than or equal to zero, while the output will be
zero when the input data value is less than zero, so we can
reformat Eq. 1 as shown below in Eq. 2:

ReLU(x) =
{
0, if x < 0
x, if x ≥ 0

, (2)

where x = an input value
There is also a max-pooling function that is applied to

the generated feature map to reduce its dimension and the
amount of computation power carried over the network. The
max-pooling output shape can be calculated as follows in
Eq. 3:

[
Ix − P

S

]
+ 1, (3)

where Ix is the input x, P is the pooling window, S is the
stride, and the floor operation is applied on the numerator
and dominator.

UNet++

The UNet++ is a redesign of the UNet in different aspects.
The first aspect is the existence of convolutional layers on
skip pathways, which improve gradient flow and reduce
the semantic gap between encoder and decoder [31]. UNet
remodelling helps in achieving high performance by apply-
ing deep supervision.

ResUNet

ResUNet is an abbreviation for Deep Residual UNet, which
is based on encoder and decoder structures [32] and [33].
With fewer parameters and the help of a fully convolutional
neural network, it can achieve high performance and good
results in addition to the richness of skip connections that
help transfer information between layers easily, which is a
good application for polyp segmentation.

ResUNet++

The Deep Residual UNet architecture serves as the founda-
tion for theResUNet++architecture.ResUNet++ is builtwith
blocks such as attention [34], excitation and squeeze, atrous
spatial pyramidal pooling [35, 36], and residual blocks. These
blocks help in building a deeper neural network, enhance
the cross-functionality between different channels, and min-
imize the computational cost. Since encoders and decoders
have a problem with the complete sequence of informa-
tion, the attention mechanism focuses on the most important
attributes of the input sequence for each output. The attention
mechanism can be generalized and calculated using Eq. 4:

A(q,K,V) =
∑
i

exp
(
eqki

)
∑

j exp
(
eqk j

)vi . (4)

Attention is the weighted sum of the values depending on
the requested queries and the pair of keys, where q is the
requested query for a set of two keys (K,V).

4.2.2 Data Processing Techniques

An overview of the data processing techniques used in this
study and other studies. Techniques are classified into two
techniques: post- and pre-processing techniques such asCon-
ditional Random Fields and Locally Shared Features.

Conditional Random Fields

CRF, orConditional RandomFields, is a post-processing tool
that is frequently used to enhance the performance of algo-
rithms, especially in image segmentation tasks [37]. A layer
of CRF neural network is added in the form of a Recurrent
Neural Network (RNN) in addition toUNET [38]. CRF helps
solve the problem of mispredicted pixels and misclassified
pixels. Debesh Jha et al. [18] conducted a comprehensive
study to predict polyps by integrating CRF to enhance the
model’s performance and be able to extract the most impor-
tant features representing polyps, which in turn will enhance
the overall results. CRF is represented by the Gibbs distribu-
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Fig. 2 Architecture of UNet
[30]

tion as in the following Eq. 5:

P (X = Xi ) = 1

Z j
exp (−E (Xi )) , (5)

where Xi is a random variable at i, E (Xi ) is the energy
function, and Z j is the partition function.

Locally Shared Features

Yang et al. [39] introduced Locally Shared Features (LSF),
which are better than the CRF. The technique is built on the
basics of CRF. The aim of LSF is to improve the features of
each image pixel by capturing the features of its neighbours.
LSF is implemented in two steps: shifting and concatenat-
ing. In shifting, the feature map is shuffled in four directions
(right, left, up, and down), while in concatenating, the origi-
nal feature map is linked with the neighbouring feature map.
LSF solved problems such as the computational problem of
the CRF since it is time-consuming in addition to enhancing
the model’s performance and enriching the image segmen-
tation task through the complete Algorithm 1. LSF can be
calculated using Eq. 6:

E(y) =
N∑
i=1

ϕ
(
yi | xi−LSF

)
, (6)

E (y) is the sum of applying LSF to pixel-wise classification,
where xi represents features and yi is the pixel label.

Data Augmentation

Due to the shortage of available medical data [40], there are
numerous techniques where the amount of data is artificially
increased by generating a new data point from the residing
data. These techniques are center cropping, randomcropping,
horizontal flip, vertical flip, random rotation [41], and scale
augmentation. Data augmentation improves the model’s pre-
diction accuracy [42] by increasing the generalization of the
model, solving the problem of an unbalanced dataset and
adding more data to the training set. Most of the recent stud-
ies used data augmentation to increase the polyp samples,
either through preprocessing augmentation or test time aug-
mentation, which is applied to the test dataset to boost the
model’s performance and reduce overfitting problems [43,
44].
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Active Learning

Active learning is a type of semi-supervised learning tech-
nique in which an algorithm can start questioning a user on
thefly to give new labels for samples [45]. Thegoal of interac-
tive learning is to achieve high accuracy with as few labeled
samples as possible. Supervised segmentation algorithms,
on the other hand, use previous knowledge from training
samples as the ground truth. By incorporating deep convolu-
tional neural networks in active learning and implementing a
cost-effective algorithm to select samples that contributes to
enhancing the segmentation task with fewer manual annota-
tions, this method can produce a challenging classifier with
optimized feature representation. M. Gorriz et al. [46] used
the active learning approach for semantic segmentation of
lesion areas inmedical images. Since the existing deep learn-
ing models need a large number of labeled training samples,
this could be a problem due to the limitations of medical
data. Implementing such Cost-Effective Active Deep Learn-
ing (CEAL) reduced the time and cost of manual annotations
[47–49].

5 ProposedModel for Segmenting Polyps

The proposed model aims to improve the accuracy of detect-
ing adenomas by developing a medical system that can
differentiate between healthy and unhealthy images. This is
achieved by applying various image processing techniques to
a large and diverse dataset of images. Additionally, the archi-
tecture of the existing deep learning model was modified,
LSF was integrated, and new variations, such as UNet++,
were implemented. Furthermore, grid search technique was
employed to optimize all models. In this study, deep learning
models like UNet, UNet++, ResUNet, and ResUNet++ were
implemented. The proposed model consists of three main
phases and two sub-phases: data fusion, including the active
learning module as a sub-phase; preprocessing; training and
testing (segmentation phase), including the hyperparameter
tuning sub-phase, as shown in Figs. 3, 4, and 5.

5.1 Data Fusion Phase

The first phase of the proposed model is data fusion. As
mentioned earlier, a full dataset was constructed and named
the CPD, which contains a total of 9536 images and masks
is the fusion of six datasets. To balance the dataset, CEAL is
applied; thus, 884 extra images from the unlabeled data were
added to build the normal images dataset, as shown in Fig. 3
where it depicts the data fusion and preprocessing phases.

5.2 Active LearningModule Sub-phase

The active learning module’s detailed flow, which is used
in the data fusion phase, is shown in Fig. 5. The user mod-
ule is a part of the active learning module, and it involves
the interaction between the patient and the doctor during an
endoscopic examination, which produces the images that are
used to create the gastrointestinal dataset. UNet was used as
a form of convolutional neural network to train and predict
the data. The algorithm’s methodology depends on samples.
Minority samples (most informative images) with low pre-
diction confidence are one type of sample; these samples are
the most uncertain and have the lowest prediction scores.
We requested the assistance of two professional experts with
extensive experience in the field. The first expert helped
us label some ambiguous minority samples. To validate the
newly labeled samples, we randomly select a subset and have
them labeled by a second expert. Finally, the labeling results
of the two experts were compared in order to demonstrate
consistency and validate the labeled samples. Another form
of sample is the majority of samples (most clearly classi-
fied images) that have high prediction scores. Because these
samples’ predictions are so confident, the algorithm automat-
ically adds labels without any burden on the human. Finally,
minority and majority samples are added to the training set
in an iterative manner.

5.3 Preprocessing Phase

In the preprocessing phase, all images were resized to 512
× 512 after different iterations to determine the best size to
keep image features, and then gaussian filters were applied
to reduce Gaussian noise in the input images. Data aug-
mentation functions were applied, like center and random
cropping, rotating images, vertical and horizontal flip, and
scale augmentation, to enhance themodel’s performance and
minimize the risk of overfitting, besides increasing the train-
ing sample. Finally, preprocessed and augmented images
were added to the tensor flow dataset to be easily used as
a high-performance input pipeline to the model.

5.4 Training and Testing Phase

To improve the performance of the four models (UNET,
ResUNET, ResUNET++, andUNET++), we propose putting
into practice a novel approach that makes use of training
images and locally shared features. By utilizing both mod-
els’ complementing characteristics, this approach seeks to
enhance segmentation abilities. In order to encode rich data
from several perspectives, the integration procedure entails
collecting intermediate characteristics from the encoder
of each model. These locally shared features provide a
more thorough interpretation of the input data by capturing
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Fig. 3 Data fusion and
preprocessing phase of PolySeg
Plus architecture

Fig. 4 Training and testing
phase of PolySeg Plus
architecture

both high-level contextual information and low-level details.
Using locally shared features, we expect to significantly
increase segmentation accuracy and generalization across a
variety of datasets, furthering the state-of-the-art in medical
image segmentation and related applications. Figure 4 illus-

trates the flow of the training and testing phases, which show
the comparison between models after integrating LSF and
the prediction results of the models after hyper-parameter
tuning.
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Fig. 5 Architecture of active
learning module

5.5 Hyper-Parameter Tuning Sub-phase

To be able to obtain the best performance and efficiency,
we concentrate on optimizing several important parame-
ters when hyperparameter tuning the four models (UNET,
ResUNET, ResUNET++, and UNET++). Selecting suitable
optimizers is the initial set of hyperparameters. To determine
which one best fits each model’s design and convergence
behavior, we investigate a variety of selections, including
Adam, RMSprop, and SGD. The filter size is then addressed,
with the goal of optimizing the convolutional layers’ recep-
tive field to efficiently collect important image features. To
balance feature representation and computational cost, we
experiment with different filter dimensions. We also adjust
the batch sizewhile taking into account the trade-off between
memory usage and training speed. While bigger batch sizes
may speed up convergence but use more memory, smaller
batch sizesmay result in periodic updates but may be compu-
tationally consuming. Finally, for the purpose of maximizing
spatial down-samplingwhile keeping important information,
we investigate several pooling layer topologies, including
max pooling and average pooling. During this hyperparam-
eter tuning phase, we use methods such as grid search and
compare performance across several metrics to find the ideal
hyperparameter combinations that improve the segmentation
accuracy and generalization abilities of each model.

6 Experiment Results

Many experiments were carried out to be able to identify
the best parameters for the techniques implemented in the
model. The study’s primary objective was to enhance the
process of polyp segmentation to help the endoscopist iden-
tify the polyps more accurately, which can be reflected in
reducing false-positive rates of polyp discovery by increas-
ing precision and the dice coefficient. Twomain experimental
approaches are discussed in this section. In the first approach,
deep learning models are used to apply the ablation study to
the CPD dataset, while the second approach is to apply these
models to each dataset (CVC-ClinicDB, CVC-ColonDB,
ETIS LaribPolyp, KVASIR-SEG, Kvasir-Sessile, and CPD).
The results of the ablation study and those obtained using
UNet, UNet++, ResUNet, andResUNet++with LSF are then
presented.

6.1 Experimental Settings

The LSF technique was used before running the model, and
the data was split into 80% training and 20% testing. The
predicted images were investigated with the masks to assess
the performance of the proposed techniques by contrasting
their DSC, recall, and precision. The proposed PolySeg Plus
model was trained on a system equipped with an 11th Gen
Intel (R) Core (TM) i7-11800H @ 2.30 GHz processor, 16
GB of RAM, a NVIDIA GeForce RTX 3060 GPU, and 1 TB
of SSD storage, in addition to some experiments conducted
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on Google Colab Pro. All the experiments were performed
usingAnaconda version 2.0 and Python 3.7. Based on the fol-
lowing ablation study, the hyperparameters used were batch
size of 64, a filter size of 5 × 5, max pooling layer. The
optimizers used were Adam, SGD, and Nadam.

6.2 EvaluationMetrics

The performances of differentmodel variations aremeasured
by three commonly usedmetrics: Dice Similarity Coefficient
(DSC), Recall and Precision. DSC is used to measure the
similarity between two sets of data, and it is widely used
to evaluate the output of the image segmentation operation.
DSC is defined by the following formula, as shown in Eq. 7:

DSC(M,N) = 2| M ∩ N|
|M| + |N| , (7)

where M is the predicted set of image pixels and N is
the image ground truth, and DSC is twice the overlapped
area between M and N divided by the number of pixels
in each image. Recall measures the completeness of the
model in detecting the number of captured positive samples,
whereas precisionmeasures howmany of these positive sam-
ples match the image ground truth. Recall and precision are
defined by Eqs. 8 and 9, respectively.

Recall = T P

T P + FN
, (8)

Precision = T P

T P + FP
. (9)

In this study, TP means true positive (presence of polyp
in image), FP means false positive (predicted polyp in the
image, but the image does not contain polyp), and FN means
false negative (the image contains polyp but is predicted to
be without polyp).

6.3 Ablation Study

An ablation study in deep learning is a method used to under-
stand the impact of individual components or elements of a
neural network on its overall performance. This is typically
done by removing or “ablating” one or more parts of the net-
work and evaluating the effect on the model’s accuracy or
other performance metrics. This study can help identify the
most important features or components of the network, as
well as potential areas for improvement. It can also be used
to compare different architectures or configurations of a net-
work. This study is applied in three parts: active learning,
preprocessing, and hyperparameter tuning, All three parts
are applied to four different deep learning models: UNet,
UNet++, ResUNet, and ResUNet++ on the CPD dataset. For

evaluation, image DSC is used to evaluate the performance
of the tested models.

6.3.1 Active Learning Method

In the CEAL, various factors can impact the accuracy of the
model’s prediction, such as the number of iterations carried
out in the active learning process, the quantity of predictions
made in each iteration, the number of samples with the great-
est uncertainty selected to be included in the training set per
iteration, and the size of each batch while training.

Case Study 1: Altering the Number of Active Learning Itera-
tions and the Number of Predictions for Each Iteration

Table 5 displays the outcomes of four attempts where a UNet
model was trained on a Hyper Kvsair dataset. Each exper-
iment used a variable number of iterations and different
predictions for each iteration. The number of epochs mul-
tiplied by the length of time needed to complete one training
iteration is shown in the “Epoch Training Time” column.
The “DSC” column displays the Dice Similarity Coefficient,
a metric used to assess the model’s performance, with higher
values indicating better performance. The model’s perfor-
mance (DSC) greatly increased with both the number of
iterations and the number of predictions per iteration. The
highest accuracy of 0.8887 was achieved by trial 4, which
took 40s to complete 60 epochs. Our findings indicate that
having twice as many predictions as iterations leads to the
best results. Additionally, starting the training with a higher
number of uncertainty samples can impact the accuracy of the
model, and the optimal number was found to be five samples
labeled by a human.

Case Study 2: Altering Batch Size

Results from various trials in the experiment on active learn-
ing are shown inTable 6. It demonstrates the effects of various
batch sizes and training durations on the Dice Similarity
Coefficient (DSC) performance parameter. A batch size of 32
and a training time of 20 epochs, lasting 26s each, resulted in
the highestDSCof 0.8524.However, the batch size of 128 did
not perform as well, with higher epoch numbers and longer
training times compared to the batch size of 32. Therefore,
we chose a batch size of 32 for further analysis.

6.3.2 Preprocessing

Image processing before training is crucial, as it pre-
processes and enhances the quality of the images used for
training, resulting in improved accuracy and performance of
themodel. It includes techniques such as resizing, normaliza-
tion, and noise reduction, which help reduce variability and
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Table 5 Results of the ablation
study on the number of active
learning iterations and the
number of predictions for each
iteration

Trial no No. of iterations Prediction per iteration Epoch training time DSC

1 5 10 10 × 15s 0.7641

2 10 20 20 × 25s 0.8055

3 20 40 40 × 33s 0.8314

4 30 60 60 × 40s 0.8887

Table 6 Results of the ablation study on changing the batch size

Trial no Batch size Epoch × training time DSC

1 16 10 × 10s 0.8022

2 32 20 × 26s 0.8524

3 64 40 × 33s 0.7856

4 128 60 × 44s 0.7723

make the images more consistent, leading to a more robust
model. Image processing also helps in removing any irrel-
evant information and increasing the signal-to-noise ratio,
making it easier for the model to learn and recognize pat-
terns in the data. Therefore, image processing is a crucial
step in ensuring the success of the machine learning model
and its ability to accurately perform its intended task.

Case Study 1: Applying Gaussian Filters

Gaussian filters are commonly used in image processing to
remove Gaussian noise and smooth out images. The impor-
tance of Gaussian filters lies in their ability to enhance the
quality of images, improve the accuracy of computer vision
algorithms, and facilitate the process of image analysis. For
several image segmentation models, performance measures
in terms of dice are shown in Table 7. With and without
Gaussian filters are used to compare the models in these two
conditions. The results show that the models with Gaussian
filters perform better than thosewithout them in general, with
ResUNet++ getting the best score of 0.8812 in the condition
when Gaussian filters were used. Algorithm 2 demonstrates
the process of applying a Gaussian filter to the input images.

Table 7 Results of the ablation study on gaussian filters

Model Without gaussian filters With gaussian filters

UNet 0.7521 0.8078

UNet++ 0.8033 0.8427

ResUNet 0.8160 0.8590

ResUNet++ 0.7920 0.8812

Table 8 Results of the ablation study on LSF

Model Without LSF With LSF

UNet 0.8078 0.8287

UNet++ 0.8427 0.8752

ResUNet 0.8590 0.8840

ResUNet++ 0.8811 0.9312

Case Study 2: Applying LSF

After applying the Gaussian filters to the training images,
LSF is applied directly before training. Locally shared fea-
tures in deep learning refer to the similarities between the
features learned in different layers of a deep neural net-
work. These locally shared features are crucial because they
allow the network to learn common representations from the
input data, which in turn enhances the overall accuracy of
the model. They also help reduce the number of parame-
ters and computational complexity in the network, making
it more efficient and easier to train. Additionally, the locally
shared features promote generalization, as the network can
recognize similar patterns in the data even when it is pre-
sented in different forms. Overall, locally shared features
play a vital role in the success of deep learning models.
Table 8 contrasts the effectiveness of several image segmen-
tation models using the Locally Shared Features (LSF) and
without the Locally Shared Features (LSF) approache. UNet,
UNet++, ResUNet, and ResUNet++ are among the models.
Values for eachmodel andmethod’s relevant evaluationmea-
sure, such as DSC, show that Locally Shared Features often
enhance model performance. LSF did not enhance much
in UNet; however, LSF achieved a great improvement with
ResUNet++, with an accuracy of 0.9312.
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6.3.3 Hyperparameter Tuning

To find the best structure and settings for a CNN model, it is
necessary to take into account the type of task and any pos-
sible difficulties related to it. The goal of an ablation study is
to gain a clear understanding of how the model performs by
examining the effects of changing certain parts. By making
changes to various components or parameters of the model,
variations in performance can be observed. This approach
allows for the identification of any potential declines in per-
formance, which can then be corrected by adjusting and
fine-tuning the network. As a result, we have experimented
with our base CNN model multiple times by changing the
number of layers, filter sizes, filter numbers, parameters, and
other variables, to attain optimal performance with minimal
computational resources. Hyperparameter optimization was
done using the GridSearchCV library in scikit-learn to be
able to choose the best parameters.

Case Study 1: Altering Optimizer

Optimizers are crucial components in Convolutional Neural
Networks (CNNs) as they control the model’s learning pro-
cess. They determine how the model updates its parameters
based on the loss function and training data. The optimizer
determines the speed and direction of learning and helps the
model reach its optimal accuracy. Without the optimizer, the
model’s learning process would be slow, unstable, and pos-
sibly converge to a suboptimal solution. Hence, the choice
of optimizer is important as it can greatly affect the overall
performance of the CNN. Different optimization algorithms,
including Adam, Nadam, and Stochastic Gradient Descent
SGD were tested to determine the best optimizer. Table 9
shows the performance of various models (UNet, UNet++,
ResUNet, and ResUNet++) using three distinct optimizers
(Adam, Nadam, and SGD). The values in the table show the
related evaluation metrics (DSC) that each model and each
optimizer were able to accomplish. With the highest scores
from the Nadam and SGD optimizers, ResUNet++ seems
to be the model that performs the best overall. The optimal
parameters for UNet, UNet++, ResUNet, and ResUNet++
were SGD, Adam, SGD, and Nadam. We choose the previ-
ous optimizers for each model for further ablation studies.

Case Study 2: Altering Filter Size

The size of filters in a Convolutional Neural Network (CNN)
plays a crucial role in determining the network’s ability to
learn useful features from the input data. Large filters can
capture global patterns in the input, while small filters can
capture local patterns. By varying the size of filters, a CNN
can learn a hierarchy of features, from simple edge detec-
tion to more complex shapes and objects. This allows the

Table 9 Results of the ablation study on changing optimizer

Model Optimizer

Adam Nadam SGD

UNet 0.8241 0.8220 0.8447

UNet++ 0.8889 0.8545 0.8452

ResUNet 0.8526 0.8422 0.8863

ResUNet++ 0.8930 0.9236 0.8754

Table 10 Results of the ablation study on changing filter size

Model Filter size

2 × 2 3 × 3 5 × 5 7 × 7

UNet 0.8260 0.8351 0.8536 0.8826

UNet++ 0.8583 0.8589 0.8903 0.9137

ResUNet 0.8520 0.8481 0.8976 0.9000

ResUNet++ 0.8843 0.8974 0.9242 0.9387

network to make more informed decisions when classify-
ing the input data. Additionally, using different sized filters
can also reduce overfitting and improve the overall accuracy
of the model. It is important to experiment with different
filter sizes to find the optimal configuration for a specific
problem and dataset. With different filter sizes (2 × 2, 3 ×
3, 5 × 5, and 7 × 7), Table 10 compares the performance
of various semantic segmentation models (UNet, UNet++,
ResUNet, andResUNet++). TheDSCmetric is used to assess
the performance of the models, and the values represent the
equivalent scores attained by each model using various filter
sizes. With a maximum score of 0.9242, ResUNet++ per-
forms most effectively overall among the models and filter
sizes. For 2 × 2 filter size, the highest accuracy is achieved
by ResUNet++, with an accuracy of 0.8843; except for the
ResUNet, the accuracy was lowered by 3.23%. However, the
filter size 3 × 3 did slightly enhance the overall performance
for all models. The 5 × 5 filter improved the results of the
models using the previous filter 3× 3 by an average of 3.16%.
As shown in Table 10, filter size 7 × 7 achieved the high-
est accuracy for all models: UNet, UNet++, ResUNet, and
ResUNet++, with accuracies of 0.8826, 0.9137, 0.9000, and
0.9387. As a result, the 7 × 7 filter size is selected for each
model for further ablation research.

Case Study 3: Altering Batch Size

The batch size refers to the number of images utilized in each
iteration during the training process of the model. Having a
larger batch size can result in longer convergence times, but a
smaller batch size may affect the model’s performance nega-
tively. The complexity of medical images can also impact the
model’s performance when using different batch sizes, lead-
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Table 11 Results of the ablation study on changing batch size

Model Batch size

16 32 64 128

UNet 0.8354 0.8402 0.8440 0.8324

UNet++ 0.8863 0.8870 0.8895 0.8783

ResUNet 0.8640 0.8790 0.8889 0.8622

ResUNet++ 0.9187 0.9281 0.9321 0.9051

ing to varying results. At various batch sizes (16, 32, 64, and
128), Table 11 compares the performance of various models
(UNet, UNet++, ResUNet, and ResUNet++). According to
the DSC metric, the models are assessed. ResUNet++ out-
performed other models in the comparison, achieving the
greatest results overall across a range of batch sizes. We
discovered that batch sizes of 32 and 64 achieved the high-
est average accuracy of 0.8836 and 0.8886, respectively,
as shown in Table 11. The highest DSC accuracy for 32
and 64 batch sizes was 0.9281 and 0.9321 for ResUNet++,
respectively. As a result, 64 batch sizes were used for fur-
ther ablation research. According to literature studies, larger
batch sizes can result in favorable outcomes and improved
generalization when selecting network optimizers [50] and
figuring out the model learning rate [51]. The best way to
choose the best parameters is to experiment with different
batch sizes while controlling other factors, then compare the
results.

Case Study 4: Altering the Pooling Layer’s Configuration

Pooling layers is an important component of convolutional
neural networks (CNNs) used in deep learning for image
processing tasks. The primary purpose of pooling layers is
to down-sample the spatial dimensions of the feature maps
generated by convolutional layers. This downsampling helps
reduce the number of parameters in the model, which in turn
can help prevent overfitting, reduce computational complex-
ity, and improve model efficiency. Pooling layers can also
help the model be invariant to small translations, rotations,
and distortions in the input image, thereby increasing its
ability to generalize to new, unseen data. The performance
of multiple models using different pooling layers (Max,
Average, and Global) is compared in Table 12 using DSC
evaluation measures. The models are divided into ResUNet,
ResUNet++, UNet, and UNet++. Over all pooling layers,
ResUNet++ outperformed the other models and achieved the
highest accuracy scores. The highest accuracy was recorded
for the max pooling layer for all models, while global pool-
ing did not enhance the model’s performance and the lowest
accuracy was 0.8322 for the UNet model. The max pooling
layer is therefore chosen for further ablation studies. We also

Table 12 Results of the ablation study on changing pooling layer

Model Pooling layer

Max Average Global

UNet 0.8573 0.8523 0.8322

UNet++ 0.8946 0.8930 0.8759

ResUNet 0.9011 0.9002 0.8991

ResUNet++ 0.9547 0.9486 0.9457

observed that the performance of the model degraded upon
increasing the number of epochs above 60, so the optimal
number of epochs was between 50 and 60 epochs.

Based on the previous ablation study, the entire structure
of the CNN model is modified, and the outcomes are docu-
mented. This process is carried out for every example under
consideration. In the active learning part, two case studies
were carried out. In the first case study, we found that the
optimal number of iterations is 30, and the number of pre-
dictions per iteration is 60, while in the second case, using
a batch size of 32 achieved the highest performance. In the
preprocessing, we experimented with applying gaussian fil-
ters and LSF.Gaussian filters enhanced the average results by
5.68%; also, using LSF techniques enriched the performance
of the model, and the results were compared before and after
using the LSF. The last part is the hyperparameter tuning part,
and based on different experiments, the following parame-
ters were chosen: The best optimizers, SGD, Adam, SGD,
and Nadam, were chosen for the following models: UNet,
UNet++,ResUNet, andResUNet++, respectively; afilter size
of 5× 5, batch size of 64; and max pooling layer. The results
of the entire ablation study are presented in Tables 5 and 6 for
active learning and Tables 7 and 8 for preprocessing, while
Tables 9, 10, 11, and 12 contain all the results related to the
model’s hyperparameter tuning.

6.3.4 Hyperparamter Tuning Using Grid Search

In this experiment, we carried out a thorough hyperparam-
eter tuning analysis for four deep learning models, UNet,
UNet++, ResUNet, and ResUNet++, which are frequently
employed inmedical image segmentation tasks. A key step in
machine learning is hyperparameter tuning, which improves
the generalization and performance of the models. The
model’s capacity to precisely identify regions of interest in
medical images is substantially impacted by the hyperparam-
eters that were chosen. With regard to the Dice Similarity
Coefficient (DSC) measure, we specifically investigated the
effects of several optimizers (Adam, Nadam, and SGD), fil-
ter sizes (2× 2, 3× 3, 5× 5, and 7× 7), batch sizes (16, 32,
64, and 128), and pooling layer settings (Max, Average, and
Global). Table 13 displays the outcomes of the hyperparam-
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eter tuning experiment for the four models UNet, UNet++,
ResUNet, and ResUNet++. Each row represents a particular
model configuration, which includes the optimizer selected,
the filter size, batch size, pooling layer, and the DSC as an
evaluation metric. It is clear from the findings that hyperpa-
rameter tuning has had a considerable impact on the models’
performance. Comparing the original UNet and ResUNet
architectures to the UNet++ and ResUNet++ models, signif-
icantly higher DSC ratings were obtained. Additionally, both
the ResUNet and ResUNet++models performed better when
they were tuned using the SGD optimizer with a higher filter
size of 7× 7 and a batch size of 64. TheAdamoptimizer, a fil-
ter size of 3 × 3, and a reduced batch size of 32, on the other
hand, improved the performance of the UNet and UNet++
models. Additionally, for all models, the Max pooling layer
consistently produced positive outcomes. In general, it has
been found that improving the segmentation accuracy of the
models through hyperparameter tuning is successful. With
the SGD optimizer, a 7 × 7 filter size, a batch size of 64, and
an average pooling layer, the ResUNet++model stands out as
the best-performing architecture. It achieved a DSC score of
0.9611, which is outstanding. The full details of Grid Search
are displayed in Algorithm 3.

6.4 Experimental Results Analogy of Baseline
Models and PolySeg Plus on CVC-ClinicDB
Dataset

The CVC-ClinicDB dataset contains 612 images. After
applying LSF to ResUNet, ResUNet++, UNet, and UNet++,
there was a great improvement in the performance of all
algorithms. In terms of DSC and precision, ResUNet++ +
LSF improved by 3.55% and 7.65%, respectively, compared
to ResUNet++ + CRF. UNet++ + LSF achieved a DSC of
0.7511, as shown in Table 14 where the results of our model
are compared to the studies made by Ronneberger et al. [30],
Zhang et al. [52], and Debesh Jha et al. [18].

6.5 Experimental Results Analogy of Baseline
Models and PolySeg Plus on CVC-ColonDB
Dataset

In CVC-ColonDB, the number of images is 380, which is
nearly half the number of images in CVC-ClinicDB. After
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Table 13 Results of
hyperparameter tuning using
grid search technique

Model Optimizer Filter size Batch size Pooling layer DSC

UNet Adam 3 × 3 32 Max 0.8638

UNet++ Adam 3 × 3 32 Max 0.9059

ResUNet SGD 7 × 7 64 Max 0.9127

ResUNet++ SGD 7 × 7 64 Max 0.9611

Table 14 Experimental results
analogy of baseline models and
Poly-Seg Plus on
CVC-ClinicDB dataset

Method Dice Recall Precision

Baseline models UNet [30] 0.6419 0.6756 0.6868

ResUNet [52] 0.4510 0.5775 0.5614

ResUNet++ +CRF [18] 0.9203 0.9393 0.8459

Poly-Seg Plus model variations UNet +LSF 0.7023 0.7312 0.7456

UNet++ +LSF 0.7511 0.7712 0.7841

ResUNet +LSF 0.5147 0.6089 0.5834

ResUNet++ +LSF 0.9558 0.9682 0.9224

applying the ResUNet++ + LSF (PolySeg Plus model vari-
ation), there was a slight improvement in DSC and recall
compared to the baseline model (ResUNet++ + TTA), as
shown in Table 15 where the results of our model are com-
pared to the studymade byDebesh Jha et al. [18], also; hence,
we do not have to apply test time augmentation as applied in
the baseline model.

6.6 Experimental Results Analogy of Baseline
Models and PolySeg Plus on ETIS Larib Polyp DB
Dataset

Comparing the results of the models on the other datasets,
the results were not significant since the number of images
in the datasets is 196, which is relatively small. However,
we applied different variations of PolySeg Plus to test the
ability of models on a small dataset. As shown in Table 16
where the results of our model are compared to the study
made by Debesh Jha et al. [53], applying LSF to ResUNet++
improved DSC by about 11.83% while improving precision
and recall by 19.2% and 18.45%, respectively.

6.7 Experimental Results Analogy of Baseline
Models and PolySeg Plus on KVASIR-SEG Dataset

Kvasir-seg has the largest number of images andmasks (total-
ing 1000 images) compared to other datasets. UNet++ and
LSF performed the best compared to UNet+ LSF and the
baseline model UNet; the average DSC and precision of the
two PolySeg Plus variation models were 0.8207 and 0.8250,
respectively, as shown in Table 17 where the results of our
model are compared by the studies made by Ronneberger et
al. [30] and Debesh Jha et al. [18].

6.8 Experimental Results Analogy of Baseline
Models and PolySeg Plus on Kvasir-Sessile
Dataset

The baseline model was implemented using ResUNet++ +
TTA, while in PolySeg Plus using the LSF technique, results
were enhanced in terms of DSC, and the gap between the
recall and precision was reduced by 7.83%, as shown in
Table 18 where the results of our model are compared by
the studies made by Debesh Jha et al. [18]. The results were
not significant since the Kvasir-Sessile dataset has a small
number of images.

6.9 Experimental Results of Poly-Seg Plus on
Comprehinsive Polyp Dataset

For generalization and enhancing model performance on
different image variations, PolySeg Plus was implemented,
a comprehensive polyp dataset that fuses CVC-ClinicDB,
CVC-ColonDB, ETIS Larib Polyp, Kvasir-Seg, Kvasir-
Sessile, and normal images. ResUNet++ + LSF achieved
the highest performance compared to ResUNet, UNet, and
UNet++. ResUNet++ + LSF achieved a DSC of 0.9547, as
shown in Table 19 and Fig. 7, which is higher than the aver-
age DSC of the other individual datasets, which is 0.8310,
as shown in Fig. 6 where the results of the polySeg Plus are
compared to the study by Debesh Jha et al. [18].

7 Results Discussion

The PolySeg Plus has introduced a new high-performance
model variation that achieved higher results than the existing
baseline models, which was attributed to ResUNet++ + LSF.
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Table 15 Experimental results
analogy of baseline models and
Poly-Seg Plus on
CVC-ColonDB dataset

Method Dice Recall Precision

Baseline models ResUNet++ + TTA [18] 0.8474 0.8434 0.8118

Poly-Seg Plus model variations UNet +LSF 0.6147 0.5821 0.5944

UNet++ +LSF 0.6254 0.6133 0.5978

ResUNet +LSF 0.8724 0.8643 0.8418

ResUNet++ +LSF 0.8947 0.8834 0.8699

Table 16 Experimental results
analogy of baseline models and
Poly-Seg Plus on ETIS Larib
Polyp DB dataset

Method DSC Recall Precision

Baseline models ResUNet++ [53] 0.6364 0.6346 0.6467

Poly-Seg Plus model variations UNet + LSF 0.7274 0.5263 0.5478

UNet++ + LSF 0.5914 0.5678 0.5726

ResUNet + LSF 0.4936 0.4847 0.4757

ResUNet++ + LSF 0.7547 0.8266 0.8312

Table 17 Experimental results
analogy of baseline models and
PolySeg-Plus on KVASIR-SEG
dataset

Method Dice Recall Precision

Baseline models UNet [30] 0.7147 0.6306 0.9222

ResUNet++ +TTA + CRF [18] 0.8508 0.8756 0.8228

Poly-Seg Plus model variations UNet +LSF 0.7941 0.7189 0.8045

UNet++ +LSF 0.8474 0.7645 0.8456

ResUNet +LSF 0.7763 0.7893 0.7445

ResUNet++ +LSF 0.9476 0.9245 0.8768

Three major factors contributed to the significant results. To
begin, good data preprocessing entails resizing the image
size to a fixed size and applying Gaussian filters to eliminate
Gaussian noise and improve the quality of the images to retain
themajority of their features. Second, applying the LSF tech-
nique, which is an enhancement of the CRF, to extract the
most important features. Finally, the hyperparameter tuning
canmake significant improvements in the performance of the
model by altering different parameters. For both the PolySeg
Plus and baseline models, the average results of ResUNet++
and UNet were compared. There is an enhancement in DSC
and recall by 8.29% and 8.06% using ResUNet++ on the
datasets CVC-ClinicDB, CVC-ColonDB, ETIS Larib Polyp,
KVASIR-SEG, andKvasir-Sessile, respectively.On the other
hand, UNet had an enhancement in DSC and recall of 7.35%
and7.19%on the datasetsCVC-ClinicDBandKVASIR-SEG

as shown in Fig. 6, and the results are verified qualitatively,
as shown in Fig. 8 where the output segmented image of the
PolySeg Plus is compared to the mask on the CPD dataset,
while Fig. 9 shows the visualization of segmented images and
the corresponding mask results of our method compared to
baselinemodels. Finally, Figs. 10 and 11 present the train and
validation progress of PolySeg Plus models on CPD through
epochs in terms of DSC respectively. As we can see, the pro-
posed model shows a better segmentation result on different
sizes of polyps, particularly small and flat polyps, which the
other baseline models, UNet and ResUNet, failed to detect.
Furthermore, it has been observed that the baseline models
in some images are inaccurate by segmenting polyps that do
not exist, which increases the number of false positive sam-
ples and reduces the accuracy and effectiveness of themodel,

Table 18 Experimental results
analogy of baseline models and
Poly-Seg Plus on Kvasir-Sessile
dataset

Method Dice Recall Precision

Baseline models ResUNet++ + TTA [18] 0.5042 0.4851 0.6796

Poly-Seg Plus model variations UNet +LSF 0.5947 0.5045 0.5347

UNet++ +LSF 0.5496 0.5445 0.5613

ResUNet +LSF 0.5714 0.5547 0.6875

ResUNet++ +LSF 0.6023 0.5785 0.6947
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Table 19 Experimental results of Poly-Seg Plus on comprehensive
polyp dataset

Method DSC Recall Precision

UNet + LSF 0.8573 0.8312 0.8576

UNet++ + LSF 0.8946 0.8597 0.8668

ResUNet + LSF 0.9011 0.9153 0.9248

ResUNet++ + LSF 0.9547 0.9388 0.9693

potentially resulting in harmful and costly medical actions or
interventions for the patient.

7.1 PreviousWork Results Discussion

A summarised Table 20 compares previous works on each
dataset to Poly-Seg Plus in terms of dice similarity coefficient
(DSC), meanDSC, and accuracy. the highest DSC of 0.9558,
achieved by PolySeg Plus on CVC-CLINICDB, when com-
pared toother studies on the samedataset,which show3.55%,
11.68%, 3.98%, and 0.99% improvement on SOTA [18–
20, 23], respectively. Regarding CVC-COLONDB, PolySeg
Plus achieved aDSCof 0.8947 and an improvement onSOTA
[18, 20] of 4.73%and9.07%, respectively. Comparing results
on ETIS LARIB POLYP DB, our proposed model improved
the result by 11.83% compared to SOTA [18]. Investigating
results on the KVASIR-SEG dataset, PolySeg Plus achieved
a DSC of 0.9476 and higher results than other SOTA [18, 20,
22] by 9.68%, 3.26% and 9.61%, respectively. Finally, there
was a great enhancement of 9.81% on KVASIR-SESSILE
compared to SOTA [18]. In our opinion, this improvement
has helped to overcome the shortcomings in earlier studies,
such as the small number of images and the deteriorated
image quality caused by image resizing, which contributes
to the loss of significant image features.

8 Hypothesis and Limitations

This section is a crucial part of the study since it explores
the essential presumptions and expectations that support the
use of deep learning models with locally shared information
for polyp segmentation. This section outlines our method
to achieving more precise and reliable polyp segmentation
as well as the basic idea that underlies our research. Fur-
thermore, we explore potential problems that can impair
the generalizability, dependability, and applicability of our
suggested solution while being open about the methodol-
ogy’s inherent limits. This section contributes to a thorough
and detailed understanding of the implications and future
prospects for polyp segmentation using deep learning algo-
rithms by examining both the potential and the limits of our
study. Ta
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Fig. 6 Comparing the results of PolySeg Plus with the baseline paper [18] on the datasets CVC-ClinicDB and KVASIR-SEG

Fig. 7 Experimental results of PolySeg Plus on CPD

8.1 Hypothesis

The main objective of this research is to determine whether
using deep learningmodelswith locally shared features, such
asUNet, UNet++, ResUNet, andResUNet++, can effectively
segment polyps in medical imaging data. In comparison to
conventional techniques, we believe that the inclusion of
locally shared features inside these state-of-the-art structures
will improve segmentation performance.

Early detection and appropriate treatment of gastrointesti-
nal problems depend heavily on the detection and segmenta-
tion of polyps in medical imaging, especially in endoscopy
and colonoscopy. Convolutional neural networks (CNNs), in
particular, have shown incredible performance in a variety

of image segmentation tasks. However, successful segmen-
tation is significantly hampered by the intricate and erratic
forms of polyps.

In this study, we start by implementing the standard UNet
architecture, which has been successful in medical image
segmentation tasks. To develop the UNet++ model, we then
extend the UNet to include locally shared features. The
ResUNet++ model is the outcome of our enhancements to
the ResUNet architecture, which is well-known for its skip
connections. We carried out experiments on a large and var-
ied collection of polyp images acquired from several health
care providers to verify our hypothesis. The dataset has
undergone preprocessing to standardize image resolution and
remove any noise or artifacts. On this dataset, we use optimal
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Fig. 8 Qualitative results comparison of PolySeg Plus model variations’ ground truth and segmented images on the CPD dataset

hyperparameters to refine the deep learning models through
a rigorous training process. Figure 12 shows the complete
Flowchart of PolySeg Plus model.

The following outcomes are what we anticipate will hap-
pen as a result of the inclusion of locally shared features in
the UNet, UNet++, ResUNet, and ResUNet++ architectures:

1. Improved segmentation accuracy: It is believed that the
locally shared features would provide better contextual
information, allowing the models to more accurately
determine polyp boundaries, particularly in areas with
complex structures and low contrast.

2. Reduced Overfitting: The models may generalize to
unseen polyp images more effectively as a result of the
added contextual information from locally shared fea-
tures, which lowers the potential risk of overfitting.

3. Possibility of Real-Time Application: These architec-
tures’ efficiency and processing advantages may make
it possible to segment polyps in real-time during endo-
scopic surgeries.

4. Robustness to Different Polyp Shapes and Sizes: The
locally shared features are anticipated to enhance the
models’ capacity to manage polyps of various shapes,

sizes, and orientations by capturing fine-grained spatial
details.

8.2 Limitations

Deep learning models sometimes require significant com-
puter resources and training time, particularly those with
locally shared features. It may be computationally demand-
ing to train these models on large datasets of high-resolution
medical pictures, and access to robust hardware, such as
top-tier GPUs or TPUs, may be necessary. This drawback
might prevent our suggested solution from beingwidely used
in environments with limited resources. In addition, Small-
sized polyp detection and precise segmentation continue to
be challenging, especially when the polyps are covered up by
background noise or other anatomical structures. Ourmodels
may still have some trouble accurately identifying and distin-
guishing tiny polyps despite the inclusion of locally shared
features.

While our proposed approach shows promising results
in the experimental setting, its clinical applicability and
impact need to be validated through rigorous clinical tri-
als and evaluations. Real-world medical environments may
present additional complexities and variations that could
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Fig. 9 Qualitative results of the
comparison of PolySeg Plus
model variations’ with baseline
models

affect the performance of the models. Although the experi-
mental results from our suggested approach are encouraging,
extensive clinical studies and evaluations are still required
to confirm its clinical applicability and impact. Additional
complications and variables thatmay be present in real-world
medical settings could impair the performance of themodels.

9 Conclusion

In this paper, different models of neural networks and
deep learning models for semantic polyp segmentation were
applied. We carried out the study on six datasets, where five
datasets contained unhealthy images (abnormal dataset) that
had polyps and the other dataset contained healthy images
(normal dataset) that were free of polyps. Since the num-
ber of unhealthy images was greater than the number of

Fig. 10 Train DSC of PolySeg Plus models on CPD
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Fig. 11 Validation DSC of PolySeg Plus models on CPD

Fig. 12 Flowchart of polyseg plus model

labeled healthy images, the dataset was considered imbal-
anced. A cost effective active deep learning algorithm was
applied to help label the healthy images with less cost
to balance both classes: the healthy image class and the
unhealthy image class. A full polyp dataset of different clin-
ical images was established to increase the training data for
better model performance, followed by reading both images
and masks, applying a Gaussian filter to reduce Gaussian
noise or blurriness in the input images, and finally applying
data augmentation techniques to increase the training set.
Several experiments were conducted, and the results have
shown that applying ResUNet++ + LSF to each dataset and
the new dataset that contains more training samples helps
a lot, along with data augmentation. Also, UNet++ was
introduced, which showed better performance than UNet.
To enhance the model’s results, hyperparameter tuning was
applied using Grid Search to find the best possible param-
eter combinations for each model. The primary goal of this
study was to develop a robust semantic segmentation model
that has significant generalization ability and can be imple-
mented in the medical field. We believe that enhancing the
recall in such a model will help endoscopists be able to rec-
ognize polyps easily if they are not clear during examination
and will add value to the domain of colonoscopy.
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