
International Journal of Computational Intelligence Systems (2023) 16:160
https://doi.org/10.1007/s44196-023-00326-2

RESEARCH ART ICLE

Brain Storm Optimization Algorithmwith an Adaptive Parameter
Control Strategy for Finding Multiple Optimal Solutions

Yuhui Zhang1 ·Wenhong Wei1 · Shaohao Xie2 · Zijia Wang3

Received: 18 May 2023 / Accepted: 27 August 2023
© The Author(s) 2023

Abstract
Real-world optimization problems often have multiple optimal solutions and simultaneously finding these optimal solutions
is beneficial yet challenging. Brain storm optimization (BSO) is a relatively new paradigm of swarm intelligence algorithm
that has been shown to be effective in solving global optimization problems, but it has not been fully exploited for multimodal
optimization problems. A simple control strategy for the step size parameter in BSO cannot meet the need of optima finding
task in multimodal landscapes and can possibly be refined and optimized. In this paper, we propose an adaptive BSO (ABSO)
algorithm that adaptively adjusts the step size parameter according to the quality of newly created solutions. Extensive
experiments are conducted on a set of multimodal optimization problems to evaluate the performance of ABSO and the
experimental results show that ABSO outperforms existing BSO algorithms and some recently developed algorithms. BSO
has great potential in multimodal optimization and is expected to be useful for solving real-world optimization problems that
have multiple optimal solutions.

Keywords Brain storm optimization ·Adaptive parameter control strategy ·Dynamic parameter control strategy ·Multimodal
optimization.

1 Introduction

Multimodal optimization aims at finding multiple optimal
solutions of a given problem. In scientific research, engi-
neering design, and logistics management, it is common to
encounter problems with multiple optimal solutions [1–3].
Finding all the optimal solutions of these problems can bring
benefits to the problem owners. First, they can have a bet-
ter understanding of the problem by inspecting the common
structure of the optimal solutions. Second, alternative solu-
tions are available when the deployed solution failed due
to some physical restrictions. For example, in logistics, the
planned path may be blocked due to traffic accidents or road

B Yuhui Zhang
yhzhang@dgut.edu.cn

1 School of Computer Sciences and Technology, Dongguan
University of Technology, Dongguan, Guangdong, China

2 School of Electronic Information, Shantou Polytechnic,
Shantou, Guangdong, China

3 School of Computer Science and Cyber Engineering,
Guangzhou University, Guangzhou, Guangdong, China

maintenance. In this case, we can switch to other paths if
there are multiple optimal paths available [4].

The purpose of this study is to develop an efficient algo-
rithm for multimodal optimization through the design of an
adaptive parameter control strategy. It is worth noting that
finding multiple optimal solutions to a problem can be chal-
lenging. Traditional single point based iterative algorithms
require multiple runs, each with a different starting point,
which can be time-consuming and inefficient. In contrast,
population-based search algorithms may be more suitable
for the task of simultaneously locating multiple solutions.
Population-based search algorithms can be divided into two
categories: evolutionary algorithms (EAs) and swarm intel-
ligence (SI) algorithms. EAs are inspired by the evolution of
life, while SI algorithms are inspired by the collective behav-
ior of social animals. Some famous paradigms of EA include
genetic algorithm (GA) [5, 6], genetic programming (GP)
[7], differential evolution (DE) [8, 9], and evolution strat-
egy (ES) [10, 11]. The SI category includes algorithms like
particle swarm optimization (PSO) [12, 13], ant colony opti-
mization (ACO) [14, 15], and artificial bee colony (ABC)
[16, 17], just to name a few. The fundamental principle of
EAandSI algorithms is to effectively solve problems through

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s44196-023-00326-2&domain=pdf
http://orcid.org/0000-0002-5769-3456

 160 Page 2 of 17 International Journal of Computational Intelligence Systems (2023) 16:160

information sharing. This is often achieved by the coopera-
tion and/or competition between individuals. EA and SI have
found wide spread applications in real-world scenarios [18].
The population-based search mechanism endows EA and SI
with the potential to locate all the optima of a problem in a
single run. It is possible to divide the whole population into
several subpopulations and assign these subpopulations to
different search areas for different optima. To facilitate the
division, maintenance, and update of subpopulations, vari-
ous niching techniques have been developed [1]. They help
stabilize the search process so that the subpopulations can
move steadily toward their targets. With the assist of nich-
ing techniques, population-based algorithms have become
the mainstream approach for multimodal optimization.

Existing SI paradigms are generally inspired by the collec-
tive behavior of animals, birds, fishes, or insects. However, it
is promising to develop more effective optimization algo-
rithms by taking inspiration from human activities. After
all, humans are the most intelligent living beings on earth.
Motivated by this, Shi [19] proposed a novel brain storm
optimization (BSO) algorithm that mimics the human brain-
storming process. In recent years, BSO has been shown to be
effective in solving various types of optimization problems
[20, 21]. However, the power of BSO in solving multi-
modal problems have not been fully exploited. In BSO, new
candidate solutions (new ideas) are produced by a creating
operator, which adds random perturbations to existing solu-
tions. The scale of perturbation is control by a parameter that
changes dynamically with the number of iterations. In the
context of multimodal optimization, it is common to observe
that different subpopulations are in different evolutionary
states and require different step size parameters. Therefore,
the performance of BSO can be further improved by incorpo-
rating an adaptive parameter control strategy. Motivated by
the above finding, in this paper, we develop an adaptive brain
storm optimization (ABSO) algorithm that makes modifica-
tions to the step size parameter according to the feedback
of the creating operator during the entire search process. In
the primitive BSO, two levels of randomness (one uniform
random value and one Gaussian random value) are added
to the step size when producing new candidate solutions,
which makes the adaptation of control parameters very dif-
ficult. Because it is hard to decide whether generating better
solutions is credited to the random noise or to the correct
setting of the control parameter. To tackle the challenge, we
devise a simplified version the of the creating operator, in
which the randomness only comes from a standard Gaus-
sian distribution. In addition, an adaptive parameter control
strategy is developed to adjust the step size parameter. Every
individual has its own step size sampled from a Gaussian
distribution with mean μk , where μk is a meta-parameter.
To capture the landscape information and meet the require-
ment of multiple optima finding, the meta-parameter μk is

constantly updated according to the success history of the cre-
ating operator. In addition to the adaptive parameter control
strategy, we develop a systematic approach to dynamic strat-
egy generation. The proposed approach can create convex,
linear, and concave dynamics bymaking small changes to the
configuration. Three dynamic control strategies derived from
the approach are investigated in this paper. Comprehensive
experiments have been conducted on benchmark problems
to examine the effectiveness of the proposed strategies. The
experimental results confirm that the adaptive control strat-
egy can find suitable parameter settings for different types
of multimodal problems. With the assist of the adaptive con-
trol strategy,ABSOcompares favorablywith several recently
developed algorithms.

The remainder of this paper is organized as follows.
Section2 briefly reviews some classical niching techniques
and some recently developed multimodal optimization algo-
rithms. Then, the fundamental principle and detailed pro-
cedures of the BSO algorithm are presented. Section3 is
devoted to the description of the proposed ABSO with
an adaptive parameter control strategy. Experiments are
conducted in Sect. 4 to comprehensively examine the perfor-
mance of the proposed algorithm. Finally, Sect. 5 concludes
this paper and points out some future research directions.

2 Background

In this section, we first review several popular niching
techniques which are used to induce multiple convergence
behavior in population-based algorithms. A short survey
on some recently developed multimodal optimization algo-
rithms is provided subsequently. Then, the BSO algorithm
is described in detail. Finally, a variant of BSO specifically
designed for multimodal optimization is introduced.

2.1 Niching Techniques

Note that population-based search algorithms are designed
for global optimization. With global selection operators,
all the individuals will eventually gather around a single
optimal/suboptimal point. This tendency is against the inten-
tion of multimodal optimization, in which the goal is to
simultaneously find multiple solutions. To induce multi-
ple convergence behavior in population-based algorithms,
researchers have come up with many ideas to guide the
individuals evolve toward different optima. The developed
techniques are commonly referred to as “niching”. The fun-
damental principle of niching techniques is to divide the
population into subpopulations according to some neigh-
borhood concepts and competitions between individuals are
only allowed within neighborhoods [22, 23]. In this way, we

123

International Journal of Computational Intelligence Systems (2023) 16:160 Page 3 of 17 160

can avoid genetic drift phenomenon and maintain population
diversity over the entire search process.

There are several classical niching techniques developed
in the early stage of multimodal optimization research. The
most prominent ones include fitness sharing [24], crowd-
ing [25], clearing [26], and speciation [27]. Fitness sharing
modifies the fitness of an individual by taking account the
population density within a circle (hypersphere in a high
dimensional space). Crowding poses a restriction on the com-
petition between offspring and parents. The newly produced
offspring is only allowed to compete with its neighbor-
ing solutions. Clearing is more aggressive than crowding.
For each niche, clearing removes all the individuals except
the best one. Speciation introduces a procedure to divide
the population into species. Each specie evolves separately
with its own reproduction and replacement operators. The
advantage of the classical niching techniques is that they are
conceptually simple and easy to implement. However, their
effectiveness is influenced by the niching parameters, which
are difficult to determined without a priori knowledge of the
problem being handled.

The classical techniques often serve as basic building
blocks for more advanced techniques. Qu et al. [28] devel-
oped a neighborhoodmutation operator forDE and combines
it with fitness sharing, crowding, and speciation. In the
neighborhood mutation operator, when producing an off-
spring solution for the i th individual Xi , three individuals
selected from the neighborhood of Xi are combined using
the DE/rand/1 strategy. Gao et al. [29] applied a clustering
technique to divide the population into subpopulations. In
addition, a self-adaptation strategy is developed to automat-
ically adjust the control parameters of DE. The clustering
technique and the self-adaptation strategy are then integrated
with crowding DE (CDE) and species-based DE (SDE).
The neighborhood mutation operator and the self-clustering
approach greatly enhance the local convergence capability of
DE, but we need to first determine the neighborhood size and
the cluster size. Epitropakis et al. [30] designed a dynamic
archive technique to store found optima and adopts an adap-
tive parameter control strategy to increase search efficiency
ofDE. The introduction of dynamic archive can avoid the risk
of mistakenly replacing potential optima. However, the man-
agement of the archive is not an easy task. Biswas et al. [31]
proposed a local information sharing mechanism for induc-
ing niching behavior. The mechanism is then integrated with
CDE and SDE. A parent-centric mutation operator with nor-
malized neighborhood is developed in [32]. The newoperator
is combined with synchronous crowding replacement rule
to achieve stable niching behavior. The information sharing
mechanism and parent-centric mutation operator can induce
efficient nichingbehavior, but they involves a number ofman-
ually determined parameters. Traditional niching techniques
require a large amount of distance calculation, which sig-

nificantly increase the time complexity of EAs. To alleviate
the problem, Zhang et al. [33] developed a fast niching tech-
nique based on locality sensitive hashing. A faster version
of NCDE (termed Fast-NCDE) is developed by integrating
the new technique with NCDE. Ma et al. [34] developed
an improved ABC (IABC) algorithm that incorporates the
crowding selection technique. Moreover, two search mecha-
nisms are designed to help enhance population diversity and
better explore the search space.

More recently, many new techniques have been developed
to tackle the challenges posed by multimodal optimization.
To fully utilize the historical search information, Huang et al.
[35] built a binary space partition (BSP) tree to structurally
organize the space visiting information. A probabilistic nich-
ing strategy is defined to reinforce exploration and exploita-
tion by utilizing the structurally organized information.The
use of a BSP tree can greatly enhance the search efficiency, at
the cost of increasing the algorithm’s time complexity. Wang
et al. [36] proposed an automatic niching technique based on
affinity propagation clustering (APC). In addition, a contour
prediction approach (CPA) and a two-level local search strat-
egy (TLLS) are developed to accelerate convergence speed
and increase solution accuracy. The APC method alleviates
the need of specifying the number of clusters, but the CPA
may not be suitable for the high-dimensional problems. A
distributed individuals for multiple peaks (DIMP) frame-
work is designed in [37]. A virtual population controlled
by an adaptive range adjustment strategy is derived from
each candidate solution to explore the search space. A life-
time mechanism and an elite learning mechanism (ELM) are
embedded into the framework to increase population diver-
sity and solution accuracy. Zhao et al. [38] proposed a local
binary pattern (LBP) based adaptive DE (LBPADE) to effi-
ciently solve multimodal optimization problems. A niching
and global interaction (NGI) mutation operator is incorpo-
rated into LBPADE for effective exploration. Although the
DIMP framework and the LBP mechanism are able enhance
the performance of DE in finding multiple optima, they
involves a number of newparameters that need to be fine-tune
through trial-and-error. Sheng et al. [39] developed a nich-
ing memetic DE that adopts a niching competition strategy
and a supporting archive strategy. The niching competition
strategy is designed to encourage high potential niches for
exploitation and low potential niches for exploration, while
the supporting archive strategy is designed to help main-
tain potential optima and facilitate population evolution. The
new strategy can help properly search the multimodal land-
scape, but it did not taken into account the niche size in its
design. A double-layer-clustering speciation DE (DLCSDE)
is developed in [40] to tackle multimodal optimization prob-
lems. The first level clustering is used to divide the whole
population into subpopulations. The second level clustering
groups the species seed in each subpopulation to perform

123

 160 Page 4 of 17 International Journal of Computational Intelligence Systems (2023) 16:160

Fig. 1 Basic steps of
brainstorming process

Brainstorming Start

Brainstorming Finish

Define the problem

Idea generation based on the Osborn rules

Idea selection

Participants join

Participants leave

 Role: Problem owner

Role: People with

different background

Idea combination / improvement

Problem solved?

N

Y

Role: People with

different background

 Role: Problem owner

global search. The double-layer-clustering method is able
to increase population diversity, but it inherits the sensi-
tive parameters from the speciation method. Ahrari et al.
proposed [41] a niching technique based on the concept
of repelling subpopulation. Offspring of weaker subpopu-
lations are kept some distance away from those of fitter
subpopulations. The niching technique is incorporated into
state-of-the-art evolution strategies to develop competitive
multimodal optimization algorithms. The repelling method
is very effective in distributing subpopulations to search for
different optima. However, the definition of taboo regions
in the repelling method requires additional parameters. A
niching gray wolf optimizer (NGWO) that incorporates the
personal best feature of PSO and a local search technique is
proposed in [42]. The two new features help NGWO main-
tain a good balance between exploitation and exploration for
solvingmultimodal optimization problems.NGWOachieves
promising results on the benchmark problems. However, it
may encounter difficulties when solving problemswith irreg-
ular regions of attraction, since the fitness Euclidean-distance
ratio is adopted in NGWO.

2.2 Brainstorm Optimization Algorithm

Most of the population-based search algorithms are inspired
by the collaborative behavior of social animals. Since human
being is the most intelligent and communicative being on
earth, it is likely that algorithms inspired by human activities
will have an edge over those inspired by other mechanisms.
Driven by this motivation, Shi developed a BSO algorithm
that mimics the problem-solving process of human beings
[19].When facing a difficult problem that cannot be solved by

a single person, it is often helpful to gather a group of persons
with different background to brainstorm. Great and unex-
pected solution can occur through collaboration of persons.
Brainstorming is developed and systemized by Osborn and
has beenwidely used in academia and industry for increasing
creativity. There are four Osborn’s rules to obey during the
brainstorming process: (1) suspend judgment of ideas, (2)
welcome unusual ideas, (3) combine and improve ideas, (4)
the more ideas, the better. Based on the four rules, the basic
steps of a brainstorming process are described in Fig. 1.

The detailed procedures of the brainstorming process are
as follows. After defining the problem being solved, we
gather a diverse group of people who can contribute different
perspectives to the brainstorming session. Following ground
rules like “no criticism”, “quantity over quality”, and “build
on each other’s ideas”, the brainstorming session starts by
encouraging participants to create and share their ideas. The
purpose is to create asmany ideas as possible. This is because
the more ideas generated, the larger chance of finding high
quality solutions. Then, the problem owner reviews the ideas
and identify the most promising ones. Subsequently, new
ideas are created by combining or improving the selected
ideas. This helps to spark new ideas and generate more cre-
ative solutions. If the new solution solves the problem, then
the brainstorming session ends. Otherwise, we start a new
brainstorming session to find better ideas.

The procedures of BSO algorithm are given in Algorithm
1. Given a problemwith D decision variables, BSO first gen-
erate a set of N initial ideas X1,X2, ...,XN . Each idea Xi is
a D-dimensional vector [x1, x2, ..., xD] representing a can-
didate solution. During the optimization process, the ideas
are improved iteration by iteration through grouping, replac-

123

International Journal of Computational Intelligence Systems (2023) 16:160 Page 5 of 17 160

ing, and creating operators. In the grouping operator, N ideas
are divided into M clusters by the k-means algorithm. The
replacing operator randomly replaces cluster centers with
newly generated ideas. In the creating operator, N new ideas
are created one by one based on the current ideas. Each new
idea is generated by using one or two clusters. After the clus-
ter has been selected, new ideas are derived from the cluster
center or random cluster members. The three operators are
applied repeatedly until the termination criterion is met.

In the literature, BSO has been extended and enhanced
to solve various optimization problems. El-Abd [43] devel-
oped a global-best BSO (GBSO) that uses the global best
solution to guide the update of other solutions. Although a
re-initialization scheme is used in GBSO, it may still be easy
to get in local optima. Zhao et al. [44] designed four mutation
strategies to improve the search capability of BSO and used
a Q-learning mechanism to guide the selection of strategies.
Noticing the importance of population diversity in algorithm
design, Yu et al. [45] implemented two diversity measures
to facilitate the adaptation of mutation strategies. Zhou et al.
[46] developed a modified BSO algorithm with the step-size
parameter adapts to the search ranges of each dimension.
The defect of the approach is that it also introduces two new
parameters. Although BSO have been improved in various
aspects, not much work has been conducted to improve the
solution update formula of BSO. In [47], Cheng et al. pro-
vided a comprehensive survey of BSO, which points out the
recent developments of the BSO algorithms.

2.3 BSO for Multimodal Optimization

BSO is not specifically designed for multimodal optimiza-
tion. To locate multiple optima in a single run, Dai et al.
[48] developed an optima-identified framework (OIF) and
integrated it with BSO. The resulting algorithm is named
OIF-BSO. OIF-BSO makes four changes to BSO so that it
can meet the requirement of multimodal optimization. The
first change is the clustering technique, instead of k-means,
a max-fitness clustering method (MCM) is used to divide
the population into clusters. Second, instead of randomly
replacing cluster centers with random new ideas, a modified
disruption strategy (MDS) is used to classify the clusters
into two categories, say, A and B. Cluster centers of cat-
egory A are potential optima and will not be replaced by
randomly generated new ideas. The third change is that new
redistribution strategy is devised to create ideas. Considering
that clusters in category A contain many redundant solutions
(i.e., solutions around the identified potential optima), com-
putational resources are allocated to clusters in category B
to avoid unnecessary cost. The last change is that roulette
wheel selection is used to pick random ideas from clusters
in category B and crowding technique is used to restrict
the comparison between newly generated ideas and exist-

Algorithm 1 BSO
1: Randomly generate a set of N initial ideasX1,X2, ...,XN and eval-

uate their fitness;
2: while termination criterion is not satisfied do
3: Divide N ideas into M clusters C1,C2, ...,CM using k-means;
4: Record the best idea in each cluster as cluster center;
5: if rand(0, 1) < preplace then � Probability of replacing a

cluster center
6: Randomly select a cluster center and replace the cluster center

with a random idea;
7: end if
8: for i = 1 to N do
9: if rand(0, 1) < pone then � Probability of generating a new

idea based on a single cluster
10: Randomly select a cluster C j with probability p j ;
11: if rand(0, 1) < ponecenter then � Probability of using

the cluster center to generate a new idea
12: Add a random value to the cluster center of C j to gen-

erate a new idea Yi ;
13: else
14: Add a random value to a random idea of the selected

cluster C j to generate a new idea Yi ;
15: end if
16: else � Probability of generating a new idea based on two

clusters
17: Randomly select two clusters C j1 and C j2;
18: if rand(0, 1) < ptwocenter then � Probability of using

the cluster centers of two selected clusters to generate a new idea
19: Combine the cluster centers of C j1 and C j2 to generate

a new idea Yi ;
20: else
21: Combine two ideas randomly selected from C j1 and

C j2 to generate a new idea Yi ;
22: end if
23: end if
24: Evaluate Yi and replace Xi with Yi if Yi is better;
25: end for
26: end while

ing ideas. Experimental results presented in [48] show that
OIF-BSO is quite effective in solving benchmarkmultimodal
optimization problems.

BSO is a relatively new meta-heuristic algorithm whose
performance in multimodal optimization has not been fully
exploited. Different from other meta-heuristic algorithms,
BSO is developed by mimicking the brainstorming process
of human being, which is the most intelligent being on earth.
It is expected that BSO can achieve better performance than
algorithms inspired by other metaphor. This paper intends to
exploit the potential of BSO in solvingmultimodal optimiza-
tion problems. Based on this consideration, we developed a
BSO algorithm that incorporates a niching technique and
an adaptive parameter control strategy, with the purpose of
providing an effective off-the-shelf tool for solving various
multimodal optimization problems.

123

 160 Page 6 of 17 International Journal of Computational Intelligence Systems (2023) 16:160

3 Adaptive BSO Algorithm for Multimodal
Optimization

In this section, we first describe the motivation of introduc-
ing adaptive parameter control strategy into BSO. Then, a
success history-based adaptive control strategy is developed.
In addition, we introduce a systematic approach to building
dynamic control strategies. Three dynamic strategies derived
from the systematic approach are investigated in the later
experimental section. Finally, we present an adaptive BSO
algorithm by integrating the proposed adaptive parameter
control strategy with BSO.

3.1 Motivation of Adaptive BSO

In BSO, new ideas (candidate solutions) are derived from
existing ones, which are selected from one or two clus-
ters. More specifically, there are two branches of creating
new ideas. One branch is to generate a new idea by adding
a random noise to an existing one. Suppose that X =
[x1, x2, ..., xD] is the selected idea for reproduction, a new
idea Y = [y1, y2, ..., yD] is generated in the following man-
ner:

yi = xi + ξi × ni (1)

where ni is a random value drawn from a Gaussian distri-
bution with mean μ and variance σ . ξi is a coefficient that
rescales the random value. It is computed as follows:

ξi = sigmoid((0.5 × gen − MaxGen)/k) × random(0, 1) (2)

where gen is the current number of generations andMaxGen
is the maximum number of generations. k is a control param-
eter of BSO that changes the slope of the linear input. The
sigmoid function is a transfer function that maps the input
into range (0, 1). The function random(0, 1) returns a random
uniform number within (0, 1).

The second branch of generating a new idea by combing
two existing ideas. Suppose that X1 and X2 are the selected
ideas for reproduction, a combined idea X is first generated
as follows:

X = rX1 + (1 − r)X2 (3)

where r is a random real value within the interval [0, 1].
After generating X, formula (1) is used to create a new idea
Y. Therefore, the core of new idea generation lies in formula
(1). It can beobserved that there are two levels of randomness.
The first level of randomness comes from the computation
of ξi and the second level of randomness comes from the
Gaussian random number.

When creating new ideas, there is a control parameter k
that influences the distance between the new idea and the old

idea. In multimodal optimization, different problems may
have different regions of attractions. It is possible that these
optimal regions are of different shapes and sizes. Some prob-
lems may require small step sizes while the others require
large step sizes. A single parameter setting cannot meet the
requirement of multiple optima finding task. Therefore, we
need a way to adjust the step size parameter.

3.2 Adaptive and Dynamic Adjustment of the Step
Size Parameter

There are two challenges when adjusting the parameter k.
The first challenge is that the effect of k on the step size is
indirect. The parameter k will change the slope of the linear
input of the sigmoid function, which will further change the
value of ξi . Then, ξi is multiplied by another random Gaus-
sian value ni and added to the existing candidate solution.
The product of ξi and ni gives the final perturbation to create
new ideas. The second challenge is that there are two levels
of randomness in creating new ideas. This makes the credit
assignment process very difficult when performing parame-
ter adaptation. It is hard to tell the creation of a new successful
idea is due to the randomness or due to the correct setting of
the parameter k.

To overcome the challenges, we introduce a new creating
operator that involves a direct control parameter to adjust the
step size. There is only one level of randomness. Specifi-
cally, given a reference idea, a new idea is generated in the
following manner:

yi = xi + sigmoid(k) × ni (4)

where k is the step size parameter and ni is a Gaussian ran-
dom value with mean 0 and variance 1. Different from the
original creating operator shown in (1), the only random-
ness comes from the random Gaussian value ni . In addition,
the input of the sigmoid function is the control parameter
itself, not influenced by the current number of generations.
This simplification makes it much easy to adjust the control
parameter based on the feedback information collected in the
optimization process.

Note that the suitable parameter setting varies from
problem to problem. To increase the search efficiency and
robustness, we devise a success history-based parameter
adaptation scheme. Instead of having only one global param-
eter setting, each candidate solution Xi has its associated
control parameter ki . We assume that they are produced by a
hidden variable μk . The hidden variable is adjusted iteration
by iteration using the success history of creating better ideas.
The detailed procedures are as follows. At the beginning of
BSO, the hidden variable μk is initialized to 0. The parame-
ter ki for the i th candidate solution is drawn from a Gaussian
distribution with mean μk and variance 0.8. During the opti-

123

International Journal of Computational Intelligence Systems (2023) 16:160 Page 7 of 17 160

mization process, a memory M is used to store the ’correct’
parameter settings. Suppose that the candidate solutionXi is
selected to create a new ideaYi , then the parameter ki associ-
ated withXi will be applied in formula (4). AfterYi has been
created, we evaluate its fitness and compare it with its nearest
neighbor Xnn in the current candidate set of ideas. If Yi is
better than its nearest neighbor Xnn , Xnn will be replaced by
Yi and the value ki is appended to the memory M.

After N new ideas have been created, BSO enters the
next iteration until the predefined termination criterion ismet.
Before creating next set of N ideas, we first update the hidden
variableμk . The parameter ki associated with each candidate
solution is resampled. Specifically, we use the ’correct’ sam-
ples in memory M to update μk .

μk = 0.9μk + 0.1
1

|M|
∑

ki∈M
ki (5)

The notation |M| denotes the number of samples in memory
M.

In addition to the adaptive control strategy, we introduce
a systematic way to produce dynamic control strategies. In a
dynamic control strategy, the parameter k is changed along
with the number of fitness evaluations (FEs).We can produce
a variable p that dynamically changes from 1 to 0 as FEs
increases by using the following formula:

p =
((

1 − FEs

MaxFEs

)u)v

(6)

where MaxFEs is the predefined maximum number of fit-
ness evaluations. u and v are user defined parameters used
to change the convexity of the function plot. Figure2 shows
examples of three different settings, in which u and v are
set to (1, 5), (1, 1), and (5, 1) respectively. By using different
values of u and v, we can push the function plot toward upper
left or lower right corner. Since p is in the range [0, 1], it is
straightforward to rescale the range by using the following
formula:

k = LB + p × (UB − LB) . (7)

In this way, the control parameter k is dynamically
decreased from UB to LB as the number of fitness evalu-
ation increases.

3.3 Adaptive and Dynamic BSO

The adaptive parameter control strategy is combined with
BSO to increase its search efficiency in solving multimodal
optimization problems. The pseudo code of ABSO is pre-
sented inAlgorithm 2. Comparedwith BSO, there are several

Fig. 2 Dynamic control strategies with convex, linear, and concave
shapes

major changes. Since the cluster centers are potential opti-
mal solutions, the replacing operator maymistakenly replace
them with random new ideas, leading to unexpected loss of
found optima. Therefore, the replacing operator is removed
in ABSO. Considering that the k-means algorithm is very
time-consuming, the MCM developed in [48] is employed to
divide the candidate solutions into clusters. Another major
change is that after selecting one or two clusters for the creat-
ing operator, formula (4) is adopted to create new ideas, with
the control parameter k adaptively adjusted in the optimiza-
tion process. Finally, to increase the diversity maintenance
capability, the crowding selection technique is used to restrict
the comparison of the candidate solutions. The newly created
ideas are compared with their nearest neighbors in the cur-
rent set of candidate solutions. The dynamic versions of BSO
(DBSO) are the same as ABSO, except that they use dynamic
parameter control strategies.

To illustrate the detailed steps of ABSO, a concrete
example is presented in Fig. 3. Suppose that we are solv-
ing the equal maxima problem with the expression f (x) =
sin6(5πx). The candidate set contains four solutions X1,
X2, X3 and X4. They are divided into two clusters (C1 and
C2). We generate new solutions Y1, Y2, Y3, and Y4 accord-
ing to the pseudo code shown in Algorithm 2. Subsequently,
the crowding selection is conducted to update the candidate
solution set and the ’correct’ parameter value is stored in
memory M. Then, we update μk and enter next iteration if
the termination criterion is not satisfied.

4 Experimental Study

In this section, we carry out experiments to evaluate the pro-
posed approach. The performance of ABSO is examined
on a set of benchmark problems and compared with sev-
eral classic algorithms, as well as some recently developed

123

 160 Page 8 of 17 International Journal of Computational Intelligence Systems (2023) 16:160

Fig. 3 Illustration of the procedures of ABSO

algorithms. We also investigate three versions of DBSO and
compare them with ABSO to show the effect of parameter
adjustment when solving different types of multimodal opti-
mization problems.

4.1 Experimental Setup

4.1.1 Test Functions

We use a set of benchmark test functions to examine the
performance of the proposed BSO with adaptive step size
control strategy. The benchmark function set contains 20
multimodal functions with different characteristics. Detailed
descriptions and mathematical formulations of the test func-
tions can be found in [49]. The first ten functions are simple
multimodal functions with regular optima distributions. The
rest ten functions are complex composite functions with
rugged landscapes, in which many local and global optima
exist. It is very challenging to locate all the global optima of
these composition functions. It is worth noting that all the
test functions are to be maximized. In this context, the two
terms “peak” and “optimum” are interchangeable.

4.1.2 Performance Measure

Two performance indicators, i.e., peak ratio (PR) and success
rate (SR), are adopted to examine the performance of the
algorithms. They are defined in the following manner.

(a) Peak ratio (PR): PR is the average percentage of peaks
located by the algorithm over multiple independent runs.
PR is calculated as follows:

PR =
∑NR

i=1 NFPi
NKP × NR

, (8)

where NKP is the number of known peaks of the test
function, NR is the total number of runs. NFPi represents
the number of found peaks in the i th run.

(b) Success rate (SR): SR is the ratio of the number of suc-
cessful runs to the total number of runs. A successful
run is a run in which all the optima are detected. SR is
calculated as follows:

SR = NSR

NR
, (9)

where the numerator NSR denotes the number of suc-
cessful runs.

4.1.3 Algorithms in Comparison

TheproposedABSO is comparedwith someclassical niching
algorithms, as well as some recently developed algorithms to
demonstrate the effect of the proposed adaptive and dynamic
control strategies. Specifically, ABSO is compared with two
PSO-based niching algorithms (i.e., r3pso-lhc [22] and LIPS
[23]), three DE-based niching algorithms (i.e., NCDE [28],
dADE/nrand/1 [30], and PNPCDE [32]), an improved artifi-
cial bee colony algorithm (IABC [34]), and a BSO algorithm

123

International Journal of Computational Intelligence Systems (2023) 16:160 Page 9 of 17 160

Algorithm 2 ABSO
1: Randomly generate a set of N initial ideasX1,X2, ...,XN and eval-

uate their fitness;
2: Initialize μk to 0;
3: while termination criterion is not satisfied do
4: Divide N ideas into M clusters C1,C2, ...,CM using the max-

fitness clustering method (MCM);
5: Record the best idea in each cluster as cluster center;
6: Set M (Memory) to empty;
7: for i = 1 to N do
8: Sample a step size parameter ki from distribution N (μk , 0.8);
9: if rand(0, 1) < pone then � Probability of generating a new

idea based on a single cluster
10: Randomly select a cluster C j with probability p j ;
11: if rand(0, 1) < ponecenter then � Probability of using

the cluster center to generate a new idea
12: Add a random value to the cluster center of C j to gen-

erate a new idea Yi according to (4) with parameter ki ;
13: else
14: Add a random value to a random idea of the selected

clusterC j to generate a new ideaYi according to (4) with parameter
ki ;

15: end if
16: else � Probability of generating a new idea based on two

clusters
17: Randomly select two clusters C j1 and C j2;
18: if rand(0, 1) < ptwocenter then � Probability of using

the cluster centers of two selected clusters to generate a new idea
19: Combine the cluster centers of C j1 and C j2 to generate

a new idea Yi according to (3) and (4) with parameter ki ;
20: else
21: Combine two ideas randomly selected from C j1 and

C j2 to generate a new ideaYi according to (3) and (4)with parameter
ki ;

22: end if
23: end if
24: Evaluate Yi and find the nearest neighbor Xnn of Yi ;
25: if Yi is better than Xnn then
26: Replace Xnn with Yi ;
27: Append ki to the setM;
28: end if
29: end for
30: Update μk using M according to (5);
31: end while

(OIF-BSO [48]). r3pso-lhc is a ring topology PSO in which
particles interact with their left and right neighbors. LIPS is
a swarm optimizer with locally informed learning mecha-
nism. dADE/nrand/1 is a DE-based niching algorithm with a
new mutation operator, an adaptive parameter control strat-
egy, and a dynamic archive. Both NCDE and PNPCDE
adopt the crowding selection technique. NCDE integrates
a neighborhood-based mutation operator while PNPCDE
integrates a parent-centric mutation operator with normal-
ized neighborhoods. IABC is an improved artificial bee
colony algorithm with two new solution search mechanisms.
OIF-BSO is a BSO algorithm with an optima-identified
framework.

Table 1 Setting of MaxFEs for
the test functions

Test function MaxFEs

F1–F5 5.0 × 104

F6–F7 2.0 × 105

F8–F9 4.0 × 105

F10–F13 2.0 × 105

F14–F20 4.0 × 105

4.1.4 Parameter Settings

The termination criterion of the algorithms is defined by the
maximum number of fitness evaluations (MaxFEs). The set-
ting of MaxFEs for each benchmark function is given in
Table 1. For complex composite functions, a larger number
of fitness evaluations are provided. The total number of runs
(NR) is set to 50, i.e., each algorithm is executed 50 times for
each test function. For ABSO, the size of candidate solution
set (the number of ideas) is fixed at 100 and the cluster size is
set to 5. In the creating process, the probability of generating
a new idea based one cluster (Pone) is set to 0.8. In the sce-
nario of one cluster based creating, the probability of using
the cluster center Ponecenter is set to 0.4. In the scenario of
two clusters based creating, the probability of using the clus-
ter centers Ptwocenter is set to 0.5. ABSO does not introduce
any new parameters. The parameters of ABSO are inherited
fromBSO. They are determined according to the recommen-
dation of the developer of BSO [19]. Since the goal of the
paper is to examine the effectiveness of the adaptive param-
eter control strategy (i.e., the strategy for automatic update
of the step size parameter k), the other parameters are kept
the same as those of BSO. It is a reasonable choice since the
parameter settings of BSO have been widely examined by
the developer and other researchers. The parameters of the
compared algorithms are configured according to the corre-
sponding publications.

4.2 Overall Performance

The experimental results (PR and SR values) achieved by
the algorithms are presented in Table 2. The best PR is high-
lighted in bold. From the table, it can be observed that ABSO
is able to obtain the best results on 16 out of 20 problems. The
first five problems F1–F5 are relatively easy to solve since
they only contain a small number of decision variables. The
algorithms are able to find all the optimal solutions of these
problems in most of the runs. F6–F9 are problems with many
peaks. The peak number of F9 even exceeds the population
size. Therefore, it is difficult to locate all the optimal solu-
tions. F6 and F8 have very sharp peaks and they pose great
challenges to the fine-search capability of the algorithms.
IABC performs the best on these problems owing to

123

 160 Page 10 of 17 International Journal of Computational Intelligence Systems (2023) 16:160

Table 2 Peak ratio and success rate of the multimodal optimization algorithms

Function r3pso-lhc LIPS dADE/nrand/1 NCDE

PR SR p value PR SR p value PR SR p value PR SR p value

F1 1.000≈ 1.000 1.00E+00 1.000≈ 1.000 1.00E+00 1.000≈ 1.000 1.00E+00 1.000≈ 1.000 3.27E−01

F2 0.996≈ 0.980 3.27E−01 1.000≈ 1.000 1.00E+00 1.000≈ 1.000 1.00E+00 1.000≈ 1.000 1.00E+00

F3 1.000≈ 1.000 1.00E+00 1.000≈ 1.000 1.00E+00 1.000≈ 1.000 1.00E+00 1.000≈ 1.000 1.00E+00

F4 1.000≈ 1.000 1.00E+00 1.000≈ 1.000 1.00E+00 1.000≈ 1.000 1.00E+00 1.000≈ 1.000 1.00E+00

F5 1.000≈ 1.000 1.00E+00 1.000≈ 1.000 1.00E+00 1.000≈ 1.000 1.00E+00 1.000≈ 1.000 1.00E+00

F6 0.713+ 0.000 2.87E−16 0.757+ 0.000 3.91E−16 1.000− 1.000 2.51E−04 0.146+ 0.000 2.36E−16

F7 0.366+ 0.000 5.87E−18 0.489+ 0.000 4.29E−16 0.496+ 0.000 1.59E−15 0.688− 0.000 2.43E−03

F8 0.112+ 0.000 6.18E−18 0.200+ 0.000 6.35E−18 0.449≈ 0.020 6.16E−01 0.504− 0.000 5.85E−04

F9 0.096+ 0.000 5.97E−18 0.124+ 0.000 6.30E−18 0.153+ 0.000 7.76E−18 0.267− 0.000 9.36E−17

F10 0.933+ 0.380 4.32E−11 0.992+ 0.900 2.30E−02 1.000≈ 1.000 1.00E+00 1.000≈ 1.000 1.00E+00

F11 0.700+ 0.000 1.67E−20 0.863+ 0.240 1.85E−12 0.667+ 0.000 1.03E−22 0.797+ 0.180 5.76E−14

F12 0.648+ 0.000 1.64E−18 0.823+ 0.140 1.08E−12 0.900+ 0.420 1.45E−05 0.330+ 0.000 2.74E−19

F13 0.643+ 0.000 4.56E−20 0.690+ 0.000 5.19E−18 0.670+ 0.000 1.22E−20 0.593+ 0.000 3.98E−19

F14 0.563+ 0.000 1.20E−10 0.627+ 0.000 3.92E−05 0.667+ 0.000 3.42E−06 0.637+ 0.000 1.51E−07

F15 0.213+ 0.000 1.43E−18 0.418+ 0.000 1.25E−12 0.493+ 0.000 6.02E−06 0.265+ 0.000 6.51E−20

F16 0.030+ 0.000 8.15E−22 0.203+ 0.000 7.79E−21 0.623+ 0.000 1.23E−04 0.637+ 0.000 1.80E−03

F17 0.028+ 0.000 2.21E−19 0.208+ 0.000 5.11E−15 0.300+ 0.000 1.33E−10 0.248+ 0.000 9.03E−18

F18 0.000+ 0.000 6.11E−22 0.060+ 0.000 5.87E−20 0.453+ 0.000 7.39E−14 0.290+ 0.000 9.53E−20

F19 0.000+ 0.000 3.81E−21 0.008+ 0.000 1.16E−20 0.048+ 0.000 2.63E−19 0.095+ 0.000 4.14E−19

F20 0.000+ 0.000 8.65E−21 0.000+ 0.000 8.65E−21 0.088+ 0.000 3.99E−07 0.245− 0.000 2.68E−03

B/E/W 15/5/0 15/5/0 12/7/1 10/6/4

PNPCDE IABC OIF-BSO ABSO

PR SR p value PR SR p value PR SR p value PR SR

F1 1.000≈ 1.000 1.00E+00 1.000≈ 1.000 1.00E+00 1.000≈ 1.000 1.00E+00 1.000 1.000

F2 1.000≈ 1.000 1.00E+00 1.000≈ 1.000 1.00E+00 1.000≈ 1.000 1.00E+00 1.000 1.000

F3 1.000≈ 1.000 1.00E+00 1.000≈ 1.000 1.00E+00 1.000≈ 1.000 1.00E+00 1.000 1.000

F4 1.000≈ 1.000 1.00E+00 0.995≈ 0.980 3.27E−01 1.000≈ 1.000 1.00E+00 1.000 1.000

F5 1.000≈ 1.000 1.00E+00 1.000≈ 1.000 1.00E+00 1.000≈ 1.000 1.00E+00 1.000 1.000

F6 0.343+ 0.000 3.07E−16 0.947≈ 0.480 3.07E−03 0.661+ 0.000 2.90E−16 0.947 0.760

F7 0.604+ 0.000 1.74E−03 0.724− 0.000 9.53E−08 0.534+ 0.000 2.10E−13 0.648 0.000

F8 0.074+ 0.000 6.61E−18 0.619− 0.000 3.99E−07 0.379≈ 0.000 1.54E−01 0.407 0.000

F9 0.256− 0.000 1.80E−15 0.369− 0.000 6.74E−18 0.148+ 0.000 2.67E−17 0.211 0.000

F10 1.000≈ 1.000 1.00E+00 1.000≈ 1.000 1.00E+00 1.000≈ 1.000 1.00E+00 1.000 1.000

F11 0.827+ 0.120 9.57E−16 0.663+ 0.000 1.64E−22 0.667+ 0.000 1.03E−22 0.990 0.940

F12 0.525+ 0.000 1.32E−19 0.135+ 0.000 3.30E−20 0.715+ 0.000 4.43E−20 0.978 0.820

F13 0.667+ 0.000 4.59E−21 0.613+ 0.000 2.48E−19 0.667+ 0.000 4.59E−21 0.940 0.640

F14 0.663+ 0.000 2.54E−06 0.667+ 0.000 3.42E−06 0.667+ 0.000 3.42E−06 0.737 0.060

F15 0.270+ 0.000 1.08E−19 0.363+ 0.000 5.33E−17 0.348+ 0.000 1.93E−16 0.593 0.000

F16 0.600+ 0.000 6.70E−07 0.663≈ 0.000 3.27E−01 0.667≈ 0.000 1.00E+00 0.667 0.000

F17 0.225+ 0.000 3.54E−17 0.153+ 0.000 1.18E−18 0.228+ 0.000 5.01E−14 0.460 0.000

F18 0.190+ 0.000 7.46E−21 0.400+ 0.000 1.60E−16 0.143+ 0.000 1.87E−19 0.640 0.000

F19 0.125+ 0.000 3.81E−21 0.100+ 0.000 7.86E−20 0.258+ 0.000 3.03E−12 0.463 0.000

F20 0.125+ 0.000 3.76E−11 0.060+ 0.000 6.73E−14 0.133+ 0.000 7.75E−04 0.213 0.000

B/E/W 13/6/1 9/8/3 12/8/0 NA

The notation “+” represents that the PR value achieved by ABSO is significantly better than that of the corresponding algorithm, while the notation “−” denotes the
opposite. The differences are detected using the Wilcoxon rank-sum test at significant level α = 0.05. The last row of the table summarizes the B/E/W counts of ABSO
against its competitor

123

International Journal of Computational Intelligence Systems (2023) 16:160 Page 11 of 17 160

Table 3 Rankings of the
algorithms revealed by the
Friedman’s test

Algorithm Ranking

ABSO 2.65

OIF-BSO 3.625

dADE/nrand/1 4.05

IABC 4.5

NCDE 4.5

PNPCDE 4.775

LIPS 5.25

r3pso-lhc 6.65

its two new search mechanisms, followed by NCDE.
F10 is a problem whose peaks have regular ball shape
and are evenly distributed in the search space. ABSO,
dADE/nrand/1, NCDE, PNPCDE, IABC, and OIFBSO suc-
ceeded in finding all the peaks for F10. The remaining ten
test problems are much more difficult to solve since they
have irregular peaks and there exist many local optimal solu-
tions. This feature poses great challenges on the algorithms’
exploration capability, as well as the capability of maintain-
ing found optimal solutions. The performance of ABSO is
very competitive on the complexproblems since the proposed
adaptive strategy can find themost suitable step sizes through
the feedback information collected in the optimization pro-
cess. In addition, the integration of the crowding technique
enhances the optima maintenance capability of ABSO. As
a consequence, ABSO is able to locate more peaks even
though the peaks are of different shapes and sizes. Finally,

the Wilcoxon signed rank test is used to check the existence
of significant differences between the numerical results of
ABSO and its compared algorithms. The obtained p val-
ues are reported in Table 2. The notations “≈”, “+”, and
“−” indicate that the PR values of ABSO are similar to,
significantly better than, and significantly worse than that
of the corresponding algorithm respectively. As can be con-
cluded from the table, the proposed algorithm outperforms
its opponents by at least nine test problems. To investigate
the overall performance of the algorithms, the Friedman’s
test is conducted. The rankings of the algorithms obtained
by the Friedman’s test are listed in Table 3. According to the
Friedman’s test, ABSO has the highest ranking, followed by
OIF-BSO, dADE/nrand/1, and IABC.

4.3 Convergence Speed

In this subsection, we study the convergence speed of the
algorithms. In the context of multimodal optimization, the
convergence speed of an algorithm is defined by the num-
ber of fitness evaluations required to locate all the global
optima. In cases that the algorithm cannot locate all the
global optima, the predefined number of fitness evaluations
(MaxFEs) is counted as the convergence speed. Table 4 lists
the convergence speed of the algorithms on test problems
F1–F6. The results are averaged over 50 independent runs
and the best results are highlighted in bold. Since F1–F5
are relatively easy to solve. The algorithm that tends toward
exploitation will have an edge over other algorithms. As can
be observed from Table 4, r3pso-lhc has the fastest conver-

Table 4 Convergence speed of
the algorithms on test functions
F1–F6

Algorithm Func F1 F2 F3 F4 F5 F6

r3pso-lhc Avg 200.00 1896.00 1020.00 6806.00 2650.00 196454.00

Std 0.00 564.26 495.18 6214.45 344.24 24822.00

LIPS Avg 200.00 1618.00 1212.00 9316.00 3664.00 200000.00

Std 0.00 520.27 702.75 1250.34 749.34 0.00

dADE/nrand/1 Avg 214.52 8742.22 1760.94 28555.98 6632.52 166917.48

Std 4.14 3151.03 951.60 10310.97 2125.69 50648.81

NCDE Avg 350.00 3028.00 2268.00 11232.00 4088.00 200000.00

Std 222.93 1423.94 2561.21 3012.34 771.40 0.00

PNPCDE Avg 200.00 2134.00 1066.00 23938.00 4916.00 200000.00

Std 0.00 603.19 773.72 5648.85 1304.20 0.00

IABC Avg 209.50 2677.54 1789.92 31556.04 5019.36 179195.64

Std 37.61 1262.27 1550.16 5699.34 1654.65 28085.09

OIF-BSO Avg 468.68 4009.06 3466.80 34238.40 13490.58 200000.00

Std 194.04 2203.60 3901.36 4980.45 4101.65 0.00

ABSO Avg 296.00 4940.00 3260.00 21000.00 13832.00 84560.00

Std 111.28 2732.47 3345.56 1671.17 2056.16 62724.73

123

 160 Page 12 of 17 International Journal of Computational Intelligence Systems (2023) 16:160

Fig. 4 Convergence graphs of the multimodal optimization algorithms. a F11, b F12, c F13, d F14, e F15, f F16, g F17, h F18, i F19

gence speed on four out of six test problems. LIPS performs
the best on F2 while ABSO possesses the fastest speed on
F6. The results of the algorithms on F7–F9 are reduced to
the predefined MaxFEs and therefore not listed in the table.
For the complex problem, the exploration capability plays an
increasingly important role in high dimensional rugged land-
scapes. Note that it is very difficult to locate all the global
optima, the convergence graphs of the algorithms are pre-
sented instead. Figure4 shows the convergence graphs of the
algorithms. The x-axis denotes the number of fitness evalua-
tions, while the y-axis denotes the number of global optima
found. It can be observed from the figure that ABSO is able
to locate more optima than the compared algorithms using
less fitness evaluations in majority of the problems F11–F19.

4.4 Effect of the New Creating Operator

In this subsection, we demonstrate the effectiveness of the
new creating operator by comparing the results of ABSO and
niching BSO (NBSO) with the original update formula (i.e.,
formula (1)). For ease of description, NBSOwith the original
update formula and different values of k is denoted asNBSO-
ok. Specifically, we compare ABSOwith NBSO-ok with five
different values of k range from 1 to 20. The experimental
results are tabulated in Table 5. The best results on each test
problem are highlighted in bold.

From the table, it can be noted that the overall perfor-
mance of NBSO-ok gradually increases with the value of k.
However, their performance on problems with a large num-

123

International Journal of Computational Intelligence Systems (2023) 16:160 Page 13 of 17 160

Table 5 Comparison between ABSO and NBSO-ok with different values of k

Function NBSO-o1 NBSO-o5 NBSO-o10 NBSO-o15 NBSO-o20 ABSO

PR SR PR SR PR SR PR SR PR SR PR SR

F1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

F2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

F3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

F4 0.880 0.560 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

F5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

F6 0.036 0.000 0.544 0.000 0.832 0.020 0.972 0.580 0.998 0.960 0.947 0.760

F7 0.428 0.000 0.521 0.000 0.602 0.000 0.646 0.000 0.648 0.000 0.648 0.000

F8 0.000 0.000 0.077 0.000 0.226 0.000 0.322 0.000 0.488 0.000 0.407 0.000

F9 0.066 0.000 0.107 0.000 0.144 0.000 0.169 0.000 0.190 0.000 0.211 0.000

F10 0.527 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

F11 0.610 0.000 0.690 0.020 0.830 0.240 0.877 0.340 0.850 0.280 0.990 0.940

F12 0.060 0.000 0.735 0.040 0.955 0.680 0.995 0.960 0.995 0.960 0.978 0.820

F13 0.360 0.000 0.673 0.000 0.820 0.080 0.837 0.120 0.883 0.300 0.940 0.640

F14 0.517 0.000 0.647 0.000 0.667 0.000 0.677 0.000 0.687 0.000 0.737 0.060

F15 0.198 0.000 0.450 0.000 0.663 0.000 0.690 0.000 0.688 0.000 0.593 0.000

F16 0.073 0.000 0.193 0.000 0.593 0.000 0.667 0.000 0.667 0.000 0.667 0.000

F17 0.015 0.000 0.030 0.000 0.353 0.000 0.495 0.000 0.513 0.000 0.460 0.000

F18 0.007 0.000 0.037 0.000 0.047 0.000 0.087 0.000 0.307 0.000 0.640 0.000

F19 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.093 0.000 0.463 0.000

F20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.213 0.000

ber of decision variables (i.e., F18–F20) is not satisfactory,
despite the value of k. For NBSO-ok, a large range of values
needs to be tested in order to find the most effective setting
for problems with a large number of decision variables. In
comparison, with the new creating operator and the adaptive
parameter control strategy, ABSO is able to achieve compet-
itive results on F18–F20. The overall performance of ABSO
is better than that of NBSO-ok. This result reveals the benefit
of the simplified creating operator shown in formula (4).

4.5 Effect of the Adaptive Step Size Control Strategy

In this subsection, we study the effect of the adaptive step
size control strategy. To visualize the hidden variable μk , we
plot the change of μk with respect to the grows of the num-
ber of fitness evaluations in Fig. 5. The results are averaged
over 50 independent runs and the confidence intervals are
determined by the standard deviation. From the figure, it can
be observed that for most of the test problems, μk gradu-
ally decreases from 0 to negative values range from −10 to
−25. An exception is that when solving F3, μk gradually
increases from 0 to 10. The changing dynamic of μk varies
from problem to problem. This indicates that for different
types of multimodal problems, the most suitable parameter
setting is different. It is a challenging and time-consuming

task to manually choose the best setting through trial-and-
error.

To check whether the adaptive strategy can enhance the
algorithm performance, ABSO is compared with NBSO
with fixed parameter settings. Seven different settings of
the hidden variable μk , namely, 5, 0, −5, −10, −15, −20,
and −25 are examined in the experiment. NBSO with
these settings are denoted as NBSO-p5, NBSO-0, NBSO-
m5, NBSO-m10, NBSO-m15, NBSO-m20, and NBSO-m25
respectively. Table 6 lists the experimental results of the algo-
rithms, and the best PR values are in bold. It can be observed
from the table that ABSO obtain the best PR values for 19
out of the 20 problems. The gap between the PR values of
ABSO and NBSO with fixed setting of μk becomes larger
when solving the complex composite problems F11–F20.
This is because for these complex problems, different stages
of the search process require different parameter values and
the fixed parameter setting cannot meet the requirement of
this optimization dynamic.

We also test the three dynamic control strategies (con-
vex, linear, and concave) suggested in Sect. 3. UB and LB
are set to 0 and −25 respectively. In this way, μk is gradu-
ally decreased from 0 to −25. Table 7 lists the experimental
results. NBSO with the three dynamic strategies are denoted
as DBSO-convex, DBSO-linear, and DBSO-concave respec-
tively. From the table, it can be noticed that both the linear

123

 160 Page 14 of 17 International Journal of Computational Intelligence Systems (2023) 16:160

Fig. 5 Change of μk along with the number of FEs. a–d F1–F4, e–h F5–F8, i–l F9–F12, m–p F13–F16, q–t F17–F20

strategy and the convex strategy perform quite well on the
test problems, while the performance of the concave strategy
is relatively poor. According to the curves plotted in Fig. 5,
the linear and convex strategies roughly match the changes
ofμk . The overall rankings of the algorithms provided by the
Friedman’s test are listed in Table 8. DBSO-convex has the
highest ranking. DBSO-linear and ABSO are in the second
and third places respectively. This result does not indicate
that the dynamic control strategy is superior to the adaptive
control strategy. To apply the dynamic control strategy, we

first need to specify the upper bound UB and lower bound
LB, which is a difficult task without a priori knowledge. In
the experiment, UB and LB are determined by the numerical
results returned by the adaptive control strategy.

5 Conclusion

In this paper, we developed an adaptive BSO algorithm that
automatically adjusts the step size parameter according to
the feedback information collected in the optimization pro-

123

International Journal of Computational Intelligence Systems (2023) 16:160 Page 15 of 17 160

Table 6 Comparison between ABSO and NBSO with fixed step size parameter

Function NBSO-0 NBSO-p5 NBSO-m5 NBSO-m10 NBSO-m15 NBSO-m20 NBSO-m25 ABSO

PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR

F1 1.000 1.000 1.000 1.000 1.000 1.000 0.630 0.340 0.570 0.300 0.660 0.460 0.530 0.280 1.000 1.000

F2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

F3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.980 0.980 0.980 0.980 0.940 0.940 1.000 1.000

F4 0.085 0.000 0.010 0.000 1.000 1.000 0.810 0.420 0.245 0.000 0.255 0.000 0.220 0.000 1.000 1.000

F5 0.560 0.300 0.320 0.080 1.000 1.000 0.990 0.980 0.930 0.860 0.980 0.960 0.970 0.940 1.000 1.000

F6 0.000 0.000 0.000 0.000 0.734 0.000 0.609 0.000 0.002 0.000 0.001 0.000 0.001 0.000 0.947 0.760

F7 0.281 0.000 0.169 0.000 0.578 0.000 0.409 0.000 0.258 0.000 0.252 0.000 0.245 0.000 0.648 0.000

F8 0.000 0.000 0.000 0.000 0.000 0.000 0.188 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.407 0.000

F9 0.010 0.000 0.002 0.000 0.215 0.000 0.090 0.000 0.022 0.000 0.019 0.000 0.020 0.000 0.211 0.000

F10 0.015 0.000 0.003 0.000 1.000 1.000 0.998 0.980 0.685 0.000 0.578 0.000 0.582 0.000 1.000 1.000

F11 0.010 0.000 0.000 0.000 0.667 0.000 0.627 0.000 0.250 0.000 0.207 0.000 0.250 0.000 0.990 0.940

F12 0.000 0.000 0.000 0.000 0.438 0.000 0.625 0.000 0.028 0.000 0.008 0.000 0.010 0.000 0.978 0.820

F13 0.003 0.000 0.000 0.000 0.660 0.000 0.537 0.000 0.187 0.000 0.187 0.000 0.190 0.000 0.940 0.640

F14 0.000 0.000 0.000 0.000 0.433 0.000 0.180 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.737 0.060

F15 0.000 0.000 0.000 0.000 0.188 0.000 0.173 0.000 0.030 0.000 0.005 0.000 0.013 0.000 0.593 0.000

F16 0.000 0.000 0.000 0.000 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.667 0.000

F17 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.460 0.000

F18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.640 0.000

F19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.463 0.000

F20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.213 0.000

Table 7 Comparison between
ABSO and DBSO with different
control dynamics

Function ABSO DBSO-linear DBSO-convex DBSO-concave

PR SR PR SR PR SR PR SR

F1 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.980

F2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

F3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

F4 1.000 1.000 1.000 1.000 1.000 1.000 0.865 0.560

F5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

F6 0.947 0.760 0.963 0.520 0.998 0.960 0.637 0.000

F7 0.648 0.000 0.678 0.000 0.672 0.000 0.560 0.000

F8 0.407 0.000 0.447 0.000 0.769 0.000 0.172 0.000

F9 0.211 0.000 0.237 0.000 0.244 0.000 0.184 0.000

F10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

F11 0.990 0.940 1.000 1.000 0.930 0.600 0.990 0.940

F12 0.978 0.820 0.980 0.840 1.000 1.000 0.860 0.220

F13 0.940 0.640 0.987 0.920 0.893 0.380 0.937 0.640

F14 0.737 0.060 0.767 0.060 0.740 0.000 0.717 0.040

F15 0.593 0.000 0.683 0.000 0.735 0.000 0.503 0.000

F16 0.667 0.000 0.673 0.000 0.667 0.000 0.657 0.000

F17 0.460 0.000 0.430 0.000 0.545 0.000 0.325 0.000

F18 0.640 0.000 0.630 0.000 0.653 0.000 0.433 0.000

F19 0.463 0.000 0.413 0.000 0.465 0.000 0.088 0.000

F20 0.213 0.000 0.168 0.000 0.230 0.000 0.000 0.000

123

 160 Page 16 of 17 International Journal of Computational Intelligence Systems (2023) 16:160

Table 8 Rankings of ABSO and DBSO revealed by the Friedman’s test

Algorithm Ranking

DBSO-convex 1.875

DBSO-linear 2.05

ABSO 2.5

DBSO-concave 3.575

cess. A modified creating operator for producing new ideas
is devised and incorporated into BSO to reduce the level
randomness so that the control strategy can correctly assign
credit of generating better candidate solutions to the setting
of parameters. Experiments have been conducted on a set
of benchmark multimodal optimization problems to exam-
ine the effect of the adaptive step size control strategy. The
experimental results show that ABSO is very competitive
compared with some recently developed algorithms. The
performance of ABSO is superior to BSO with fixed param-
eter settings. With the adaptive control strategy, the step size
parameter is constantly updated to increase the success rate
of producing better ideas. In this way, ABSO can locate mul-
tiple optimal solutions with increased efficiency.

We also develop a systematic approach to the generation
of dynamic strategies. The systematic approach can produce
control strategies with decreasing curves of different shapes
(convex, linear, and concave). According to the experimental
results, if the control curvesmatch the feature of the problems
being solved, DBSO is capable of achieving higher perfor-
mance than the adaptive control strategy.

The focus of this paper is to improve the performance of
BSO inmultimodal optimization through the adaptive adjust-
ment of the step size parameter k. Although the experimental
results reveal the effectiveness of the proposed adaptation
scheme, the developed algorithm does not get rid of all the
control parameters. We still need to find the most suitable
settings for the other parameters through extensive trial-and-
error. Therefore, ABSO still has room for improvement. It
is possible to design more advanced adaptation scheme that
simultaneously adjusts all the parameters. In this way, we
can obtain an algorithm which is parameter-free and more
robust. Furthermore, it is essential to apply the algorithm
to more complex optimization problems to demonstrate its
potential for real-world applications.

AuthorContributions Conceptualization,methodology,writing-original
draft preparation, YZ; writing-review and editing, WW; formal analy-
sis, SX; supervision, ZW.

Funding This research was funded in part by the National Natural Sci-
ence Foundation of China under Grant 62106046 and Grant 62106055,
in part by the Guangdong Natural Science Foundation under Grant
2019A1515110474 and grant 2022A1515011825.

Availability of data and material The data presented in this study are
available on request from the corresponding author.

Declarations

Conflict of interest The authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Li, X., Epitropakis, M.G., Deb, K., Engelbrecht, A.: Seeking mul-
tiple solutions: an updated survey on niching methods and their
applications. IEEE Trans. Evol. Comput. 21(4), 518–538 (2016)

2. Huang, T., Gong, Y.-J., Kwong, S., Wang, H., Zhang, J.: A niching
memetic algorithm for multi-solution traveling salesman problem.
IEEE Trans. Evol. Comput. 24(3), 508–522 (2019)

3. Hu,Y., Zhang,K.:Multimodal optimization evolutionary algorithm
for RNA secondary structure prediction. In: The Fifth International
Conference on Biological Information and Biomedical Engineer-
ing, Association for Computing Machinery, Hangzhou, China, pp.
1–7 (2021)

4. Huang, T., Gong, Y.-J., Zhang, Y.-H., Zhan, Z.-H., Zhang, J.: Auto-
matic planning of multiple itineraries: a niching genetic evolution
approach. IEEE Trans. Intell. Transp. Syst. 21(10), 4225–4240
(2019)

5. Lotf, J.J., Azgomi, M.A., Reza, E.D.M.: An improved influence
maximization method for social networks based on genetic algo-
rithm. Phys. A Stat. Mech. Appl. 586, 126480 (2022)

6. Aziz, R.M., Mahto, R., Goel, K., Das, A., Kumar, P., Saxena, A.:
Modified genetic algorithm with deep learning for fraud transac-
tions of ethereum smart contract. Appl. Sci. 13(2), 697 (2023)

7. Devarriya,D.,Gulati,C.,Mansharamani,V., Sakalle,A.,Bhardwaj,
A.: Unbalanced breast cancer data classification using novel fitness
functions in genetic programming. Expert Syst. Appl. 140, 112866
(2020)

8. Pant, M., Zaheer, H., Garcia-Hernandez, L., Abraham, A., et al.:
Differential evolution: a review of more than two decades of
research. Eng. Appl. Artif. Intell. 90, 103479 (2020)

9. Opara, K.R., Arabas, J.: Differential evolution: a survey of theo-
retical analyses. Swarm Evol. Comput. 44, 546–558 (2019)

10. Hansen, N.: A global surrogate assisted CMA-ES. In: Proceedings
of the Genetic and Evolutionary Computation Conference, Asso-
ciation for Computing Machinery, Prague, Czech Republic, pp.
664–672 (2019)

11. Biedrzycki, R.: Handling bound constraints in CMA-ES: an exper-
imental study. Swarm Evol. Comput. 52, 100627 (2020)

12. Shami, T.M., El-Saleh, A.A., Alswaitti, M., Al-Tashi, Q., Sum-
makieh, M.A., Mirjalili, S.: Particle swarm optimization: a com-
prehensive survey. IEEE Access 10, 10031–10061 (2022)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

International Journal of Computational Intelligence Systems (2023) 16:160 Page 17 of 17 160

13. Houssein, E.H., Gad, A.G., Hussain, K., Suganthan, P.N.: Major
advances in particle swarm optimization: theory, analysis, and
application. Swarm Evol. Comput. 63, 100868 (2021)

14. Rokbani, N., Kumar, R., Abraham, A., Alimi, A.M., Long, H.V.,
Priyadarshini, I., Son, L.H.: Bi-heuristic ant colony optimization-
based approaches for traveling salesman problem. Soft Comput.
25, 3775–3794 (2021)

15. Zhou, X., Ma, H., Jianggang, G., Chen, H., Deng, W.: Parame-
ter adaptation-based ant colony optimization with dynamic hybrid
mechanism. Eng. Appl. Artif. Intell. 114, 105139 (2022)

16. Ullah, A.: Artificial bee colony algorithm used for load balancing
in cloud computing. IAES Int. J. Artif. Intell. 8(2), 156 (2019)

17. Kaya, E., Gorkemli, B., Akay, B., Karaboga, D.: A review on the
studies employing artificial bee colony algorithm to solve combina-
torial optimization problems. Eng. Appl. Artif. Intell. 115, 105311
(2022)

18. Ali, S., Bhargava, A., Saxena, A., Kumar, P.: A hybrid marine
predator sine cosine algorithm for parameter selection of hybrid
active power filter. Mathematics 11(3), 598 (2023)

19. Shi, Y.: Brain storm optimization algorithm. In: Advances in
Swarm Intelligence: Second International Conference, ICSI 2011,
Chongqing, China, June 12-15, 2011, Proceedings, Part I 2, pp
303–309. Springer (2011)

20. Zhan, Z., Zhang, J., Shi, Y., Liu, H.: A modified brain storm opti-
mization. In: 2012 IEEE Congress on Evolutionary Computation,
pp. 1–8. IEEE (2012)

21. Cheng, S., Qin, Q., Chen, J., Shi, Y.: Brain storm optimization
algorithm: a review. Artif. Intell. Rev. 46, 445–458 (2016)

22. Li, X.: Niching without niching parameters: particle swarm opti-
mization using a ring topology. IEEE Trans. Evol. Comput. 14(1),
150–169 (2009)

23. Qu, B.-Y., Suganthan, V., Das, S.: A distance-based locally
informed particle swarmmodel for multimodal optimization. IEEE
Trans. Evol. Comput. 17(3), 387–402 (2012)

24. Goldberg,D.E., Richardson, J., et al.: Genetic algorithmswith shar-
ing for multimodal function optimization. In: Genetic Algorithms
and Their Applications: Proceedings of the Second International
Conference on Genetic Algorithms, vol. 4149. Lawrence Erlbaum,
Hillsdale (1987)

25. Thomsen, R.: Multimodal optimization using crowding-based dif-
ferential evolution. In: Proceedings of the 2004 Congress on
Evolutionary Computation (IEEE Cat. No. 04TH8753), vol. 2, pp.
1382–1389. IEEE (2004)

26. Pétrowski,A.:A clearing procedure as a nichingmethod for genetic
algorithms. In: Proceedings of IEEE International Conference on
Evolutionary Computation, pp. 798–803. IEEE (1996)

27. Li, J.-P., Balazs, M.E., Parks, G.T., Clarkson, P.J.: A species con-
serving genetic algorithm for multimodal function optimization.
Evol. Comput. 10(3), 207–234 (2002)

28. Qu, B.-Y., Suganthan, P.N., Liang, J.-J.: Differential evolution with
neighborhood mutation for multimodal optimization. IEEE Trans.
Evol. Comput. 16(5), 601–614 (2012)

29. Gao, W., Yen, G.G., Liu, S.: A cluster-based differential evolu-
tion with self-adaptive strategy for multimodal optimization. IEEE
Trans. Cybern. 44(8), 1314–1327 (2013)

30. Epitropakis, M.G., Li, X., Burke, E.K.: A dynamic archive niching
differential evolution algorithm for multimodal optimization. In:
2013 IEEE Congress on Evolutionary Computation, pp. 79–86.
IEEE (2013)

31. Biswas, S., Kundu, S., Das, S.: Inducing niching behavior in dif-
ferential evolution through local information sharing. IEEE Trans.
Evol. Comput. 19(2), 246–263 (2014)

32. Biswas, S., Kundu, S., Das, S.: An improved parent-centric muta-
tion with normalized neighborhoods for inducing niching behavior
in differential evolution. IEEE Trans. Cybern. 44(10), 1726–1737
(2014)

33. Zhang, Y.-H., Gong, Y.-J., Zhang, H.-X., Tian-Long, G., Zhang, J.:
Toward fast niching evolutionary algorithms: a locality sensitive
hashing-based approach. IEEE Trans. Evol. Comput. 21(3), 347–
362 (2016)

34. Ma, S., Wang, Y., Zhang, S.: Improved artificial bee colony algo-
rithm for multimodal optimization based on crowding method. J.
Organ. End User Comput. (JOEUC) 34(3), 1–18 (2022)

35. Huang, T., Gong, Y.-J., Chen, W.-N., Wang, H., Zhang, J.: A prob-
abilistic niching evolutionary computation framework based on
binary space partitioning. IEEETrans.Cybern.52(1), 51–64 (2020)

36. Wang, Z.-J., Zhan, Z.-H., Lin, Y., Wei-Jie, Yu., Wang, H., Kwong,
S., Zhang, J.: Automatic niching differential evolutionwith contour
prediction approach for multimodal optimization problems. IEEE
Trans. Evol. Comput. 24(1), 114–128 (2019)

37. Chen, Z.-G., Zhan, Z.-H., Wang, H., Zhang, J.: Distributed indi-
viduals for multiple peaks: a novel differential evolution for
multimodal optimization problems. IEEE Trans. Evol. Comput.
24(4), 708–719 (2019)

38. Zhao, H., Zhan, Z.-H., Lin, Y., Chen, X., Luo, X.-N., Zhang, J.,
Kwong, S., Zhang, J.: Local binary pattern-based adaptive differen-
tial evolution for multimodal optimization problems. IEEE Trans.
Cybern. 50(7), 3343–3357 (2019)

39. Sheng,W.,Wang, X.,Wang, Z., Li, Q., Chen, Y.: Adaptivememetic
differential evolution with niching competition and supporting
archive strategies for multimodal optimization. Inf. Sci. 573, 316–
331 (2021)

40. Liu, Q., Du, S., van Wyk, B.J., Sun, Y.: Double-layer-clustering
differential evolution multimodal optimization by speciation and
self-adaptive strategies. Inf. Sci. 545, 465–486 (2021)

41. Ahrari, A., Deb, K.: Multimodal optimization by evolution strate-
gies with repelling subpopulations. In: Preuss, M., Epitropakis,
M.G., Li, X., Fieldsend, J.E. (eds) Metaheuristics for FindingMul-
tiple Solutions. Natural Computing Series. Springer, Cham, pp.
145–163 (2021)

42. Ahmed, R., Nazir, A., Mahadzir, S., Shorfuzzaman, M., Islam, J.:
Niching grey wolf optimizer for multimodal optimization prob-
lems. Appl. Sci. 11(11), 4795 (2021)

43. El-Abd, M.: Global-best brain storm optimization algorithm.
Swarm Evol. Comput. 37, 27–44 (2017)

44. Zhao, F., Hu, X., Wang, L., Zhao, J., Tang, J.J.: A reinforcement
learning brain storm optimization algorithm (BSO) with learning
mechanism. Knowl. Based Syst. 235, 107645 (2022)

45. Yang,Yu.,Gao, S.,Wang,Y., Lei, Z.,Cheng, J., Todo,Y.:Amultiple
diversity-driven brain storm optimization algorithm with adaptive
parameters. IEEE Access 7, 126871–126888 (2019)

46. Zhou, D., Shi, Y., Cheng, S.: Brain storm optimization algorithm
with modified step-size and individual generation. In: Ying, T.,
Yuhui, S., Zhen, J. (eds.) Advances in Swarm Intelligence, pp.
243–252. Springer, Berlin (2012)

47. Cheng, S., Sun, Y., Chen, J., Qin, Q., Chu, X., Lei, X., Shi, Y.:
A comprehensive survey of brain storm optimization algorithms.
In: 2017 IEEE Congress on Evolutionary Computation (CEC), San
Sebastian, pp, 1637–1644 (2017)

48. Dai, Z., Fang, W., Tang, K., Li, Q.: An optima-identified frame-
work with brain storm optimization for multimodal optimization
problems. Swarm Evol. Comput. 62, 100827 (2021)

49. Li, X., Engelbrecht, A., Epitropakis, M.G.: Benchmark functions
for cec’2013 special session and competition on niching methods
for multimodal function optimization. RMIT University, Evolu-
tionary Computation and Machine Learning Group, Australia,
Tech. Rep (2013)

123

	Brain Storm Optimization Algorithm with an Adaptive Parameter Control Strategy for Finding Multiple Optimal Solutions
	Abstract
	1 Introduction
	2 Background
	2.1 Niching Techniques
	2.2 Brainstorm Optimization Algorithm
	2.3 BSO for Multimodal Optimization

	3 Adaptive BSO Algorithm for Multimodal Optimization
	3.1 Motivation of Adaptive BSO
	3.2 Adaptive and Dynamic Adjustment of the Step Size Parameter
	3.3 Adaptive and Dynamic BSO

	4 Experimental Study
	4.1 Experimental Setup
	4.1.1 Test Functions
	4.1.2 Performance Measure
	4.1.3 Algorithms in Comparison
	4.1.4 Parameter Settings

	4.2 Overall Performance
	4.3 Convergence Speed
	4.4 Effect of the New Creating Operator
	4.5 Effect of the Adaptive Step Size Control Strategy

	5 Conclusion
	References

