
International Journal of Computational Intelligence Systems          (2023) 16:113 
https://doi.org/10.1007/s44196-023-00285-8

RESEARCH ART ICLE

Extend Tversky’s Ratio Model to an Asymmetric Similarity
Measurement Model with Three Conditional Parameters: 3p-ASM
Model

Wen He1 · Bapi Dutta1 · Yaya Liu2 · Rosa M. Rodríguez1

Received: 21 May 2023 / Accepted: 7 June 2023
© The Author(s) 2023

Abstract
Generally, the similarity between objects is often measured by symmetric operators, such as Cosine, Dice, and Jaccard
similarity. However, the ratio model originally proposed by Tversky pointed out that the similarity using the feature matching
method tends to be asymmetric. Furthermore, in many practical situations, the existing similarity measures using the feature
matching method have some limitations: the calculation formulas are symmetrical, it is not intuitive based on binary features,
and it is not easy to calculate based on fuzzy sets. To overcome such limitations, some other asymmetries have proposed to
directly combine Tversky’s ratio model with the classical symmetric similarity metric, which in turn leads to the inability
to identify different features between the compared objects and affects their similarity accuracy. Therefore, aiming to avoid
these, this paper will focus on extending Tversky’s ratio model to a series of 3-parameter asymmetric similarity metrics
(3p-ASM), using three conditional parameters to describe both common and different features. First, the set-based 3p-ASM
is achieved due to the general and fuzzy set-theoretic operations, when estimating features in {0, 1} and [0, 1], respectively.
Then, considering that the estimated values of features can also be expressed as vectors, it will be extended to the vector-
based 3p-ASM. Finally, a vector form of 3p-ASM is compared with existing classical methods and a comparative analysis is
performed to demonstrate its effectiveness and validity. It is then applied to the KNNmodel in order to select the most similar
items.
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1 Introduction

In real-world decision making problems, similarity measure-
ment plays a very critical role and is widely used in face
recognition [12, 30, 53], image recognition [27, 55], anti-
cheating [20], and recommendation systems [10, 18, 59], etc.
It is often computed as a non-negative symmetric operator,
S (a, b), between any two objects a, b under study, which
satisfies these three general properties [42]:

(1) Equal self-similarity: S (a, a) = S (b, b) = 1;
(2) Minimality: S (a, a) ≥ S (a, b);
(3) Symmetry: S (a, b) = S (b, a).

However, the symmetry property is not always true in
many cases [1, 7, 14, 46]. To give a simple counterexample,
an ellipse is more similar to a circle than a circle is similar
to an ellipse [46]. In other words, for any pair of comparison
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objects, a and b, the similarity between a and b is not always
equal to the similarity between b and a.

A lot ofwork has been done to define the symmetrical sim-
ilarity betweenobjects based on crisp set-theoretic operations
or vector calculation. One of the most outstanding meth-
ods is the Jaccard similarity measure [3, 21, 32] proposed in
1901, mainly because of its simplicity and intuitiveness. The
second is the Dice similarity measure [11, 44, 52] in 1945
and the Cosine similarity measure [41, 54]. In particular, the
Cosine similarity measurement has been widely developed
and applied in artificial intelligence (AI) and related fields
[28, 33, 35, 50, 51].

In terms of asymmetric similarity, the outstanding one is
Tversky’s work [46], which proposed the contrast model and
ratio model similarities using feature matching in 1977. In
[46], both models are asymmetric similarities when γ �= β

within γ, β are non-negative parameters associated with dis-
tinctive features of the compared objects. Tversky proposed
that the object to be compared is represented by a set of finite
features, and a value in the binary-value set {0, 1} is used to
characterize whether the object has the corresponding fea-
ture. That is, 0 means not having the feature, and 1 means
having the feature. Much of the subsequent literature based
on Tversky’sworkmainly can be divided into two categories:

(i) Considering the use of fuzzy numbers for modeling the
features of the object. For instance, Santini and Jain [42]
introduced the use of fuzzy predicates, which is an exten-
sionof the feature contrastmodel to fuzzy feature contrast
based on fuzzy logic. Bashon et al. [5] extended Tver-
sky’s ratio model to a 3-parameter-Tversky’s ratio model
between two fuzzy sets, which are used to represent the
values of features, by adding a new positive parameter to
characterize the intersection of these two fuzzy sets.

(ii) Combing classic symmetrical similarity together with
Tversky’s ratio model based on set cardinality, for
instance: Pirasteh et al. [36] suggested an asymmetric
user similarity method, which is mainly composed of
Tversky’s ratio model and Dice similarity, and then com-
bined with Cosine or mean squared difference (MSD) [6,
29, 34] method to be applied to recommendation sys-
tems. Based on Tversky’s ratio model, Bao et al. [4]
proposed and developed the concept of asymmetric sim-
ilarity measure to identify subset copies of text similarity
measures faster in information retrieval. Krawczak and
Szkatuła [23] introduced a new measure of remoteness
between sets of nominal values by describing the change
of one set after adding another set. Andrea Rodriguez and
Egenhofer [1] defined the Matching-Distance Similarity
Measure (MDSM) to solve the asymmetry of similar-
ity judgments and the role of context in such judgments.
Kunimoto et al. proposed [24] theTversky index based on

the maximum common substructure, which is an asym-
metric hybrid similarity measure.

There are some other related methods that can reflect the
asymmetric similarity of various application areas, such as
e-tourism package recommendation [22], feature matching
[60], classify objects [43], the min and the max hierarchical
clustering methods [19], sparse word similarity models [15],
collaborative filtering recommendation system [31, 49], and
so on.

In spite of multiple asymmetric similarity measures, there
still remain some important limitations:

(i) From a mathematical point of view, based on the feature-
based evaluation logic, the assumption of binary features,
that is, using one of {0, 1}, will lead to unreliable results.
For instance, the similarity of two objects a and b with
the same features will be calculated as 1, but in fact the
similarity may be much less than 1 when they have dif-
ferent evaluation values in (0, 1), for example, 0.1 and
0.9, respectively.

(ii) Most of the existing asymmetric similaritymethods com-
bine the binary feature-based Tversky’s ratio model with
the vector-based classical similarity measure to avoid
unreliable results due to ignoring estimated values.When
using such similarity measures in recommender systems
[36], computing recommendations for a few features is
a straightforward task. However, as the number of fea-
tures increases to hundreds, the computation becomes
more complex and less intuitive, making it challenging
to operate efficiently.

(iii) While Tversky’s ratio model ignores a parameter that
describes common features, in some cases, these fea-
tures can have a significant or negligible impact on the
final similarity. For instance, when people’s decisions are
more dependent on their unique features, larger param-
eter values should be assigned to different features to
reflect their importance, while common characteristics
should be assigned smaller parameter values. Therefore,
decision makers may find it more intuitive to use three
parameters, which can better account for the importance
of both common and different features.

In order to overcome previous limitations and taking into
account the idea of using 3 parameters [5], we propose to use
3 parameters to define a novel asymmetric similaritymeasure
(3p-ASM) that is based on the featuresmatchingmethod. The
main contributions to our proposal are the following ones:‘

(1) Another parameter, α, is added to Tversky’s ratio model
to characterize common features andmeets the condition:
the sum of these three parameters is 1, i.e., γ + α +
β = 1. Therefore, based on these conditional parameters,

123



International Journal of Computational Intelligence Systems           (2023) 16:113 Page 3 of 15   113 

a new extended model called 3p-ASM model has been
introduced to improve the accuracy of the asymmetric
measure.

(2) The estimated values of features are not only in a binary
set {0, 1}, but also in the [0, 1]. However, both of them
can be unified in the following forms: sets and vectors.
Thus, the 3p-ASM is reformulated on the basis of set
theories (crisp and fuzzy sets) and vector theory. Further,
their properties are analyzed for wider applicability.

The rest of this work is organized as follows. Section2
reviews the related concepts of similarity measures in the
cases of {0, 1} and [0, 1]. Section3 extends Tversky’s ratio
model with three conditional parameters to achieves a series
of concepts of 3p-ASM model in the context of {0, 1} and
[0, 1], respectively. The experimental simulation and com-
parative analysis will be shown in Sect. 4. Section5 points
out some conclusions.

2 Preliminaries of Similarity Measurement

In this section, the preliminary knowledge of similarity mea-
sures in the binary value {0, 1} and interval value [0, 1]
environments is reviewed. Subsequently, on these bases, the
concept of three conditional parameters asymmetric similar-
ity measure (3p-ASM) model will be obtained, which is an
extension of Tversky’s ratio model [46].

2.1 Classical Forms of Characterizing Features: Sets
andVectors

Generally, the estimated value of an object’s features has
many forms, such as real numbers [26, 47], linguistic terms
[16, 17, 48], interval values [8], hesitant fuzzy sets [39, 40,
45], etc.Here, the features aremainly estimated in the formof
real numbers. Considering that all values can be normalized
within the interval [0, 1], it has two forms: one can use a
value in {0, 1} and the another uses a value in [0, 1], both
are used to indicate that the object does not have or has that
feature.

Tription, let � = {a, b, c, . . .} be a finite set of all
objects need to be compared, and each object of � can
be characterized by a finite set of all features F =
{F1,F2, . . . ,Fn} , n ≥ 2. Therefore, ∀a, b ∈ �, they
can be expressed as the sets on the basis of mappings
μa : F → [0, 1]

Fi �→ μa (Fi )
and

μb : F → [0, 1]

Fi �→ μb (Fi )
as follows:

A = {(Fi , μa (Fi )) | Fi ∈ F} ;
B = {(F j , μb

(F j
)) | F j ∈ F}

(1)

Note 1 Due to the choice of values in {0, 1} or [0, 1], Eq. (1)
can be simplified as crisp set or fuzzy set as follows:

(1) If μa (Fi ) , μb
(F j

) ∈ {0, 1} for all i, j ∈ {1, 2, . . . , n},
then A and B can be simplified as the crisp subset:

A = {Fi | μa (Fi ) = 1, Fi ∈ F} ;
B = {F j | μb

(F j
) = 1, F j ∈ F}

(2)

(2) If μa (Fi ) , μb
(F j

) ∈ [0, 1] for all i, j ∈ {1, 2, . . . , n},
then A and B can be simplified as fuzzy subsets:

A = {(Fi , μa (Fi )) | μa (Fi ) > 0, Fi ∈ F} ;
B = {(F j , μb

(F j
)) | μb

(F j
)

> 0, F j ∈ F}
(3)

Obviously, {0, 1} ⊂ [0, 1], that is, the first case is a special
case of the second case, but according to its underlying set
theory, the set operations are completely different. Therefore,
without loss of generality, we will further study the asymmet-
ric similarity measure in these two situations in the following
sections.

It is worth pointing out that Eq. (1) could also be expressed
in the form of vectors consisting of membership values on
[0, 1]n as follows:

	ra = (μa (F1) , μa (F2) , . . . , μa (Fn)) ;
	rb = (μb (F1) , μb (F2) , . . . , μb (Fn)) . (4)

where μa (Fi ) , μb (Fi ) for all i ∈ {1, 2, . . . , n} are the esti-
mated values of the corresponding features by means of the
membership functions μa (·) , μb (·), respectively.

2.2 Symmetrical Similarity Measure

Now, on the basis of the previous analysis, we review the
similarity measures between two objects satisfying the sym-
metric property, i.e, S (a, b) = S (b, a).

2.2.1 Symmetrical Similarity Measure Based on the Crisp
Set Theory

Considering the case that the estimated value is one of {0, 1},
let |·| be the cardinality of the set, that is, the number of set
elements, based on crisp set theory, the two classical similar-
ity formulas are as follows:

(1) Dice similarity [11] is given as follows:

S1Dice (a, b) = 2 |A ∩ B|
|A| + |B| (5)
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(2) Jaccard similarity [21] is defined as follows:

S1Jaccard (a, b) = |A ∩ B|
|A ∪ B| (6)

2.2.2 Symmetrical Similarity Measure Based on Vector
Theory

Let 	ra = (μa (F1) , μa (F2) , . . . , μa (Fn)) and 	rb =
(μb (F1) , μb (F2) , . . . , μb (Fn)) be the two vectors of
objectsa andbwithinn elements satisfyingμa (Fi ) , μb (Fi ) ∈
[0, 1] for all i = 1, 2, . . . , n. To make notations of the for-
mula simple and clear, let 	ra · 	rb = ∑n

i=1 μa (Fi ) · μb (Fi )

be the inner product of the two vectors 	ra and 	rb, and
‖ 	ra ‖2=

√∑n
i=1 μ2

a (Fi ), ‖ 	rb ‖2=
√∑n

i=1 μ2
b (Fi ) be

the Euclidean (or L2) norms of 	ra and 	rb, respectively. Then,
based on these notations, three classic similarity formulas are
given as follows.

(1) Cosine similarity measure [41, 54] between two vectors
is given as follows:

SCosine (a, b) = 	ra · 	rb
‖ 	ra ‖2 · ‖ 	rb ‖2

=
∑n

i=1 μa (Fi ) · μb (Fi )√∑n
i=1 μ2

a (Fi ) ·
√∑n

i=1 μ2
b (Fi )

(7)

(2) Dice similarity measure [11, 52] between two vectors is
given as follows:

S2Dice (a, b) = 2	ra · 	rb
‖ 	ra ‖22 + ‖ 	rb ‖22

= 2
∑n

i=1 μa (Fi ) · μb (Fi )∑n
i=1 μ2

a (Fi ) + ∑n
i=1 μ2

b (Fi )
(8)

(3) Jaccard similarity measure [21] between two vectors is
given as follows:

S2Jaccard (a, b)

= 	ra · 	rb
‖ 	ra ‖22 + ‖ 	rb ‖22 −	ra · 	rb

=
∑n

i=1 μa (Fi ) · μb (Fi )∑n
i=1 μ2

a (Fi ) + ∑n
i=1 μ2

b (Fi ) − ∑n
i=1 μa (Fi ) · μb (Fi )

(9)

2.3 Tversky’s Ratio Model and Its Extension

This section briefly reviews Tversky’s ratio model and its
3-parameter extension based on fuzzy sets.

2.3.1 Tversky’s Ratio Model

In [46], Tversky first proposed the ratio model to measure
the asymmetric similarity between objects a and b based on
set theory and the feature matching method. Tversky’s ratio
model is defined as follows:

Definition 1 [46] Let � = {a, b, c, . . .} be the domain of
objects (or stimuli) under study. Assume that each object
in � is represented by a set of features (or attributes), and
let A, B,C, . . . denote the sets of features associated with
the objects a, b, c, . . ., respectively. Then, ∀a, b ∈ �, there
exists a similarity scale SratioT based on 2 non-negative param-
eters γ, β and a non-negative feature additivity function f
such that

SratioT (a, b) = f (A ∩ B)

γ · f (A − B) + f (A ∩ B) + β · f (B − A)
,

∀γ, β≥ 0 (10)

Due to various values of parameters γ and β, the ratio
model defines a series of similarities. For instance, let f be
the cardinality of the set, denoted as f (·) = |·|, and if some
specific values of α, β have been set in advance, then Eq.
(10) can be simplified as follows:

(1) If γ = β = 1, then SratioT (a, b) = |A∩B|
|A∪B| , and it actually

is S1Jaccard (a, b);

(2) If γ = β = 1
2 , then SratioT (a, b) = 2|A∩B|

|A|+|B| , and it is

S1Dice (a, b);

(3) If γ = 1 and β = 0, then SratioT (a, b) = |A∩B|
|A| ; If

γ = 0 and β = 1, then SratioT (a, b) = |A∩B|
|B| ;

It is worth pointing out that Tversky’s ratio model is a
set theory ratio model, a more general formula for calculat-
ing the asymmetric similarity between two objects, that is,
SratioT (a, b) �= SratioT (b, a) while γ �= β. It further shows
that similarity is not necessarily a symmetric relation [46].
Therefore, researchers often choose α = 1, β = 0 or
α = 0, β = 1 [4, 36] to indicate its asymmetric property in
some practical problems.

2.3.2 3-Parameter Tversky’s Ratio Model

In [5], Bashon et al. proposed a 3-parameter Tversky ratio
model in which each feature of the object is characterized by
a fuzzy numerical or linguistic value. They suggested adding
another parameter α to describe the importance of the inter-
section of two fuzzy sets. On this basis, the similarity of the
corresponding features of the two objects can be obtained.
Consequently, the similarities of all features are fused by an
aggregation operator to obtain the final similarity between
the objects.
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Definition 2 [5] Let a, b ∈ � are two compared objects,
then the similarity between a, b is defined as the following
formula:

S3p (a, b) =
n∑

i=1

ωi · S3p (a(Fi ), b(Fi )) (11)

with S3p (a(Fi ), b(Fi )) is given as follows for α > 0 and
β, γ ≥ 0:

S3p (a(Fi ), b(Fi ))

= α · |a(Fi ) ∩ b(Fi )|SCF

γ · |a(Fi )−b(Fi )|SCF +α · |a(Fi ) ∩ b(Fi )|SCF +β · |b(Fi )−a(Fi )|SCF

(12)

where ωi satisfies ωi ≥ 0, ∀i = 1, 2, . . . , n and
∑n

i=1 ωi =
1. For all i = 1, 2, . . . , n, a(Fi ) and b(Fi ) are fuzzy sets
defined on the universe of discourse U for each feature of
objects a and b, respectively. A new parameter α > 0 is used
to contribute the intersection of two fuzzy sets. |·|SCF is the
scalar cardinality of fuzzy set [13, 37], which is computed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|a(Fi ) ∩ b(Fi )|SCF
= ∑

x∈U
min

{
μa(Fi ) (x) , μb(Fi ) (x)

} ;
|a(Fi ) (x) − b(Fi )|SCF

= ∑

x∈U
max

{
0, μa(Fi ) (x) − μb(Fi ) (x)

} ;
|b(Fi ) − a(Fi ) (x)|SCF

= ∑

x∈U
max

{
0, μb(Fi ) (x) − μa(Fi ) (x)

}
.

Inspired by [5], our proposal has the same idea of adding
a parameter α to describe the importance of the intersection
of two sets. However, our proposal differs from [5] in two
aspects. One is to focus mainly on asymmetric similarity,
i.e., α ∈ (0, 1] , γ, β ∈ [0, 1] , α + γ + β = 1 and γ �= β;
another is to evaluate the features of the objects being com-
pared using numerical values rather than fuzzy numbers. In
the following, we will further investigate the main contribu-
tions of our proposal.

3 The Three Conditional Parameters
Asymmetric Similarity Measure

In some situations, similarity implies its direction, i.e., sim-
ilarity from a to b is not necessarily equal to similarity from
b to a. On the basis of Tversky’s ratio model, the intuitive
reason is that in some cases where similarity is calculated,
A − B and B − A having different weights, i.e., γ �= β, is
the key to asymmetry and further implies that they are sim-
ilar, but different. Therefore, inspired by outstanding works
in [5, 46], in order to distinguish from the existing symmetric

similaritymeasurement models, the three conditional param-
eter asymmetric similarity measures (3p-ASM) from object
a to object b noted as S (a, b) can be computed based on the
use of three conditional non-negative parameters. Therefore,
based on the above description, themain contributions of this
proposal are:

(1) S (a, b) is an extension of Tversky’s ratio model based
on set theories.

(a) S (a, b) is computed on the basis of the set operations
when the estimated value is one of {0, 1}.

(b) S (a, b) uses the values defined on [0, 1] to compute
based on fuzzy set operations [56–58].

(2) S (a, b) is an extension of Tversky’s ratio model based
on vector theory.

3.1 The 3p-ASM Based on Set Theories

In this section, the 3p-ASMs based on set theories are first
introduced: one is based on crisp set theory and the other is
based on fuzzy set theory. In addition, subsequently summa-
rizes some properties of the 3p-ASM based on set theories.

3.1.1 The 3p-ASM Based on Crisp Set Theory

Here, we focus on the estimated values is a value in {0, 1}. To
simplify description and notation, assume that the compared
objects a, b have distinct features and do not need to share
all the same features, then the definition of 3p-ASM on the
basis of crisp set theory is given as follows.

Definition 3 Let� = {a, b, c, . . .} be the set of all objects to
be studied, inwhich eachobject is characterizedby a subset of
the finite set of all featuresF . Based on the three conditional
parameters γ, α and β satisfying α ∈ (0, 1] , γ, β ∈ [0, 1],
γ �= β, and γ + α + β = 1, the crisp set theory-based 3p-
ASM used to measure the similarity from object a to object
b is defined as the following formula:

S (a, b) = α · |A ∩ B|
γ · |A − B| + α · |A ∩ B| + β · |B − A| (13)

where |·| is an additive cardinality function. In addition, A−B
is the set of all features only belonging to the crisp set A,
B − A represents the set of all features only belonging to the
crisp set B, and A ∩ B indicates the set of common shared
features simultaneously included in the crisp sets A and B.

Note 2 Without loss of generality, the formula S (b, a) can
be computed as follows in the context of Definition 3:

S (b, a) = α · |B ∩ A|
γ · |B − A| + α · |B ∩ A| + β · |A − B|
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Obviously, the values of S (a, b) and S (b, a) are not equal
if and only if γ �= β.

(1) If the potential conditions (A − B) = A − (A ∩ B) and
(B − A) = B− (A ∩ B) have been considered, then Eq.
(13) can be rewritten as the following one:

S (a, b) = α · |A ∩ B|
γ · |A| + (2α − 1) · |A ∩ B| + β · |B| (14)

In addition, taking γ + α + β= 1 into account, then we
can rewrite Eq. (14) as the following formulas using only
two parameters:

(a) Using parameters γ and β:

S (a, b) =
[
1 − (γ + β)

] · |A ∩ B|
γ · |A| + [

1−2 (γ+β)
] · |A ∩ B| +β · |B| ;

(15)

(b) Using parameters α and γ :

S (a, b) = α · |A ∩ B|
γ · |A| + (2α−1) · |A ∩ B| + (1−α−γ ) · |B| ;

(16)

(c) Using parameters α and β:

S (a, b) = α · |A ∩ B|
γ · |A| + (2α − 1) · |A ∩ B| + β · |B| .

(17)

(2) If different values of γ, α, β have been given, then we
will obtain some simplified formulas of Eq. (13) for some
special cases, as follows:

(a) If A ∩ B = ∅, then S (a, b) = S (b, a) = 0.
(b) In the case of the condition {A ∩ B �= ∅}, there are

some special examples:
(i) Considering the condition {A �⊂ B}∧{B �⊂ A}:

If γ = α = 1
2 and β = 0, then S (a, b) =

|A∩B|
|A| and S (b, a) = |A∩B|

|B| .

If β = α = 1
2 and γ = 0, then S (a, b) =

|A∩B|
|B| and S (b, a) = |A∩B|

|A| .

If α = γ + β = 1
2 , then S (a, b) =

1
2 |A∩B|

γ ·|A|+β·|B| and S (b, a) = 1
2 |A∩B|

γ ·|B|+β·|A| .
(ii) Considering that one is a subset of the other:

A ⊂ B or B ⊂ A.
If A ⊂ B, then S (a, b) = α·|A|

(α−β)·|A|+β·|B|
and S (b, a) = α·|A|

(α−γ )·|A|+γ ·|B| .
If B ⊂ A, then S (a, b) = α·|B|

γ ·|A|+(α−γ )·|B|
and S (b, a) = α·|B|

(α−β)·|B|+β·|A| .

Table 1 Use values in {0, 1} to
estimate the features of objects

F1 F2 F3 F4 F5 F6

a 0 1 0 1 1 1

b 1 1 1 0 0 1

(iii) If A = B, then S (a, b) = 1.

Definition 3 works well in many cases. However, there are
instances wheremeasuring similarity on the basis of the crisp
nature of the presence of features could produce unreliable
results, and that has been illustrated in the following example
(Table 1).

Example 1 Assume that two objects a and b are estimated
using the fuzzy membership functions μa (·) and μb (·) on
the basis of the 6 features set F = {F1,F2,F3,F4,F5,F6}
as follows:

Then, A = {F2,F4,F5,F6}, B = {F1,F2,F3,F6}, A−
B = {F4,F5}, B − A = {F1,F3} and A ∩ B = {F2,F6}.
Applying Eq. (13), then S (a, b) = S (b, a) = α due to
|A − B| = |B − A| = |A ∩ B| = 2 and α + γ + β = 1.
In summary, its final similarity value depends only on the
choice of α value, which is very subjective and may not only
lead to a very low accuracy of the similarity value, but also
fail to identify different features between two objects. The
most straightforward solution is to redefine another measure
function for the crisp set.

In addition, Definition 3 still has limitations when the objects
being compared have the same features and their features
have different estimated values from (0, 1]. We further illus-
trate this issue in the following example.

Example 2 Let two objects a, b ∈ � be characterized on
a set of 5-terms feasible features F = {F1 = price, F2 =
reliability,F3 = quality, F4 = craftsmanship, F5 =
frequencyofuse} using values of [0, 1] (see details in Table
2), then shall compare their similarity degree between each
other based on Definition 3.

According to Eq. (13) of Definition 3, then F = B = A,
A ∩ B = F , and S (b, a) = S (a, b) = 1. This result is
clearly inconsistent with the facts in Table 2. The different
values evidently reflect more intuitively that the two objects
a and b are not similar to each other, which is a key devia-
tion from the results of Definition 3. Therefore, it requires a
novel extension of Tversky’s ratio model in the case [0, 1] to
compute similarity using fuzzy set theory.

3.1.2 The 3p-ASM Based on Fuzzy Sets

It is obvious that the features’ values estimated in [0, 1]
rather than {0, 1} can indicate more correctly the differences
between the corresponding features of the compared objects.
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Table 2 The membership
values of features are estimated
by values in [0, 1]

Price Reliability Quality Craftsmanship Frequency of use

a 0.7 0.5 0.8 0.6 0.3

b 0.6 0.7 0.7 0.4 0.3

Table 3 The membership values
of features in the sets A ∩ B,
A − B and B − A, respectively

Price Reliability Quality Craftsmanship Frequency of use

A ∩ B 0.6 0.5 0.7 0.4 0.3

A − B 0.4 0.3 0.3 0.6 0.3

B − A 0.3 0.5 0.2 0.4 0.3

Therefore, on the basis of fuzzy set theory, the fuzzy exten-
sion of Tversky’s ratio model can be extended as follows.

Definition 4 Let � = {a, b, c, . . .} be the set of all objects
to be studied. In addition, each object in � is represented
by a discrete fuzzy set on the basis of the feature set F =
{F1,F2, . . . ,Fn} , n ≥ 2. Based on the three conditional
parameters γ, α and β satisfying α ∈ (0, 1] , γ, β ∈ [0, 1],
γ �= β, and γ + α + β = 1, the formula of fuzzy set theory-
based 3p-ASM is given:

S (a, b) = α · |A ∩ B| f
γ · |A − B| f + α · |A ∩ B| f + β · |B − A| f

(18)

where the fuzzy set operations based on fuzzy set theory
[56–58] are given as

⎧
⎪⎨

⎪⎩

A ∩ B = {(Fi ,min {μa (Fi ) , μb (Fi )}) | Fi ∈ F} ;
A − B = {(Fi ,min {μa (Fi ) , 1 − μb (Fi )}) | Fi ∈ F} ;
B − A = {(Fi ,min {μb (Fi ) , 1 − μa (Fi )}) | Fi ∈ F} .

(19)

In addition, |·| f is a fuzzy cardinality function [56–58] are
given as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|A ∩ B| f =
(

n∑

i=1

min {μa (Fi ) , μb (Fi )}
)

;

|A − B| f =
(

n∑

i=1

min {μa (Fi ) , 1 − μb (Fi )}
)

;

|B − A| f =
(

n∑

i=1

min {μb (Fi ) , 1 − μa (Fi )}
)

.

(20)

Note 3 It is obvious that A − B �= B − A when A �= B.
Thence, it is easy to obtain S f (a, b) �= S f (b, a) for γ �= β.

In order to avoid some bad effects in the fuzzy domain by
maintaining the relationship A − A = ∅ (∀A) [42], there
is another difference operation between two fuzzy sets such
that

{
A − B = {(Fi ,max {μa (Fi ) − μb (Fi ) , 0}) | Fi ∈ F} ;
B − A = {(Fi ,max {μb (Fi ) − μa (Fi ) , 0}) | Fi ∈ F} .

(21)

Corresponding, | · | will make some slight changes, as shown
as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|A−B| f ,new = 1−
(

n∑

i=1

max {μa (Fi )−μb (Fi ) , 0}
)

;

|B−A| f ,new = 1−
(

n∑

i=1

max {μb (Fi )−μa (Fi ) , 0}
)

.

(22)

(1) To compare the results using fuzzy set-based 3p-ASM
model, continuingwith Example 2 and applying Eq. (19),
the following Table 3 shall be obtained:
Then, applying Eqs. (18) and (20), the similarity between
objects a and b is computed as follows:

S (a, b) = 2.5α

1.9γ + 2.5α + 1.7β
(23)

The obvious conclusion is that S (a, b) �= S (b, a) �= 1
for γ �= β. In other words, Definition 4 better dis-
tinguishes the difference between objects a and b than
Definition 3, and that the similarity is asymmetric and
not equal to 1.

(2) Similarly, applying Eq. (21) to the data of Example 2, the
following Table 4 shall be obtained:

(a) Comparing Tables 3 and 4, we can observe that
completely different results for difference operations
(A-B and B-A) after applying Eqs. (19) and (21).
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Table 4 The membership values
of features in the sets A ∩ B,
A − B and B − A, respectively

Price Reliability Quality Craftsmanship Frequency of use

A ∩ B 0.6 0.5 0.7 0.4 0.3

A − B 0.1 0 0.1 0.2 0

B − A 0 0.2 0 0 0

Fig. 1 The values of Eqs. (23) and (24) change with increasing γ and β, respectively, for α = 0.1

Fig. 2 The values of Eqs. (23) and (24) change with increasing α and β, respectively, for γ = 0.1

(b) Applying Eqs. (18) and (22), the similarity between
objects a and b is computed as follows:

S (a, b) = 2.5α

0.4γ + 2.5α + 0.2β
(24)

It is observed that the values of Eqs. (23) and (24)
depend on the choice of parameters α, γ and β,
regarding the three conditional constraintsα ∈ (0, 1],
γ, β ∈ [0, 1], γ �= β, and γ + α + β = 1 on the
parameters, they can be divided into the following
three cases (see Figs. 1, 2 and 3, in which Eq. (23) is
shown in black color, Eq. (24) is shown in blue color):

Case 1: In Fig. 1, α = 0.1 is given, the values of Eqs.
(23) and (24) are increasing with the increase of
γ ; However, their values are decreasing with the
increase of β; Furthermore, the value of Eq. (23)
is less than the value of Eq. (24).

Case 2: In Fig. 2, γ = 0.1 is given, the values of Eqs. (23)
and (24) are increasingwith the increase ofα;How-
ever, their values are decreasing with the increase
of β; Moreover, the value of Eq. (23) is less than
the value of Eq. (24).

Case 3: In Fig. 3, β = 0.1 is given, the values of Eqs. (23)
and (24) are increasingwith the increase ofα;How-
ever, their values are decreasing with the increase
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Fig. 3 The values of Eqs. (23) and (24) change with increasing γ and α, respectively, for β = 0.1

of γ ; In addition, the value of Eq. (23) is less than
the value of Eq. (24).

From Eq. (23), the values of |A ∩ B| f , |A − B| f and
|B − A| f are 2.5, 1.9 and 1.7, respectively, which are very
close. In contrast, from Eq. (24), the values of |A ∩ B| f ,
|A − B| f ,new and |B − A| f ,new are 2.5, 0.4, and 0.2, respec-
tively, with a large difference between 2.5 and 0.4 or 0.2.
This leads to Eq. (23) showing a straighter line, while Eq.
(24) shows a curve.

3.1.3 Some Interesting Properties of the 3p-ASM Based on
Set Theories

In short, based on three associated conditional parameters
γ , α and β, let m (·) ∈ {|·|, |·| f

}
, then the 3p-ASM models

based on set theories could be unified as

S (a, b) = α · m (A ∩ B)

γ · m (A−B)+α · m (A ∩ B)+β · m (B−A)

(25)

Therefore, they all satisfy the following general properties
of asymmetric similarity, which are self-evident:

(1) Equal self-similarity: S (a, a) = S (b, b) = 1;
(2) Minimality: S (a, a) ≥ S (a, b);
(3) Asymmetry: S (a, b) �= S (b, a).

Note that the value of the asymmetric measure depends
on the choice of the parameters α, β and γ . It is possible to
analyze the behavior of this measure with respect to these
parameters, which eventually may help the decision maker
in the choice of their values. In the following proposition, we
illustrate the behavior of the measures.

Properties 1 For a given functionm (·) of Eq. (25), the three
conditional parameters can be divided into variable groups
as {α, γ } or {α, β} or {γ, β}, and use the controlled variable
method to further study its hidden properties of S (a, b) and
S (b, a).

Case 1: Given β0 ∈ [0, 1], then α + γ = 1 − β0.

(a) Let φ1,β0 (α, γ ) = S (a, b)
= α·m(A∩B)

γ ·m(A−B)+α·m(A∩B)+β0·m(B−A)
, then the following

differentiating partially with respect to α and γ shall
be obtained:

∂φ1,β0 (α, γ )

∂α

= m (A ∩ B) [(1−β0) · m (A−B)+β0 · m (B−A)]
[
γ · m (A−B) +α · m (A ∩ B)+β0 · m (B−A)

]2

∂φ1,β0 (α, γ )

∂γ

= −m (A ∩ B) [(1−β0) · m (A−B) +β0 · m (B−A)]
[
γ · m (A−B) +α · m (A ∩ B)+β0 · m (B − A)

]2

Obviously,
∂φ1,β0 (α,γ )

∂α
≥ 0 and

∂φ1,β0 (α,γ )

∂γ
≤ 0, in other

words, S (a, b) is an increasing function related to α

defined on (0, 1 − β0] and it is a decreasing function
related to γ defined on (0, 1 − β0].

(b) Similarly, let φ2,β0 (α, γ ) = S (b, a)

= α·m(A∩B)
γ ·m(B−A)+α·m(A∩B)+β0·m(A−B)

, then
∂φ2,β0 (α,γ )

∂α
≥ 0

and
∂φ2,β0 (α,γ )

∂γ
≤ 0, i.e.,S (b, a) is an increasing function

related to α defined on (0, 1 − β0] and it is a decreasing
function related to γ defined on (0, 1 − β0].

(c) Furthermore, if α ∈ (0, 1 − 2β0], it has S (a, b) >

S (b, a), thenα ∈ [1 − 2β0, 1 − β0], it hasS (a, b) <S (b, a),
and vice versa.
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Case 2: For a given γ0, α + β = 1 − γ0, then S (a, b) and
S (b, a) have similar conclusions, due to the fact
that {α, γ } and {α, β} are reciprocal.

(a) S (a, b) andS (b, a) are increasing functions related toα

defined on (0, 1 − γ0
]
, and they are decreasing functions

related to β defined on (0, 1 − γ0
]
.

(b) If α ∈ (0, 1 − 2γ0
]
, it has S (a, b) > S (b, a), then α ∈[

1 − 2γ0, 1 − γ0
]
, it has S (a, b) < S (b, a), and vice

versa.

Case 3: Given a value α0 ∈ (0, 1], then γ, β ∈ [0, 1 − α0]
and γ + β = 1 − α0.

(a) Let φ1,α0 (γ, β) = S (a, b)
= α0·m(A∩B)

γ ·m(A−B)+α0·m(A∩B)+β·m(B−A)
, then the following

differentiating partially with respect to γ and β shall
be obtained:

∂φ1,α0 (γ, β)

∂γ

= −α0 · m (A ∩ B) [m (A − B)−m (B − A)]
[
γ · m (A−B) +α0 · m (A ∩ B) +β · m (B−A)

]2

∂φ1,α0 (γ, β)

∂β

= α0 · m (A ∩ B) [m (A − B) −m (B−A)]
[
γ · m (A−B) +α0 · m (A ∩ B) +β · m (B−A)

]2

The result ofm (A − B) −m (B − A) has an important
influence on the monotonic of the function S (a, b) rela-
tive to the variable γ , which can be expressed clearly as
follows:

⎧
⎪⎨

⎪⎩

S (a, b) decrease as γ increase if m (A − B) − m (B − A) > 0;
S (a, b) increase as γ increase if m (A − B) − m (B − A) < 0;
S (a, b) is a constant if m (A − B) − m (B − A) = 0.

And
∂φ1,α0 (γ,β)

∂γ
+ ∂φ1,α0 (γ,β)

∂β
= 0, then the function

S (a, b) has an opposite monotonic of β regarding γ .
Therefore, S (b, a) is being handled in a similar way.

(b) Furthermore, the above conclusion is easily obtained
according to the following equation:

1

S (a, b)
+ 1

S (b, a)

= (1−α0) · m (A−B) +2α0 · m (A ∩ B) + (1−α0) · m (B−A)

α0 · m (A ∩ B)

=
(

1
α0

−1
)

· m (A−B)+2m (A ∩ B)+
(

1
α0

−1
)

· m (B−A)

m (A ∩ B)

Since α0 is a given value,(
1
α0

−1
)
·m(A−B)+2m(A∩B)+

(
1
α0

−1
)
·m(B−A)

m(A∩B)
is a correspond-

ing constant value. Therefore, if S (a, b) decreases with
the increase value of γ (or β) from 0 to (1 − α0), the
corresponding S (b, a) increases at the same time, and
vice versa.

3.2 The 3p-ASM Based onVectors

As mentioned earlier, let 	ra = (μa (F1) , . . . , μa (Fn)) and
	rb = (μb (F1) , . . . , μb (Fn)) be the two vectors of objects
a and b consisting of membership values on [0, 1]n . Now,
in this vein, Tversky’s ratio model can be extended as the
following one.

Definition 5 Let � = {a, b, c, . . .} be the set of all objects
to be studied. Assume that each object in � is characterized
by a finite set of features F = {F1,F2, . . . ,Fn} , n ≥ 2
by means of fuzzy membership functions. For the three
conditional parameters γ, α and β satisfying α ∈ (0, 1],
γ, β ∈ [0, 1], γ �= β, and γ + α + β = 1, the vector-based
3p-ASM from object a to object b is defined

S (a, b)

= α · (	ra · 	rb)
γ · ‖ max{	ra−	rb, 0} ‖22 +α · (	ra · 	rb) +β· ‖ max{	rb−	ra, 0} ‖22

(26)

where function min (·) aims to control the final value not
exceed 1. 	ra · 	rb = ∑n

i=1 μa (Fi ) · μb (Fi ) is the inner

production function. And ‖ 	ra ‖2=
(∑n

i=1 μ2
a (Fi )

) 1
2 and

‖ 	rb ‖2=
(∑n

i=1 μ2
b (Fi )

) 1
2 are Euclidean norm functions.

Due to the fact that the parameters γ and β are inverse to
each other, some common interesting results for the vector-
based 3p-ASM as the set-based 3p-ASM are described in the
following proposition.

Properties 2 For the vector-based asymmetric similarity
measure defined in Eq. (26), the following properties hold:

(1) For a given γ = γ0:

(a) S (a, b) and S (b, a) are increasing functions with
α ∈ (0, 1 − γ0

]
increasing; they are decreasing func-

tions with β ∈ (0, 1 − γ0
]
increasing.

(b) if α ∈ (0, 1 − 2γ0
]
, it has S (a, b) > S (b, a), then

α ∈ [
1 − 2γ0, 1 − γ0

]
, it has S (a, b) < S (b, a),

and vice versa.
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Fig. 4 For γ = 0.1, the similarity values of S (a, b) and S (b, a)

(2) For a given α = α0, if S (a, b) increase as γ (or β)
decrease, while S (b, a) increase, and vice versa.

Example 4 For the sameExample 2, their vectors’ expression
are 	ra = (0.7, 0.5, 0.8, 0.6, 0.3) and 	rb = (0.6, 0.7, 0.7,
0.4, 0.3), then applying Eq. (26), the similarity value is
obtained as follows:

S (a, b) = 1.66α

0.06γ + 1.66α + 0.04β

Figures4 and 5 can be used to demonstrate Property 2, where
S (a, b) uses black and S (b, a) uses blue.

In Fig. 4, γ = 0.1, it can be derived that

(1) S (a, b) and S (b, a) are increasing functions with α ∈
(0, 0.9] increasing;

(2) if α ∈ (0, 0.8], then S (a, b) > S (b, a); and if α ∈
[0.8, 0.9], then S (a, b) < S (b, a);

In Fig. 5, α = 0.1, S (a, b) increase as γ ∈ [0, 0.9]
decrease, while S (b, a) increase.

Fig. 5 For α = 0.1, the similarity values of S (a, b) and S (b, a)

4 Case Study

In this section, we focus on the following: first, using selected
comparison data with MovieLens 100K, in which we com-
pare the aforementioned 3p-ASM with classical similarity
calculation methods, such as cosine, dice and Jaccard meth-
ods. And then, this is applied to the K-Nearest-Neighbor
(KNN)method [9], also known as the KNNmethod based on
the 3p-ASM, to select similarity items and prove its validity.

4.1 Dataset

We use theMovieLens 100K dataset to conduct experiments,
in which 943 users rated 1682 movies with a rating scale of
1–5, where 1 = bad and 5 = excellent. The total number of
ratings reaches 100,000 because each user has a rating of at
least 20movies. For this paper,wedo some simple processing
on the MovieLens 100K data as follows:

(1) Reading the initial data information through Python to
construct a matrix M = (

mi j
)
943×1682, where the value

of mi j is estimated by the i th user on the j th item and
mi j ∈ {0, 1, 2, 3, 4, 5}. Here, for the convenience of cal-
culation, 0 means that the user has not provided a rating.

M =

i tem1 i tem2 i tem3 . . . i tem1680 i tem1681 i tem1682
⎛

⎜⎜⎜⎜
⎝

⎞

⎟⎟⎟⎟
⎠

user1 5.0 3.0 4.0 . . . 0 0 0
user2 4.0 0 0 . . . 0 0 0
user3 0 0 0 . . . 0 0 0

...
...

...
...

. . .
...

...
...

user943 0 5.0 0 . . . 0 0 0
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Table 5 Some statistical results
of initial information

Count Mean Standard deviation 25% 50% 75% Max Min

Ratings 100,000 3.529860 1.125674 3.0 4.0 4.0 5.0 1.0

(2) Some initial information statistics are shown in Table 5.

(3) To apply the 3p-ASMs, the matrix needs to be normal-
ized, that is, ratings are normalized to the value of the
interval [0, 1] as M̄ as follows:

M̄ =

i tem1 i tem2 i tem3 . . . i tem1680 i tem1681 i tem1682
⎛

⎜⎜⎜⎜
⎝

⎞

⎟⎟⎟⎟
⎠

user1 1.0 0.6 0.8 . . . 0 0 0
user2 0.8 0 0 . . . 0 0 0
user3 0 0 0 . . . 0 0 0

...
...

...
...

. . .
...

...
...

user943 0 1.0 0 . . . 0 0 0

4.2 The Applications of 3p-ASM

If a pair of comparison objects are exactly the same, that
is, they have the same features and the same value, then
the similarity is always equal to 1. However, if two objects
are slightly different, for example, have different features or
have the same features but have different values, compared
with the proposed similarity measure, the existing similarity
measure cannot more accurately identify their differences.
To illustrate the advantages of 3p-ASM in overcoming this
drawback,we focus on two aspects: (i) compare the similarity
of between two users; omit processing the similarity between
two items that are similar. (ii) Select K-nearest movies using
KNN method based on proposed 3p-ASM.

4.2.1 Comparison with Classical Vector-Based Symmetric
Similarity Methods

To simplify the whole calculation process, based on the
fact that the values of the elements of the matrix M̄
belong to the interval [0, 1], we will apply the Eq. (26)
to compute the similarity values between the two users of
M̄. For example, selecting the first two rows, then a =
[1.0, 0.6, 0.8, . . . , 0, 0, 0] and b = [0.8, 0, 0, . . . , 0, 0, 0].
Thus, we will compute the results as follows:

SCosine (a, b) = SCosine (b, a) = 0.1669;
S2Dice (a, b) = S2Dice (b, a) = 0.1303;
S2Jaccard (a, b) = S2Jaccard (b, a) = 0.0697;
and

S (a, b) = 0.1068 and S (b, a)

= 0.1392 with

⎧
⎨

⎩

α = 0.6758
γ = 0.0999
β = 0.2242

.

It should be noted here that S (a, b) �= S (b, a) for γ �= β,
and the similarity values of S (a, b) and S (b, a) are com-
putedwith the variation of the three condition parameters. For
instance, if α = 0.0949, γ = 0.4677 and β = 0.4374, then
S (a, b) = 0.0070 and S (b, a) = 0.0068. In addition, to
adjust the values of three conditional parameters, the similar-
ity value of S (a, b) will be as close as possible to the values
of SCosine (a, b), S2Dice (a, b) and S2Jaccard (a, b). For exam-
ple, choose the values of γ, α, β as α = 0.7755, γ = 0.0440
and β = 0.1805, the similarity value is S (a, b) = 0.1555
that is close to SCosine (a, b).

In summary, the vector-based 3p-ASM, S (a, b), differs
from the classical symmetric similarity measures mainly
because different conditional parameters of S (a, b) lead to
different computational results, which confirms the necessity
of a parametric description of common and distinct features.

4.2.2 Application of KNNMethod Based on 3p-ASM

In general, similarity measures are often used for classifica-
tion, and the more commonly usedmethod is KNN. Here, we
use KNN for simple item-based classification. Without loss
of generality, we consider two cases of applying the combi-
nation of Eqs. (18), (19) and (20): (i) for given two values, for
instance γ = 0.2 and β = 0.3 (see Tables 6, 7); (ii) the three
parameters vary randomly (see Table 8). For simplicity, we
will find the 10 nearest neighbors of the term Copycat (1995)
and its average ratings is 3.302325581395349.

Tables 6 and 7 are obtained by applying the 3p-ASM
model S (a, b) and S (b, a) with given values γ = 0.2,
β = 0.3 and α = 1− γ −β. They have shared 6 movies and
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Table 6 Case 1: Select 10 nearest neighbors items using the 3p-ASM
S (a, b)

Case 1: S (a, b) with γ = 0.2 and β = 0.3
10-nearest neighbors items Average ratings

Aladdin and the King of Thieves (1996) 2.8462

Santa Clause, The (1994) 3.0976

Home Alone (1990) 3.0876

Aristocats, The (1970) 3.1296

D3: The Mighty Ducks (1996) 2.5789

Love Bug, The (1969) 2.78

Wrong Trousers, The (1993) 4.4661

Grand Day Out, A (1992) 4.1061

101 Dalmatians (1996) 2.9083

Beavis and Butt-head Do America (1996) 2.7885

Average degree 3.1789

Table 7 Case 1: Select 10 nearest neighbors items using the 3p-ASM
S (b, a)

Case 1: S (b, a) with γ = 0.2 and β = 0.3
10-nearest neighbors items Average ratings

Aladdin and the King of Thieves (1996) 2.8462

Aladdin (1992) 3.8128

Goofy Movie, A (1995) 2.9

Space Jam (1996) 2.7742

Hercules (1997) 3.5152

Santa Clause, The (1994) 3.0976

Home Alone (1990) 3.0876

Aristocats, The (1970) 3.1296

D3: The Mighty Ducks (1996) 2.5789

Love Bug, The (1969) 2.78

Average degree 3.3701

have 4 different movies because γ = 0.2 is close to β = 0.3
and their vectors of rating value is close to Copycat (1995)’s
rating vector. Their different movies further indicate the two
directions in which they imply: from object a to b and from
object b to a. Furthermore, if γ and β are closer to each
other, the results of 10 nearest items of S (a, b) and S (b, a)

share more movies to each other, vice versa. For instance, let
α = 0.7754, γ = 0.1023 and β = 0.1223, then the results
of S (a, b) and S (b, a) share 8 movies such as Aladdin and
the King of Thieves (1996), Aladdin (1992), Goofy Movie,
A (1995), Santa Clause, The (1994), Home Alone (1990),
Aristocats, The (1970), D3: The Mighty Ducks (1996) and
Love Bug, The (1969). Thus, when controlling the values
of parameters, we can obtain an average closer to Copycat
(1995)’s rating average value 3.302325581395349, as shown
in Table 8. Overall, from the average results, the effective-
ness of 3p-ASM models is further verified, the closer the
results are between them, the more common features of the
10 nearest items are shared.

5 Conclusions and FutureWork

In most practical situations, the similarity is not always
symmetric, but asymmetric. To better departure the asym-
metric, in this article, we were further studying 3-parameter-
Tversky’s Ratio Model [5] to propose 3p-ASM models,
which have made some contributions: (1) a novel parame-
ter α has been added to characterize the common features
between two compared objects. Thence, a new series of
3p-ASM models have been proposed that contain three con-
ditional parameters satisfying α > 0, γ, β ≥ 0, γ �= β and
α+γ +β = 1. (2) In the case of features’ values are estimated
in {0, 1} and [0, 1], the proposed 3p-ASMmodels have been
defined based on the concept of crisp set, fuzzy set and vector.
The first two are an extension of the ratio model based on set

Table 8 Case 2: Select 10
nearest neighbors items using
the 3p-ASM S (a, b)

Case 2: S (a, b) with randomly generated values of γ, β with γ �= β

10-nearest neighbors items Average ratings

Aladdin and the King of Thieves (1996) 2.8462

Late Bloomers (1996) 3.4

Angels in the Outfield (1994) 2.9231

Santa Clause, The (1994) 3.0976

Cosi (1996) 4.0

Sword in the Stone, The (1963) 3.3293

Home Alone (1990) 3.0876

Bean (1997) 2.6593

Living in Oblivion (1995) 3.7407

Bewegte Mann, Der (1994) 3.6667

Average degree 3.2750
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theories, and the latter is based on vector theory. (3) We have
studied some interesting properties, for example, a pair of
parameters under a given parameter, whose influence on the
final result has been studied mathematically and directly rep-
resented graphically; simulations and comparative analyses
have also been performed.

It is well known that real-world problems are often posed
under uncertainty, and these problems have been successfully
modeledusing fuzzy linguistic approaches [56–58].Basedon
these, in future work, we shall straightforwardly extend the
proposed ratio model to other representation contexts, such
as intuitionistic fuzzy set [2], hesitant fuzzy set [45], hesi-
tant fuzzy linguistic term set [38], and ELICIT [25], and the
values of the features are not only those in {0, 1} or [0, 1].
However, it is still an unsolved problem to choose the values
of these three parameters and to satisfy the conditional con-
straints under uncertainty. To this end, it is possible to apply
Robust to further investigate their uncertainty in the future.
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