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Abstract
Transfer learning is a great technology that can leverage knowledge from label-rich domains to address problems in similar 
domains that lack labeled data. Most previous works focus on single-source transfer, assuming the source domain contains 
sufficient labeled data and is close to the target domain. However, in practical applications, this assumption is hardly met, and 
labeled data exist in different domains. To improve the adaptability of transfer learning models for multi-source scenarios, 
many existing methods utilize the commonality and specificity across source domains. They either map all source domains 
with the target domain into a common feature space for knowledge transfer or combine multiple classifiers trained on pairs 
of each source and target to form a target classifier. However, the correlations across multiple source domains that can bring 
significant impacts on learning performance are ignored. In light of this, we propose a novel multi-source transfer learning 
method based on the power set framework (PSF-MSTL). First, PSF-MSTL constructs a power set framework that enables 
different source domains to be interrelated. Second, PSF-MSTL makes the source-domain framework integral and able to 
provide complementary knowledge using a dual-promotion strategy. Additionally, PSF-MSTL is formulated as an optimiza-
tion problem, and an iterative algorithm is presented to address it. Finally, we conduct extensive experiments to show that 
PSF-MSTL can outperform many advanced multi-source transfer learning methods.
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Abbreviations
PSF-MSTL	� Multi-source transfer learning based on the 

power set framework
NMTF 	� Non-negative matrix tri-factorization
CE	� Concept extension
CI	� Concept intension
PLSA	� Probabilistic latent semantic analysis
LR	� Logistic regression
RCD-PLSA	� Refined collaborative dual-PLSA
MST3L	� Multi-source tri-training transfer learning
MCPC	� Multi-classifier parameter combination
SDA	� Selective domain adaptation

1  Introduction

Most traditional classification methods are based on an ideal 
assumption that the labeled training data are ample and sub-
ject to the distribution same as the unlabeled test data for 
achieving satisfactory performance. Since collecting labeled 
data is expensive and time consuming, these methods are dif-
ficult to quickly establish reliable classification models when 
the labeled data are scarce or the distribution of existing data 
changes. Transfer learning [1, 2], which leverages knowledge 
from label-rich source domains to train better target learners, 
can help alleviate these problems. Many transfer learning stud-
ies [3–19] focus on single-source transfer learning, and they 
assume that all the labeled data come from a single-source 
domain close to the target domain. However, in practical appli-
cations, the labeled data contained in one source domain are 
often inadequate, and available labeled data exist in other dif-
ferent domains. Thus, single-source transfer learning models 
are hardly applied in realistic multi-source scenarios.

To develop the adaptability of transfer learning models, 
many multi-source transfer learning methods are proposed 
[20–40]. A direct strategy adopted in some methods [20, 
21, 38] is to mine the commonality of all sources, such as 
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combining multiple source domains into a single-source 
domain by aligning all the raw features or mapping all source 
domains with the target domain into a low-dimensional space 
for knowledge transfer. With the help of the data expansion, 
they can improve the learning performance. However, the 
mutual interferences across source domains are ignored: one is 
that the common features that can build shared structures will 
reduce as source domains increase, and the other is that mining 
commonalities cannot help derive domain-specific features that 
have some discriminative power for training classifiers. For 
instance, if the recommender system of Tiktok is trained on the 
viewing habits of all customers, although it may benefit from 
the huge amount of data and deliver funny videos winning 
most users’ favor, it will not ensure that people with different 
features can be accurately fed the videos more appealing to 
them. To capture the specificity of each source domain, some 
methods [22, 23] construct the target classifier by combining 
multiple classifiers trained on pairs of each source domain and 
target domain. These methods mitigate the negative effects 
of aligning or mapping strategies and extract domain-specific 
information effectively. However, the data distribution discrep-
ancy among multiple sources makes it difficult to fuse all the 
information. For example, Tiktok can only recommend major-
related videos to students relying on this strategy, and it hardly 
develops their versatility and inspires their potential talents. 
Other methods [24–26] incorporate the above two strategies, 
and thus they can utilize both commonality and specificity 

across domains. However, they still fail to actually correlate 
multiple sources with each other and transfer knowledge from 
an integral source-domain framework. For example, using this 
strategy, Tiktok can only attract users by delivering funny and 
major-related videos, but not any other types of videos.

In this paper, we propose a novel multi-source transfer 
learning method based on the power set framework (PSF-
MSTL), which can multiply combine each source domain 
with other source domains and fuse the knowledge learned 
from different source combinations to train a shared classifier. 
First, we introduce the power set concept to construct a source-
domain framework that enables different source domains to 
be interrelated. The power set in mathematics is defined as a 
set composed of all subsets of the original set. For instance, 
the power set of {A,B,C} can be denoted as P({A,B,C}) =

{�, {A}, {B}, {C}, {A,B}, {A,C}, {B,C}, {A,B,C}} , where 
∅ represents an empty set. With this concept, we can view the 
collection of source domains as an original set and obtain its 
power set to identify the correlations among multiple source 
domains. Then different types of training datasets are gener-
ated according to the power set, structuring a power set frame-
work that allows multiple source domains to be associated with 
each other. Figure 1 presents the three-source case, and Fig. 1a 
shows the source collection can be extended to a power set 
framework.

Second, to make the power set framework integral and 
able to provide comprehensive knowledge, we utilize a 

Fig. 1   In the three-source case, a shows the extension of the three-source collection, b presents the framework of our method, c,d, and e briefly 
visualizes three existing multi-source transfer learning strategies
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dual-promotion strategy to integrate all the training datasets. 
Specifically, PSF-MSTL mines the latent information from 
corresponding latent feature spaces for pairs of each training 
dataset and target domain, and fuses all the information to 
bring the knowledge in the framework to the state of mutual 
complementarity. Then our method uses the fused knowl-
edge and label information to train a shared classifier, which 
is exploited to further extract knowledge from every training 
dataset. In other words, refining the knowledge from the frame-
work and training the shared classifier can reinforce each other 
directly. Thus, learning from different training datasets can 
promote each other indirectly by the shared classifier drawn 
on the complementary knowledge. Figure 1b shows that PSF-
MSTL extracts and fuses latent information from seven train-
ing datasets to obtain complementary knowledge, which is 
used to train a shared classifier to help further learn from each 
training dataset. Figure 1c–e visualize three existing multi-
source transfer learning strategies, respectively. It indicates that 
PSF-MSTL can build sounder relationships of multiple source 
domains than other strategies.

The main contributions of our work are listed below: 

(1)	 We systematically analyze the correlations among mul-
tiple source domains and propose PSF-MSTL, which 
can construct a power set framework to enable different 
source domains to be interrelated.

(2)	 To obtain complementary knowledge from an integral 
framework, we utilize a dual-promotion strategy to 
integrate all the training datasets. Besides, PSF-MSTL 
is formulated as an optimization problem, and an itera-
tive algorithm is presented to address it.

(3)	 Additionally, we conducted extensive experiments on 
20Newsgroups and Sentiment to verify the superiority 
and effectiveness of PSF-MSTL.

We organize the rest of this paper as follows: Sect. 2 sum-
marizes some related works. Section 3 gives the notations 
and preliminary knowledge. Section 4 presents our method 
PSF-MSTL. Section 5 shows the experiment results. At last, 
Sect. 6 is the conclusion of our work.

2 � Related Work

In this section, we summarize several existing single-source 
and multi-source transfer learning approaches related to our 
research.

We refer to the authoritative review literature [1, 2] and 
introduce some single-source transfer learning methods as 
well as some theoretical studies related to domain adapta-
tion. Dai et al. [3] extended co-clustering to obtain the com-
mon word clusters and utilized them to propagate in-domain 
knowledge to the out-of-domain. Chen et al. [9] presented 
topical correspondence learning where the common and 

domain-specific features can jointly make up their corre-
sponding topics, and the knowledge is transferred through 
the common features. Jiang et al. [4] proposed a two-step 
approach where the common features shared across domains 
are mined and assigned appropriate weights first, and then the 
features specific to the target are identified by semi-supervised 
learning. Uguroglu et al. [6] distinguished variant and invari-
ant features to fit different data distributions and defined the 
distribution issue as a convex optimization problem. Fang 
et al. [17] proved a generalization error theory that the labeled 
data in source domain and unlabeled data in target domain can 
reduce the risk of target in heterogeneous scenarios, and pro-
posed two novel algorithms based on the theory. Blitzer et al. 
[7] adopted structural correspondence learning and exploited 
pivot features to model the correlations of source and target. 
Zhuang et al. [8] argued that feature clusters have more sta-
ble associations with document classes, and they presented a 
novel classification method to cluster raw features into con-
cepts. Pan et al. [10] analyzed the word semantics in different 
scenarios, and proposed quadruple transfer learning to reduce 
marginal and conditional distribution discrepancies between 
domains. Fang et al. [18, 19] pioneered the learning bound for 
open set domain adaptation and proposed relevant algorithms 
to regularize the open set difference bound.

However, in real-world applications, labeled data exist in 
multiple source domains, which have different data distribu-
tions from each other. To adapt to more difficult scenarios, 
three common strategies are adopted in many multi-source 
classification methods. A straightforward strategy is to find the 
common information of all domains for knowledge transfer. 
Xu et al. [20] developed a novel domain adaptation method, 
which maps all source and target domains into a common fea-
ture space to reduce data distribution discrepancies, and then 
generates prediction results under the distribution weighted 
combining rule. Zhao et al. [21] presented an optimization 
model and developed it by smoothed approximation to obtain 
the generalization bound of all source domains. Another strat-
egy is to capture the specificities of multiple sources by trans-
ferring knowledge from each source domain. Zhu et al. [22] 
developed a two-alignment-step framework where the first step 
is to align the distributions of each source domain with the 
target domain, and the second step is to align the classifica-
tion results learned from each pair. Cheng et al. [23] trained 
multiple weak classifiers on pairs of each source and target, 
and constructed the target classifier by co-training the results 
produced by each classifier. Other methods incorporate the first 
two strategies to refine both common and specific knowledge 
from multiple source domains. Zhang et al. [25] presented a 
multi-source knowledge transfer method which can learn differ-
ent feature extraction networks to align two-stage features and 
fuse information from two parts. Xu et al. [27] combined joint 
and separate alignment strategies and make two branches learn 
from each other through their complementarity. In addition, 
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we introduce some innovative multi-source learning strategies. 
Dai et al. [24] presented a selective domain adaptation method, 
which can extract the private features from the source domain 
nearest to the target domain, and then merge these features with 
the common features to train a target classifier. Li et al. [39] 
exploited an automatic sampling strategy to align classifiers and 
developed the cross-domain classification ability with the help 
of pseudo target labels. Wu et al. [40] proposed a novel method, 
which uses multiple graphs to model partial information and 
learn low-rank embedding through domain discrepancy and rel-
evance. Kim et al. [41] mined the shared semantic space in the 
source and target domains and proposed a new concept-driven 
text classification algorithm based on deep neural networks. 
However, these methods ignore that the intrinsic relationships 
among multiple source domains may bring a large impact on 
the classification result. To address these problems, we propose 
the multi-source transfer learning method based on the power 
set framework(PSF-MSTL).

3 � Preliminary Knowledge

In this section, we provide some mathematical notations with 
their denotations and give brief introductions of the high-level 
concepts and non-negative matrix tri-factorization(NMTF) 
technique that both support our method.

3.1 � Notations

We use the calligraphic letter D to denote domains and the 
script letter P to abbreviate the power set framework. The 
data matrices are expressed by the uppercase(such as X ), and 
X[i,j] represents the i-th row and j-th element of matrix X . In 
addition, the set of non-negative real numbers and real num-
bers are denoted as R+ and R , respectively. Table 1 lists some 
notations with their denotations frequently used in this paper.

3.2 � High‑Level Concepts

Due to the data distribution discrepancies among different 
domains in multi-source transfer learning problems, it is hard 
to obtain satisfactory performance by learning from the raw 
features directly. Thus, to build a more stable transfer learning 
bridge, we incorporate the high-level concepts to transform 
raw features into concepts. To be specific, the high-level con-
cepts include two fundamental definitions: the concept exten-
sion (CE) and the concept intension (CI) [12, 13]. CE refers to 
the distribution of the raw word features that imply the same 
concept. CI refers to the associations between the document 
classes and the concepts. In this paper, we exploit identical 
concepts and alike concepts to reduce the data distribution 
discrepancies and train a shared classifier. Both of them are 
summarized in Table 2.

3.3 � Non‑negative Matrix Tri‑factorization

To implement the high-level concepts mentioned above, we 
introduce the non-negative matrix tri-factorization(NMTF) 
technique, which has been widely used in text and image clas-
sification researches [10–13, 16, 42]. NMTF can decompose 
the data matrix into the multiplication of three non-negative 
factor matrices, and the basic formula of NMTF is:

where X ∈ Rm×n , F ∈ Rm×k , H ∈ Rk×c , G ∈ Rn×c . Here, m , n , 
k , and c are the numbers of features, documents, high-level 
concepts, and document classes, respectively. Besides, Xm×n 
is the feature-document matrix which has m rows and n col-
umns, Fm×k is the feature-concept matrix where each column 
indicates the distribution of raw features which belong to one 
concept, Hk×c is the factor matrix to associate concepts with 
document classes, and G⊤

n×c
 is the transposition of Gn×c that 

can be considered as a target classifier. In addition, F and H 
represent CE and CI, respectively.

Furthermore, NMTF is an optimization problem as 
follows:

(1)Xm×n = Fm×kHk×cG
⊤

n×c

(2)min
F,H,G≥0

∥ X − FHG⊤ ∥2 s.t.
m
∑

i=1
F[i,j] = 1,

c
∑

j=1
G[i,j] = 1

Table 1   Notations and denotations

Notations Denotations

D The data domain
P The power set framework
X The feature-document co-occurrence matrix of D
is The index of source domain
s The number of source domains
t The index of the target domain
m The number of raw features
n The number of documents
k The number of all high-level concepts
c The number of document classes
k
1

The number of identical concepts
k
2

The number of alike concepts
F The matrix of concept extension
H The matrix of concept intension
⊤ Transposition of matrix

Table 2   Identical concepts and alike concepts

High-level concepts Extension Intension

Identical concepts Same Same
Alike concepts Different Same
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Since there are multiple source domains and one target 
domain in multi-source transfer learning tasks, NMTF is 
developed to obtain better adaptability. The optimization 
problem can be developed as follows:

4 � Multi‑source Transfer Learning Based 
on the Power Set Framework

In this section, PSF-MSTL is proposed to address multi-
source transfer learning problems. We first discuss how 
many training datasets are generated in a classification task. 
Then PSF-MSTL is defined as an optimization problem, and 
an iterative algorithm is presented to solve it.

4.1 � The Number of Training Datasets

Since PSF-MSTL multiply combines each source domain, it 
is necessary to analyze all possible combinations of source 
domains to ascertain how many training datasets are gener-
ated. According to the theory of the power set in mathematics, 
the number of the subsets in A ’s power set is 2|A| , where |A| is 
the cardinality of set A , which means A ’s power set contains 
2|A| − 1 subsets that are not empty. With this theory, PSF-
MSTL produces 2s − 1 training datasets in a classification 
task, where s represents the total number of source domains. 
For clarity, we use l-source domain to denote each training 
dataset, where l is the number of source domains contained in 
a training dataset. According to l , these training datasets can 
be divided into s types, denoted as l-source type. By analyzing 
the number of training datasets in each type, we can infer that 
l-source type contains Cl

s
 l-source domains. For example, in 

the three-source task, a total of 7(23 − 1 ) training datasets are 
generated, and they can be divided into three types: the one-
source type contains 3(C1

3
 ) one-source domains, the two-source 

type contains 3(C2
3
 ) two-source domains, and the three-source 

type contains 1(C3
3
 ) three-source domain.

4.2 � Problem Definition

Suppose, in a multi-source transfer learning problem, the 
data domain contains s source and one target domains, 
denoted as D = (D1,⋯ ,Ds,Dt) . Since PSF-MSTL extends 
the source collection to the power set framework which has 

(3)

min
Fis

,Ft ,H,Gis
,Gt≥0

s∑
is=1

∥ Xis
− Fis

HG⊤

is
∥
2
+ ∥ Xt − FtHG

⊤

t
∥
2

s.t.

m∑
i=1

Fis[i,j]
= 1,

m∑
i=1

Ft[i,j] = 1,

c∑
j=1

Gis[i,j]
= 1,

c∑
j=1

Gt[i,j] = 1

2s − 1 training datasets, we define a general formula for the 
framework, denoted as P = (D�

1
,D�

2
,⋯ ,D�

2s−1
) , where D′ 

represents the training dataset. As a result, the data domain 
can be developed to D = (D�

1
,⋯ ,D�

2s−1
,Dt) , where the first 

2s − 1 domains are labeled training datasets, i.e., 
D

�
is
=
{
x
is
i
, y

is
i

}
|nis
i=1

(1 ≤ is ≤ 2s − 1) , and the left one is the 

unlabeled target domain, i.e., Dt =
{
xt
i

}|nt
i=1

 . nis is the number 
of documents in the is-th source domain, and nt is the number 
of documents in the target domain. In addition, the feature-
document matrices of the data domain can be given as 
X =

{
X1,⋯ ,X2s−1,Xt

}
 . Then the objective function is for-

mulated as:

where Xis
∈ R

m×nis
+  , Xt ∈ R

m×nt
+  , Fis

∈ Rm×k
+

 , Ft|is ∈ Rm×k
+

 , 
His

∈ Rk×c
+

 , Ht|is ∈ Rk×c
+

 , Gis
∈ R

nis×c

+  , Gt ∈ R
nt×c
+ .

Since the identical concepts and the alike concepts are 
utilized in this paper, Fis

 , Ft|is , His
 and Ht|is are separately 

divided into two parts. Specifically, in a pair of training 
dataset and target domain, the identical concept shares the 
same CE across domains while the alike concept has dif-
ferent CE in different domains. Thus, in the is-th pair, the 
feature-concept matrix of identical concept is denoted as 
F1
is
 for both the training dataset and target domain, and the 

feature-concept matrix of alike concept is denoted as F2
is
 

and F2
t|is for the training dataset and target domain, respec-

tively. As a result, Fis
= [F1

is
,F2

is
] and Ft|is = [F1

is
,F2

t|is ] , 

where  F1
is
∈ R

m×k1
+  ,  F2

is
∈ R

m×k2
+  ,  F2

t|is ∈ R
m×k2
+  ,  and 

k1 + k2 = k . Similarly, both the identical and alike concepts 
keep the same CI in the is-th pair, and we use H1

is
 and H2

is
 to 

express these two types of associations between concepts 

and document classes, i.e., His
= Ht|is =

[
H1

is

H2
is

]
 , where 

H1
is
∈ R

k1×c
+  , H2

is
∈ R

k2×c
+  . Thus, we can rewrite the objective 

function in (4):

There are five constraints to F1
is
 , F2

is
 , F2

t|is , Gis
 , and Gt . There-

fore, the optimization problem is as follows:

(4)L =

2s−1∑
is=1

(
∥ Xis

− Fis
His

G⊤

is
∥
2
+ ∥ Xt − Ft|isHt|isG

⊤

t
∥
2
)

(5)

L =

2

s−1�
i
s
=1

�
∥ X

i
s
− F

i
s
H

i
s
G

⊤

i
s

∥
2

+ ∥ X
t
− F

t�i
s
H

t�i
s
G

⊤

t
∥
2

�

=

2

s−1�
i
s
=1

⎛⎜⎜⎜⎝
∥ X

i
s
− [F1

i
s

,F
2

i
s

]

⎡⎢⎢⎣
H

1

i
s

H
2

i
s

⎤⎥⎥⎦
G

⊤

i
s

∥

2

+ ∥ X
t
− [F1

i
s

,F
2

t�i
s

]

⎡⎢⎢⎣
H

1

i
s

H
2

i
s

⎤⎥⎥⎦
G

⊤

t
∥

2⎞⎟⎟⎟⎠
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4.3 � Solution to MSTL

Observing that L is not concave, we further develop the 
objective function and propose an iterative algorithm instead 
of the latest nonlinear optimization techniques. According 
to the properties of the trace and Frobenius norm, we can 
expand the objective function as follows:

(6)

min
Fis

,Ft|is ,His
,Gis

,Gt≥0
L

s.t.

m∑
i=1

F1
is[i,j]

= 1,

m∑
i=1

F2
is[i,j]

= 1,

m∑
i=1

F2
t|is[i,j] = 1,

c∑
j=1

Gis[i,j]
= 1,

c∑
j=1

Gt[i,j] = 1

(7)

 =
2s−1
∑

is=1
(∥ Xis − [F1

is
,F2

is
]

[

H1
is

H2
is

]

G⊤
is
∥
2

+ ∥ Xt − [F1
is
,F2

t|is
]

[

H1
is

H2
is

]

G⊤
t ∥

2

)

=
2s−1
∑

is=1
(tr(X⊤

is
Xis − 2 ⋅ X⊤

is
[F1

is
,F2

is
]

[

H1
is

H2
is

]

G⊤
is

+ Gis

[

H1
is

H2
is

]⊤

[F1
is
,F2

is
]⊤

[F1
is
,F2

is
]

[

H1
is

H2
is

]

G⊤
is
) + tr(X⊤

t Xt

− 2 ⋅ X⊤
t [F

1
is
,F2

t|is
]

[

H1
is

H2
is

]

G⊤
t

+ Gt

[

H1
is

H2
is

]⊤

[F1
is
,F2

t|is
]⊤[F1

is
,F2

t|is
]

[

H1
is

H2
is

]

G⊤
t ))

=
2s−1
∑

is=1
(tr(X⊤

is
Xis − 2 ⋅ X⊤

is
Ais − 2 ⋅ X⊤

is
Bis + GisH

1
is

⊤F1
is

⊤Ais

+ GisH
2
is

⊤F2
is

⊤Bis + 2 ⋅ GisH
1
is

⊤F1
is

⊤Bis )

+ tr(X⊤
t Xt − 2 ⋅ X⊤

t At

− 2 ⋅ X⊤
t Bt + GtH1

is

⊤F1
is

⊤At

+ GtH2
is

⊤F2
t|is

⊤Bt + 2 ⋅ GtH1
is

⊤F1
is

⊤Bt))

s.t.
m
∑

i=1
F1
is[i,j]

= 1,
m
∑

i=1
F2
is[i,j]

= 1,
m
∑

i=1
F2
t|is[i,j]

= 1,
c
∑

j=1
Gis[i,j] = 1,

c
∑

j=1
Gt[i,j] = 1

where Ais
= F1

is
H1

is
Gis

⊤ , Bis
= F2

is
H2

is
Gis

⊤ , At = F1
is
H1

is
Gt

⊤ , 

Bt = F2
t|isH

2
is
 Gt

⊤ . Since the real label information of source 
domains already exists, we only need to solve Gt . Then we 
come to the partial differentials of L as follows:

The iterative algorithm updates these factor matrices as 
follows:

(8)

𝜕L

𝜕F1

is

=−2 ⋅ Xis
Gis

H1

is

⊤

+ 2 ⋅ Ais
Gis

H1

is

⊤

+ 2 ⋅ Bis
Gis

H1

is

⊤

−2 ⋅ XtGtH
1

is

⊤

+ 2 ⋅ AtGtH
1

is

⊤

+ 2 ⋅ BtGtH
1

is

⊤

(9)

𝜕L

𝜕F2

is

=−2 ⋅ Xis
Gis

H2

is

⊤

+ 2 ⋅ Bis
Gis

H2

is

⊤

+ 2 ⋅ Ais
Gis

H2

is

⊤

(10)

𝜕L

𝜕F2

t|is
=−2 ⋅ XtGtH

2

is

⊤

+ 2 ⋅ BtGtH
2

is

⊤

+ 2 ⋅ AtGtH
2

is

⊤

(11)

𝜕L

𝜕H1

is

=−2 ⋅ F1

is

⊤

Xis
Gis

+ 2 ⋅ F1

is

⊤

Ais
Gis

+ 2 ⋅ F1

is

⊤

Bis
Gis

−2 ⋅ F1

is

⊤

XtGt + 2 ⋅ F1

is

⊤

AtGt

+ 2 ⋅ F1

is

⊤

BtGt

(12)

𝜕L

𝜕H2

is

=−2 ⋅ F2

is

⊤

Xis
Gis

+ 2 ⋅ F2

is

⊤

Bis
Gis

+ 2 ⋅ F2

is

⊤

Ais
Gis

−2 ⋅ F2

t|is
⊤

XtGt + 2 ⋅ F2

t|is
⊤

BtGt

+ 2 ⋅ F2

t|is
⊤

AtGt

(13)

𝜕L

𝜕Gt

=−2 ⋅ Xt
⊤

2

s−1∑
is=1

Ft|isHis
+ 2 ⋅ Gt

2

s−1∑
is=1

His

⊤Ft|is
⊤Ft|isHis
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We calculate all the variable matrices in each round of itera-
tion and utilize Eq.(20) to normalize F1

is
 , F2

is
 , F2

t|is , H
1
is
 , H2

is
 , 

and Gt as follows:

(14)

F1

is[i,j]
← F1

is[i,j]

⋅

√√√√√√
[Xis

Gis
H1

is

⊤
+ XtGtH

1
is

⊤
]
[i,j]

[Ais
Gis

H1
is

⊤
+ Bis

Gis
H1

is

⊤
+ AtGtH

1
is

⊤
+ BtGtH

1
is

⊤
]
[i,j]

(15)

F2

is[i,j]
← F2

is[i,j]

⋅

√√√√√√
[Xis

Gis
H2

is

⊤
]
[i,j]

[Bis
Gis

H2
is

⊤
+ Ais

Gis
H2

is

⊤
]
[i,j]

(16)

F2

t|is[i,j] ← F2

t|is[i,j]

⋅

√√√√√√
[Xt GtH

2
is

⊤
]
[i,j]

[Bt GtH
2
is

⊤
+ AtGtH

2
is

⊤
]
[i,j]

(17)

H1

is[i,j]
← H1

is[i,j]

⋅

√√√√√√
[F1

is

⊤
Xis

Gis
+ F1

is

⊤
XtGt][i,j]

[F1
is

⊤
Ais

Gis
+ F1

is

⊤
Bis

Gis
+ F1

is

⊤
AtGt + F1

is

⊤
BtGt][i,j]

(18)

H2

is[i,j]
← H2

is[i,j]

⋅

√√√√√√
[F2

is

⊤
Xis

Gis
+ F2

t|is
⊤
XtGt][i,j]

[F2
is

⊤
Bis

Gis
+ F2

is

⊤
Ais

Gis
+ F2

t|is
⊤
BtGt + F2

t|is
⊤
AtGt][i,j]

(19)

Gt[i,j] ← Gt[i,j]

⋅

������
[Xt

⊤
∑2s−1

is=1
Ft�isHis

]
[i,j]

[Gt

∑2s−1

is=1
His

⊤Ft�is
⊤Ft�isHis

]
[i,j]

According to Eqs.(14–20), an iterative algorithm is proposed 
in Algorithm 1. The data matrices are normalized such that 
X⊤

is
1m = 1n , X⊤

t
1m = 1n . To initialize CE in each pair of the 

target domain and training dataset, all the data in each pair 
are combined to implement PLSA [44]. For example, we set 
the number of concepts in the is-th pair as k1 + k2 , and obtain 
feature-concept matrix Wis

 . Wis
 is divided into two parts 

Wis
= [W1

is
,W2

is
] , where W1

is
∈ R

m×k1
+  , W2

is
∈ R

m×k2
+  . As a result, 

F1
is
 is initialized as W1

is
 as well as F2

is
 and F2

t|is are initialized as 

W2
is
 . In addition, we initialize the classifier of each pair by 

implementing logistic regression [43], denoted as Gt|is , and 
then integrate them by Eqs.(14–20) to get the initial Gt . Gis

 
is assigned as the true label information of documents.

4.4 � Computational Complexity of the Iterative 
Algorithm

We verify the efficiency of our method by analyzing the 
computational complexities of Eqs.(14–19) in each round 
of iteration. For instance, the computational complexity 
of Eq.(14) is O((2s − 1)(5mnc + 2mkc + 6mk1c + mk1)) , 
where n = nis + nt . In general, c < k1 < k ≪ n , s ≪ n < m , 
so the computational complexity can be written as O(mnc) . 
Similarly, the computational complexities of Eqs.(15), (16), 
(17), (18), and (19) are, respectively, O(mnisc) , O(mntc) , 
O(mnc + mk1n) , O(mnc + mk2n) , and O(mntk) . Thus, in each 
round of iteration, the maximal computational complexity is 
O(mnc + mnk) . As a result, the computational complexity of 
Algorithm 1 is O(maxIter ⋅ (mnc + mnk)).

(20)

F1

is[i,j]
←

F1

is[i,j]∑k
1

j=1
F1

is[i,j]

,F2

is[i,j]
←

F2

is[i,j]∑k
2

j=1
F2

is[i,j]

,

F2

t�is[i,j] ←
F2

t�is[i,j]∑k
2

j=1
F2

t�is[i,j]
,

H1

is[i,j]
←

H1

is[i,j]∑c

j=1
H1

is[i,j]

,H2

is[i,j]
←

H2

is[i,j]∑c

j=1
H2

is[i,j]

,

Gt[i,j] ←
Gt[i,j]∑c

j=1
Gt[i,j]
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5 � Experimental Evaluation

In this section, we compare our method with other advanced 
multi-source transfer learning methods on two benchmark 
datasets. Furthermore, we systematically verify the effec-
tiveness of PSF-MSTL.

5.1 � Data Preparation

20-Newsgroups1 is one of the international standard datasets 
used in text classification research. It collects approximately 
20000 news documents and divides them into 20 different 
newsgroups. Similar newsgroups are integrated into one 
topic, resulting in four topics. For instance, comp.graphics, 
comp.sys.mac.hardware, comp.sys.ibm.pc.hardware, comp.
os.- ms-windows.misc are categorized into the topic comp. 
The topics and their corresponding newsgroups in 20news-
groups are listed in Table 3. We design the three-source clas-
sification tasks as follows:

Since documents are classified into two classes in the 
binary classification tasks, we first choose rec as the positive 
class and sci as the negative class. Then we randomly select 

one newsgroup from rec and sci, respectively, to construct 
the first source domain, and each newsgroup has 200 news 
documents. The other two source domains and the target 
domain are generated in a similar way. Thus, 576(P4

4
× P4

4
) 

three-source text classification tasks are produced. Since 
there exist 6(P3

3
) permutations of three sources, and differ-

ent permutations can hardly affect the experimental results, 
the number of tasks can be reduced to 96(P4

4
× P4

4
÷ P3

3
) . In 

summary, there are 96 three-source transfer learning tasks 
on 20Newsgroups.

Sentiment2 is another dataset widely used in binary text 
classification. It is composed of four fields, i.e., books, 
electronics, kitchen, and DVD. We randomly choose them 
as three source domains and one target domain, and each 
domain has 200 positive and 200 negative documents. Thus, 
we produce 4 (P3

4
÷ P3

3
) three-source classification tasks on 

Sentiment.
Office-Home3 has four major categories, i.e., Art, Clipart, 

Product, and Real World. Each major category contains the 
same subcategories. We randomly choose two subcatego-
ries as positive and negative classes. In our experiment, we 
choose Alarm_Clock vs. Backpack. For three-source trans-
fer learning tasks, since there are four major categories in 

1  http://​people.​csail.​mit.​edu/​jrenn​ie/​20New​sgrou​ps/.

2  http://​www.​cs.​jhu.​edu/​mdred​ze/​datas​ets/​senti​ment/.
3  https://​paper​swith​code.​com/​datas​et/​office-​home.

http://people.csail.mit.edu/jrennie/20Newsgroups/
http://www.cs.jhu.edu/mdredze/datasets/sentiment/
https://paperswithcode.com/dataset/office-home
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Office-Home, we randomly choose three of them as source 
domains and choose the rest domain as the target domain. 
Thus, four classification tasks are constructed in a set of 
experiments. All images are first converted to grayscale 
images and compressed to 32*32 pixels, followed by the 
normalization of grayscale values. Then the grayscale fea-
tures of a picture are arranged into rows, forming a matrix 
with features as rows and samples as columns.

5.2 � Experimental Setting

5.2.1 � Algorithms in Comparison

(1)	 Logistic regression(LR) [43]: LR is a traditional super-
vised classification method. We combine all source 
domains into one source domain to train a classifier 
and use the target domain to test.

(2)	 Non-negative matrix tri-factorization(NMTF) [9]: 
We use NMTF that can train on the source and target 
domains simultaneously as the baseline method.

(3)	 Multi-source text classification methods: RCD-PLSA 
[38], MST3L [23], and MCPC [26] use three strate-
gies described in Sect. 1, respectively. In addition, PSF-
MSTL is compared to the unsupervised text classifica-
tion method SDA [24] and deep-neural-network-based 
method TSM-DNN [41].

5.2.2 � Parameter Settings

Since it is exceedingly difficult to quantify the high-level 
concepts and find an optimal solution, the numbers of identi-
cal and alike concepts in each pair of the target domain and 
training dataset are empirically set as 20(k1 = k2 = 20 ), and 
the number of max iterations is set as 100(maxIter = 100 ). 
In addition, LR is conducted on Matlab.4 NMTF is obtained 
from [9]. Their parameters are set as default ones. To be fair, 
RCD-PLSA, MST3L, MCPC, and SDA are incorporated 
NMTF technique, and they are trained with the parameters 

same as PSF-MSTL. The initial learning rate of TSM-DNN 
is set as 0.01.

5.2.3 � Evaluation Metrics

We use two general evaluation matrices and count the num-
ber of negative transfer to evaluate the experimental results.

(1) Accuracy

Accuracy =
|{d ∶ d ∈ D ∧ f (d) = y(d)}|

n
  where y(d) is 

the ture label of document d , f (d) is the predictive label and 
n is the number of documents.

(2) F1 − measure

F1 − measure =
F
1N

+ F
1P

2

 w h e r e 
F
1N
(F

1

on negative predictions) = (2 ⋅ P
N
⋅ R

N
)∕

(P
N
+ R

N
), F

1P
(F

1

 on positive predictions) = (2 ⋅ P
P
⋅ R

P
)∕

(P
P
+ R

P
), R

N
(recall on negative predictions) = a∕(a + b) , 

PN(precision on negative predictions) = a∕(a + c)   , 
RP(recall on positive predictions) = d∕(d + c)   , 
PP(precision on positive predi- ctions)=d∕(d + b).

(3) Count of negative transfer
We count the occurrences of negative transfer to measure 

transfer learning methods from another perspective [10]. The 
number of negative transfers is denoted as NumNT .

5.3 � Experimental Results

Here, PSF-MSTL is compared with LR, NMTF, RCD-
PLSA, MST3L, MCPC, and SDA on 20Newsgroups and 
Sentiment datasets, respectively. The average performances 
of PSF-MSTL and other transfer learning methods are 
shown in Table 4.

(1)	 Comparison on 20Newsgroups 

(a)	 The experimental results on 20Newsgroups are 
shown in Table 4. We can observe that PSF-MSTL 
outperforms all the compared methods. There are 
two reasons why PSF-MSTL can achieve the 
best performance. First, it constructs a power 
set framework, which allows each single-source 
domain to join different training datasets, and thus 
multiple source domains correlate from various 
perspectives preliminarily. Second, PSF-MSTL 
integrates all the training datasets, enabling the 
target classifier to be trained on complementary 
knowledge from an integral framework. Conse-
quently, PSF-MSTL not only mines the common-
ality and specificity across domains but also builds 

Table 3   Topics and newsgroups

Topics Newsgroups

Rec Rec.{sport.hockey,sport.baseball,motorcycles,autos}
Sci Sci.{space,med,electronics,crypt}
Talk Talk.{religion.misc,politics.mideast,politics.guns,politics.

misc}
Comp Comp.{graphics,os.ms-windows.misc,sys.ibm.

pc.hardware,sys.mac.hardware}

4  http://​www.​kyb.​tuebi​ngen.​mpg.​de/​bs/​people/​pgehl​er/​code/​index.​
html.

http://www.kyb.tuebingen.mpg.de/bs/people/pgehler/code/index.html
http://www.kyb.tuebingen.mpg.de/bs/people/pgehler/code/index.html
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the intrinsic relevance of multiple source domains. 
Other methods hardly make full use of the latent 
information because they do not construct cor-
relations across multiple source domains, which 
causes them to be inferior to PSF-MSTL on multi-
source classification tasks.

(b)	 All the multi-source transfer learning methods 
outperform LR, which means traditional machine 
learning methods hardly address multi-source 
transfer learning problems.

(c)	 NMTF, RCD-PLSA obtain poorer performances 
in multi-source tasks, which verifies our analysis 
in Sect. 1 that the combining strategy may ignore 
the mutual interferences across source domains.

(d)	 MST3L and MCPC achieve better performance 
than RCD-PLSA. This indicates that fusing all 
single-source knowledge can improve learning 
performance.

(2)	 Comparison on Sentiment

To verify that our method is able to perform more 
complex work, we construct classification tasks where 
the discrepancies among source domains are large. The 
experimental results are shown in Table 4, and we can find 
that PSF-MSTL has more obvious advantages over all the 
compared methods. Other multi-source transfer learning 
methods fail in challenging tasks because the common and 
domain-specific information is extracted from a few raw 
features, weakening their discriminative power for docu-
ment classification. Only PSF-MSTL constructs a com-
plete relation structure of multiple source domains, which 
can provide complementary latent information to reduce 
the learning bias in a harder scenario. Thus, the tasks on 

Sentiment further demonstrate that PSF-MSTL is more 
stable than other transfer learning methods.

(3)	 Comparison on Office-Home

To further validate the adaptation capability of PSF-
MSTL, we performed more validation experiments on the 
image dataset Office-Home. The experimental results are 
shown in Table 5, and we can find that PSF-MSTL can still 
obtain the optimal performance. The reason is that even 
in more challenging image datasets, PSF-MSTL can con-
struct the power set framework that contains correlations 
across multiple source domains and mine complementary 
knowledge from it to further improve classification perfor-
mance. Therefore, our algorithm can still obtain outstand-
ing performances.

In summary, the comparison results verify the effective-
ness and stability of PSF-MSTL on both traditional and chal-
lenging multi-source classification tasks.

5.4 � Effectiveness of PSF‑MSTL

To further evaluate PSF-MSTL, we design two-source and 
three-source experiments and perform several groups of sin-
gle-source transfer learning tasks where the source domain 
is set as one of the generated training datasets. According 
to the number of training datasets in the power set frame-
work, 864(288 × 3) and 672(96 × 7) single-source tasks are 
produced in two-source and three-source scenarios, respec-
tively. The parameter settings in these tasks are the same 
as those in PSF-MSTL. Table 6 shows the learning per-
formances on the complete framework and its components 
under the two-source scenario, and Table 7 shows the three-
source one. Since we remove the duplicate tasks in Sect. 5.1, 

Table 4   Performances (%) on 20Newsgroups and Sentiment (10 repeated experiments)

LR [43] NMTF [9] TSM-DNN [41] RCD-PLSA [38] MST3L [23] MCPC [26] SDA [24] PSF-MSTL

 Performance of total 96 three-source tasks on 20Newsgroups
 Accuracy 72.67 82.26 82.88 91.50 94.46 94.79 90.12 95.23
 F1 −Measure 72.09 81.92 82.59 91.47 94.45 94.78 90.05 95.22
 NumNT – – – 0 0 0 1 0

 Performance of total 4 three-source tasks on Sentiment
 Accuracy 74.69 69.36 70.11 75.38 72.65 75.00 76.38 78.3
 F1 −Measure 74.59 68.70 69.78 75.09 72.44 74.86 76.29 78.28
 NumNT – – – 2 3 2 1 0

Table 5   Performances (%) 
on Office-Home (10 repeated 
experiments)

LR NMTF TSM-DNN RCD-PLSA MST3L MCPC SDA PSF-MSTL

Mean accuracy 57.09 57.50 47.91 56.63 55.46 60.86 59.48 61.32
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better or worse results may gather in a certain group of tasks, 
and thus we give the mean accuracy of each type to make the 
results more objective.

First, both Tables 6 and 7 show that the learning accuracy 
on any training dataset cannot exceed the one on the power 
set framework, indicating that it is necessary to construct 
a complete framework that contains richer knowledge. In 
addition, the reason why PSF-MSTL can reduce negative 
transfers in two-source tasks and avoid negative transfers in 

three-source tasks is that our method can build more sophis-
ticated intrinsic relevance when there exist more source 
domains.

Second, by comparing the experimental results of two-
source and three-source types in Table 7, we can infer that 
the increase of source domains may lead to different conse-
quences in different scenarios: in traditional multi-source 
tasks, data expansion results in a limited development in 
learning performance, and in contrast, it brings a large 
improvement in challenging tasks. However, PSF-MSTL 
significantly improves the learning capabilities on both 
datasets, indicating that it can solve the problem of mutual 
interference among multiple sources and effectively utilize 
the valuable information in each source domain wherever 
it performs.

In summary, these results not only verify our ideas 
presented in Sect. 1 but also prove the effectiveness of 
PSF-MSTL.

5.5 � Running Time

We randomly select six three-source tasks on 20Newsgroups 
and Sentiment, respectively, to check the running time of 
PSF-MSTL. The experimental results are shown in Table 8. 
The reason why PSF-MSTL has the longest running time is 
that how fast the high-level concepts-based algorithm runs 
has a positive correlation with the number of high-level con-
cepts, and PSF-MSTL has to extract the latent information 
from more latent feature spaces. Additionally, the running 
time of our method is within acceptable limits.5

Table 6   Average performances (%) comparison between the complete 
framework and its components for two-source (10 repeated experi-
ments)

One-source Two-source PSF-MSTL

D
′
1

D
′
2

D
′
3

Performance of total 288 two-source tasks on 20Newsgroups
 Accuracy 83.47 88.76 90.07 93.45
 TypeAverage 86.12 90.07 –
 F1 −Measure 83.42 88.72 90.02 93.44
 TypeAverage 86.07 90.02 –
 NumNT 25 9 5 1

Performance of total 12 two-source tasks on Sentiment
 Accuracy 68.52 67.27 72.14 75.55
 TypeAverage 67.9 72.14 –
 F1 −Measure 68.40 67.21 71.99 75.50
 TypeAverage 67.81 71.99 –
 NumNT 9 9 10 4

Table 7   Average performances 
(%) comparison between the 
complete framework and its 
components for three-source (10 
repeated experiments)

One-source Two-source Three-source PSF-MSTL

D
′
1

D
′
2

D
′
3

D
′
4

D
′
5

D
′
6

D
′
7

 Performance of total 96 three-source tasks on 20Newsgroups
 Accuracy 82.12 87.47 89.37 89.10 92.17 89.48 91.53 95.23
 TypeAverage 86.32 90.25 91.53 –
 F1 −Measure 82.06 87.42 89.34 89.02 92.17 89.48 91.49 95.22
 TypeAverage 86.27 90.22 91.49 –
 NumNT 9 5 2 1 1 2 1 0

Performance of total 4 three-source tasks on Sentiment
 Accuracy 69.4 65.08 69.08 71.45 73.21 71.49 74.96 78.3
 TypeAverage 67.85 72.05 74.96 –
 F1 −Measure 69.29 64.94 69.05 71.22 73.17 71.46 74.90 78.28
 TypeAverage 67.76 71.95 74.90 –
 NumNT 3 3 3 3 4 3 2 0

5  The configuration of computing platform: Intel(R) Core(TM) 
i7-6700HQ CPU @ 2.60GHz, RAM 8.0GB.
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Table 8   Running time of PSF-
MSTL and other compared 
methods(s)

LR NMTF TSM-DNN RCD-PLSA MST3L MCPC SDA PSF-MSTL

20Newsgroups Task 2.0 10.0 138.24 14.2 30.9 48.0 25.3 259.2
Sentiment Task 3.8 11.8 163.19 33.5 61.1 118.5 91.9 321.5

Table 9   The parameter 
influence on performance (%) of 
algorithm PSF-MSTL

Problem ID

 Sampling ID k
1

k
2

1 2 3 4 5 6 7 8 9 10

1 18 22 97.26 98.76 97.01 98.51 96.27 98.01 96.02 97.76 98.01 98.26
2 25 20 96.27 98.51 97.01 98.76 96.77 98.26 96.52 96.52 98.76 98.26
3 17 25 96.52 98.01 96.77 98.51 97.26 98.26 96.27 97.76 98.76 98.01
4 19 17 96.52 98.51 96.27 98.26 96.52 98.26 96.27 97.76 98.76 97.76
5 20 19 97.01 98.51 97.51 98.76 96.77 98.26 96.02 97.26 98.01 98.01
6 24 21 96.52 98.51 97.01 98.76 97.01 98.26 96.52 97.01 98.01 97.76
7 23 19 96.52 98.76 96.77 98.26 96.27 97.76 96.27 97.76 98.51 98.01
8 16 18 97.26 98.76 96.77 97.51 97.26 97.76 96.52 98.26 98.51 98.51
9 15 23 97.01 98.26 96.52 97.76 97.01 98.01 96.27 97.01 98.51 98.51
10 24 17 96.02 98.26 96.77 98.76 96.52 98.26 95.77 97.26 98.26 98.26
Mean 96.69 98.48 96.84 98.38 96.77 98.11 96.24 97.44 98.41 98.13
Variance 0.179 0.061 0.111 0.196 0.138 0.044 0.061 0.262 0.099 0.072
This paper 20 20 96.52 98.48 96.59 98.53 96.79 97.71 96.52 97.56 98.48 97.71

Fig. 2   The performance of PSF-MSTL and objective value vs. the number of iterations
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5.6 � Parameter Sensitivity

Here, we analyze the parameter sensitivity of PSF-MSTL. 
To verify that PSF-MSTL is hardly affected by changing 
parameters, we sample in a larger range of both k1 and k2 . 
To be specific, we randomly sample ten pairs of k1 and k2 
when k1 ∈ [15, 25] , k2 ∈ [15, 25] , and randomly choose ten 
three-source tasks on 20Newsgroups to make verification. 
The experimental results are shown in Table 9. Apparently, 
the mean accuracy of ten pairs of parameters is almost equal 
to the accuracy trained from default parameters, and the 
variance is small. As a result, PSF-MSTL is not sensitive 
to parameters.

5.7 � Algorithm Convergence

In this section, we check the convergence of PSF-MSTL 
by randomly choosing six three-source tasks on rec vs. sci. 
The experimental results are shown in Fig. 2. The left y-axis 
represents the accuracy of PSF-MSTL, the right y-axis rep-
resents the objective value in Eq.(4), and the x-axis repre-
sents the number of iterations. Obviously, as the iteration 
develops, the accuracy of PSF-MSTL increases while the 
objective value decreases, and both of them converge within 
100 iterations.

6 � Conclusion

In this paper, we propose a novel multi-source transfer 
learning method called PSF-MSTL. First, our method can 
combine different source domains into various training 
datasets based on the power set concept, forming a source 
domain framework. Second, PSF-MSTL integrates all 
the training datasets and transfers complementary knowl-
edge from an integral framework using a dual-promotion 
strategy. To solve the optimization problem, we propose 
an iterative algorithm based on non-negative matrix tri-
factorization. Finally, we conduct extensive multi-source 
experiments to demonstrate that PSF-MSTL can outper-
form other state-of-the-art multi-source text classification 
methods.

It is worth mentioning that although PSF-MSTL has 
excellent performance, the parameters of the high-level 
concepts are set empirically, and the weights of different 
training datasets are defaulted to be equal. In the future, 
we will explore the automatic adjustment of the optimal 
parameters and consider how to weigh different types of 
training datasets in different scenarios to obtain better 
results.
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