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Abstract
Meta-Heuristic (MH) algorithms have recently proven successful in a broad range of applications because of their strong 
capabilities in picking the optimal features and removing redundant and irrelevant features. Artificial Ecosystem-based Opti-
mization (AEO) shows extraordinary ability in the exploration stage and poor exploitation because of its stochastic nature. 
Dwarf Mongoose Optimization Algorithm (DMOA) is a recent MH algorithm showing a high exploitation capability. This 
paper proposes AEO-DMOA Feature Selection (FS) by integrating AEO and DMOA to develop an efficient FS algorithm 
with a better equilibrium between exploration and exploitation. The performance of the AEO-DMOA is investigated on seven 
datasets from different domains and a collection of twenty-eight global optimization functions, eighteen CEC2017, and ten 
CEC2019 benchmark functions. Comparative study and statistical analysis demonstrate that AEO-DMOA gives competi-
tive results and is statistically significant compared to other popular MH approaches. The benchmark function results also 
indicate enhanced performance in high-dimensional search space.

Keywords Feature selection · Machine learning · Metaheuristic algorithms · Artificial ecosystem-based optimization · 
Dwarf mongoose optimization

Abbreviations
AEO  Artificial ecosystem-based optimization
ACO  Ant colony optimization
ALO  Ant lion optimization
BS  Bird swarms
CF  Consumption factor
DMOA  Dwarf mongoose optimization algorithm

FS  Feature selection
FV  Fitness value
GA  Genetic algorithm
GTO  Gorilla troops optimizer
GWO  Gray wolf optimizer
HHO  Harris hawks optimization
KNN  K-nearest neighbor
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MH  Meta-heuristic
MVO  Multi-verse optimizer
OFS  Optimal feature subset
PSO  Particle swarm optimization
RSA  Reptile search algorithm
SA  Simulated annealing
SCA  Sine cosine algorithm
SD  Standard deviation
SO  Snake optimizer
SSA  Salp swarm algorithm
WOA  Whale optimization algorithm

1 Introduction

Due to the exponential development in the amount of data 
being processed and stored by information systems, it is 
harder to retrieve relevant information. However, these 
stored data may include many attributes that may not be 
important or irrelevant. FS methods aim to pick an Optimal 
Feature Subset (OFS), which reduces overfitting and the 
computational time of machine learning models by eliminat-
ing redundant features while maintaining high classification 
performance [1–3]. Finding OFS in a broad search space 
is considered a multi-objective issue, i.e., minimizing the 
number of selected features and maximizing accuracy [4–7].

Nature-inspired methods are inspired by natural phenom-
ena and mostly MH optimization for FS problems. These 
methods’ inspiration sources are broken down into three 
types [8]: swarm-based algorithms, evolutionary-based 
algorithms, and physics-based algorithms. These methods 
all share two principles, exploration and exploitation [9]. 
In the first principle, the algorithm tries to find new regions 
in the search area. In the later phase, the algorithm looks 
around the obtained solution from the first phase to discover 
the best candidate.

Some of the frequently used MH techniques for FS 
include Particle Swarm Optimization (PSO) [10], Multi-
Verse Optimizer (MVO) [11], Whale Optimization Algo-
rithm (WOA) [12], Salp Swarm Algorithm (SSA) [13], 
Genetic Algorithm (GA) [14], Gray Wolf Optimizer 
(GWO) [15], AEO [16], DMOA [17], Snake Optimizer 
[18], Fick’s Law Algorithm (FLA) [19], and Jellyfish 
Search [20]. Moreover, MH algorithms can be combined 
to achieve better results for FS problems. Such examples 
include Simulated Annealing (SA) added to Harris Hawks 
Optimization (HHO) [21], Ant Lion Optimization (ALO) 
added to Sine Cosine Algorithm (SCA) [22], Bird Swarms 

(BS) added to Gorilla Troops Optimizer (GTO) [23], Rep-
tile Search Algorithm (RSA) added to Ant Colony Optimi-
zation (ACO) [24], RSA added to Snake Optimizer (SO) 
[25], Evolutionary-Mean shift algorithm for dynamic 
multimodal function optimization [26], Group-based syn-
chronous-asynchronous grey wolf optimizer [27] and many 
other [28–30]. With the advent and success of MH algo-
rithms in solving the problem of FS, new and improved 
approaches are still needed to deal with this problem. MH 
methods solve multi-objective optimization problems by 
increasing classification accuracy with the smallest pos-
sible number of OFS. Several works explored and inves-
tigated MH methods to effectively search a given space to 
obtain the best global solutions [31–35].

The AEO method has great potential to choose OFS in 
several applications, such as triple diode photovoltaic [36], 
image segmentation [37], economic dispatch [38], and Agri-
culture Feeders [39]. However, it shows strong ability in 
the exploration stage and poor exploitation because of its 
stochastic nature [40]. On the other hand, DMOA is a recent 
MH method that shows a high capability in exploitation [17]. 
Therefore, an efficient FS-based approach, namely, AEO-
DMOA, is presented, which merges the best strength of the 
AEO in exploration and DMOA in the exploitation phases 
toward targeting optimum solutions. The AEO is applied on 
half of the defined number of iterations to discover a better 
solution in the search space, while DMOA identifies the best 
candidate around the obtained optimal space in the remain-
ing number of iterations. The contributions of this work are 
summarized as follows:

• AEO-DMOA, a hybrid approach, is developed to provide 
better performance with a better equilibrium between 
search space’s exploration and exploitation for the prob-
lem of FS.

• AEO-DMOA is evaluated on seven UCI datasets, 
twenty-eight test functions, eighteen CEC2017, and ten 
CEC2019 test functions

• Developed AEO-DMOA applicability is compared with 
other competitive MH approaches.

The rest of this article is structured as follows: Sect. 2 
briefly reviews AEO and DMOA, followed by a description 
of the interdicted AEO-DMOA in Sect. 3. Section 4 presents 
the experimental analysis and statistical comparison of the 
AEO-DMOA with other well-known MH methods on the 
tested datasets and studied test functions. Finally, Sect. 5 
concludes this article.
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2  Methods

2.1  Artificial Ecosystem‑Based Optimization (AEO)

AEO is an MH method motivated by the natural ecosystem’s 
energy flow [16]. AEO uses three operators to achieve opti-
mal solutions, as described below.

2.1.1  Production

In this operator, the producer represents the worst individual 
in the population. Thus, it must be updated concerning the 
best individual by considering the upper and lower bound-
aries of the given search space so that it can guide other 
individuals to search other regions. The operator generates 
a new individual between the best individual xbest (based on 
fitness) and the randomly produced position of individuals 
in the search space xrand by replacing the previous one. This 
operator can be given as,

where xrand(t) guides the other individuals to explore search 
space in the subsequent iterations broadly, xi(t + 1) leads the 
remaining individuals to exploit around intensively xbest(t) , 
� is a linear weight coefficient that leads the randomly 
positioned individual to the best individual position xbest(t) 
through the pre-defined maximum number of iterations T. 
Two random numbers r1 and r2 are sampled from a uniform 
distribution over [0, 1]. For a given search space, UB and LB 
represent the upper and the lower extreme values.

2.1.2  Consumption

This operator starts after the production operator and obtains 
food energy by eating a producer, a random low-energy con-
sumer, or both. A Levy flight-like random walk, called Con-
sumption Factor (CF), is employed to enhance exploration 
capability, and it is defined as follows:

(1)xi(t + 1) = (1 − �)xbest(t) + �xrand(t)

(2)� =
(

1 −
t

T

)

r1

(3)xrand = r2(UB − LB) + LB

where, N(0, 1) is a zero mean and unity deviation normal 
distribution.

Different types of consumers adopt different consumption 
behaviors to update their positions. These strategies include:

1. Herbivore behavior: A herbivore consumer would eat 
only the producer and can be formulated as:

2. Carnivore behavior: A carnivore consumer would only 
eat another consumer with energy higher than itself. 
Mathematically, it can be modeled as follows:

3. Omnivore behavior: An omnivore consumer can eat a 
random producer or a random producer with more energy 
than itself. This behavior can be presented as:

2.1.3  Decomposition

In this final phase, the ecosystem agent dissolves. The 
decomposer breaks down the remains of dead individuals 
to provide the required growth nutrients for producers. The 
decomposition operator can be expressed as:

Where De = 3uu ∈ N(0, 1) , e = r3.randi([1, 2]) − 1, and 
h = 2r3 − 1where e , h , and De , are weight coefficients 
designed to model decomposition behavior.

2.2  Dwarf Mongoose Optimization Algorithm 
(DMOA)

DMOA is another MH method introduced to simulate the 
dwarf mongoose's prey size limitation, social organization, 
semi-nomadic life, and others [17]. The DMOA begins 
with initializing a set of random candidate populations of 

(4)CF =
1

2

v1
|

|

v2
|

|

, v1, v2 ∈ N(0, 1)

(5)xi(t + 1) = xi(t) + CF.
(

xi(t) − x1(t)
)

, i ∈ [2,…P]

(6)
xi(t + 1) = xi(t) + CF.

(

xi(t) − xrand∈(0,2i−1)(t)
)

, i ∈ [3,…P]

(7)

x
i(t + 1) = x

i(t) + CF
(

r2(xi(t) − x1(t))
)

+ (1 − r2)(xi(t) − x
rand∈(0,2i−1)(t)), i ∈ [3,…P]

(8)
x
i(t + 1) =xP(t) + De(e.x

P(t) − h.x
rand∈(0,2i−1)(t)),

i ∈ [1,…P]
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mongooses between the maxima (UB) and minima (LB) of 
the given problem. The optimization process is represented 
in the following phases:

2.2.1  Alpha Group

When initializing the population, each population fitness 
probability can be computed by:

For bs number of babysitters, the family is maintained 
inside a path peep marked by � − bs number of alpha 
female’s vocalization. The sleeping mound is initialized to 
� when every mongoose sleeps. In order to generate a can-
didate food position, DMOA employs the following:

where, phi is sampled randomly from a uniform distribution 
over [0, 1].

After every iteration, the sleeping mound sm can be given 
as:

While the Average (Avg) value of the sm can be repre-
sented as:

The DMOA is then moved to the next phase, named the 
scouting phase. In this phase, the sleeping mound or the 
next food source is assessed after satisfying the babysitter 
exchange condition.

2.2.2  Scout Group

This phase looks at the next sleeping mound, where explora-
tion is guaranteed as the mongooses do not go back to the 
previous sleeping mound. The overall performance of the 
Mongooses decides this movement. The motivation is that 

(9)� =
fiti

∑n

i=1
fiti

(10)Xi+1 = xi + phi + peep

(11)smi =
fiti+1 − fiti

max⌊fiti+1, fiti⌋

(12)Avgsm =

∑n

i=1
smi

n

sufficiently large foraging will discover a new sm . The scout 
mongoose can be presented as:

where, CF =
(

1 −
iter

maxiter

)2
iter

maxiter  and ��⃗M =
∑n

i=1

Xi∗smi

Xi

 where, 
Xi is a vector determining the movement of the mongoose to 
the new sm , CF is a parameter controlling the group collec-
tive-volitive movement. CF is decreased linearly with the 
number of iterations. The rand is sampled randomly from a 
uniform distribution over [0, 1] and ��⃗M is a vector specifying 
the mongoose’s movement to the new sm.

2.2.3  The Babysitters

The young mongooses are cared for by supporting members 
of the group, the babysitters. A regular rotation of babysit-
ters allows the daily foraging of the rest of the group by 
the alpha female (mother). At midday and in the evening, 
the alpha female returns to suckle the young. The popula-
tion size decides the babysitter count. The percentage of 
babysitter representatives simulates this group by shrink-
ing the population, affecting the DMOA. The previously 
held food source and scouting information of the replacing 
members of the family is reset by the exchange parameter 
of the babysitter. In the next iteration, the average weight of 
the alpha group is reduced by setting the fitness weight of 
the babysitters as zero. It hinders the group movement and 
emphasizes exploitation.

3  Proposed Method

This section presents the developed AEO-DMOA for FS. 
The primary objective of the developed AEO-DMOA is to 
split the number of iterations into two halves and apply AEO 
in the first half to explore the entire search area for optimiz-
ing the search area boundaries, while DMOA in the second 
half to exploit the AEO-optimized search area for obtaining 
the best solution. This sequential implementation helps both 
methods by alleviating the chances of being trapped in local 
optima and maintaining an appropriate balance between 
exploration and exploitation during optimization.

(13)Xi+1 =

{

Xi − CF ∗ phi ∗ rand[Xi −
����⃗M] if Avgsmi+1 > Avgsmi

Xi + CF ∗ phi ∗ rand[Xi −
����⃗M] otherwise
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Firstly, the hyper-parameters of AEO and DMOA, such 
as the maximum number of iterations ( T  ) and the number 
of candidate solutions ( N ), are initialized. The upper ( UB ) 
and lower ( LB ) boundaries of each feature dimension of the 
given search space are calculated. All N candidate solutions 
are initialized uniformly in the range [− 1, 1] as described 
earlier in Eq. (1). The Fitness Value (FV) is calculated for 
each candidate solution using K-Nearest Neighbor (KNN) 
classifier with the 5-nearest neighbor with a Euclidean dis-
tance measure. The candidate solution with the smallest FV 
is stored as the globally best solution. The FV can be calcu-
lated as follows:

where, � is a weight that controls the importance of clas-
sification performance and fraction of selected features, AC 
is the accuracy of the KNN, SFi is the number of features 
selected by the candidate solution, and M is the dimension-
ality of the original dataset. The value � ranges from 0 (no 
importance to classification accuracy) to 1 (no importance 
to feature selection) and is set as 0.99 in this work, as sug-
gested in the literature. The SF is calculated by thresholding 
the current position of the candidate solution as follows:

It must be noted that the threshold of 0.5 used to select 
features is empirically selected. The exact value of the 
threshold used during the training does not affect the feature 
selection as MH algorithm adapts the positions of impor-
tant features above the threshold. The extreme values for the 
threshold make it difficult for the MH algorithm to separate 
important features from the redundant ones. Hence, as the 
literature suggests, a threshold value 0.5 is used [24].

The optimization starts with the AEO method. At the first 
iteration, the Production phase of the AEO updates the worst 
candidate solution (i.e., one with the largest fitness value) with 
the best individual (i.e., one with the smallest fitness value) 
by considering UB and LB . After this phase, the three phases 
of the AEO algorithm are implemented based on a random 
number ( rand ) in the range 0–1, as follows:

(14)FV = � × (1 − AC) + (1 − �) ×
SFi

M

(15)SFi =

{

1 ifxi > 0.5

0 otherwise

(16)If rand ≥
2

3
, thenHerbivore phase,

The process repeats until all candidate solutions are pro-
cessed. In the end, the Decomposition Phase Eq. (8) of the 
AEO algorithm is implemented, breaking down the dead can-
didate solutions as growth nutrients for producers. Finally, FV 
is calculated for all candidate solutions at the end of the itera-
tion. The latter is updated if any candidate solution has an FV 
smaller than the global-best solution. In the next iteration, the 
entire process is repeated until the number of iterations has 
reached half the maximum ( T∕2).

The algorithm switches from AEO to DMOA after T∕2 
iterations. The T∕2 th iteration starts by updating the AEO-
optimized candidate solution using the Alpha group as in 
Eqs. 9, 10 and increments the counter C (which at first execu-
tion of DMOA is 0). If counter C is less than the babysitter 
exchange parameter L, then calculate the average value of the 
sleeping mound AvgSum as in Eqs. 11, 12. If the average value 
of the sleeping mound of the previous iteration AvgSumt−1 is 
less than the sleeping mound of the current iteration AvgSumt 
Then, the exploration phase of DMOA is implemented to 
update the candidate solutions, or the exploitation phase of 
DMOA is implemented. Finally, when maximum iterations 
are reached for DMOA, the optimum solutions’ fitness FV is 
calculated, and the global-best solution is updated. The pro-
cess continues until the counter C reaches babysitter exchange 
parameter L , when the babysitter group is updated, as in 
Eqs. 10–11, and counter C is initialized to 0. The process con-
tinues by updating the global-best solution. Figure 1 provides 
the process flow of the AEO-DMOA.and its pseudocode is 
reported in Algorithm 1.

The optimization stops when reaching the defined number 
of T . The global-best solution available at the end of all itera-
tions is used as the optimum solution. As discussed earlier in 
Eq. 15, features with positions larger than 0.5 are added to the 
OFS. A classifier is trained for the OFS as input and desired 
class as the output. During the testing phase, OFS selects the 
salient features while others are rejected.

(17)else if
1

3
≤ rand ≤

2

3
then, Carnivore phase,

(18)else if rand ≤
1

3
, thenOmnivore phase,
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4  Experimental Results

The developed AEO-DMOA is applied to solve the 
problem of FS on seven UCI datasets, twenty-eight 
benchmarked test functions, eighteen CEC2017, and ten 
CEC2019. The results are compared with other MH meth-
ods and provided in this section.

4.1  Experimental Setup

The efficiency of the AEO-DMOA is investigated with 
other MH approaches PSO [10], MVO [11], WOA [12], 
SSA [13], AEO [16], and DMOA [17]. The parameter 
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settings for these methods are defined as how they are 
implemented in the original work, which is shown in 
Table 1. The standard parameters in this study are selected 
empirically and are set: Population size = 20, T  = 100, and 
each method is indecently run 20 times. The experiments 
are performed on a 3.13 GHz Windows 10 machine with 
32 GB RAM and implemented using Python Scikit-learn.

4.2  Datasets Descriptions

The efficiency of the AEO-DMOA is validated using seven 
datasets, and their characteristics are given in Table 2. Six 
of seven datasets are designed for binary classification prob-
lems, while the seventh is designed as a multiclass classifica-
tion problem.

Fig. 1  Flowchart of the developed AEO-DMOA approach
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4.3  Experimental Results and Discussion

In this section, the results of the developed AEO-DMOA 
are presented. Several evaluation metrics are employed, 
including accuracy, OFS, and the best, worst, Avg, and 
standard deviation (SD) of the fitness values to examine the 

effectiveness of the AEO-DMOA. To provide a fair com-
parison, the Friedman ranking test is utilized. The accuracy 
results of the AEO-DMOA are provided in Table 3. Accord-
ing to this table, the developed AEO-DMOA gained the best 
outcomes in almost all the datasets except for the Churn 
dataset, while DMOA got the first rank.

The number of the selected OFS by AEO-DMOA and 
other MH methods are compared in Table 4. According to 
this table, AEO-DMOA picked the least number of features 
in five out of seven datasets. For the Churn dataset, the AEO 
selected the least number of features, and for the Krvsk-
pEW dataset, DMOA selected the least number of features, 
while in both datasets, the AEO-DMOA ranked second. This 
analysis shows the capability of the developed AEO-DMOA 
to select salient features in the datasets while reducing the 
search area.

Table 5 summarizes the comparative performance of 
AEO-DMOA and other MH methods in terms of Best, 
Worst, Avg, and SD of fitness values. For each dataset, ranks 
are assigned for each MH method based on the performance 

Table 1  Parameter settings for 
different MH algorithms

Algorithm Parameters

PSO c1 = c2  = 2, wmin = 0.1 and wmax = 0.9
MVO WEPmax = 1,WEPmin = 0.2, p = 6, and � decreasing in the interval [-2, 0]
WOA � reduces from 2 to 0 and �2 reduces from − 1 to − 2
SSA c2 and c2 are sampled randomly from a uniform distribution over [1,0]
AEO r1, r2 and r3 are uniformly distributed random numbers with values from 0–1
DMOA phi is a uniformly distributed random number in the range 0–1
AEO-DMOA Combined parameters of both AEO and DMOA

Table 2  The datasets description

Dataset Instances Features classes Domain

Breastcancer 699 9 2 Biology
Churn 3150 16 2 Telecom
IonosphereEW 351 34 2 Electromagnetic
KrvskpEW 3196 36 2 Game
SpectEW 267 22 2 Biology
Vote 300 16 2 Politics
Zoo 101 16 6 Artificial

Table 3  Comparative analysis 
using the accuracy of AEO-
DMOA and other MH methods

Dataset PSO MVO WOA SSA AEO DMOA AEO-DMOA

Breastcancer 99.1401 99.1473 99.1255 99.1620 99.1499 99.1626 99.2032
Churn 89.6476 92.9740 95.5873 96.3150 94.8934 95.2101 96.4569
IonosphereEW 93.1179 93.1345 92.3234 92.6408 92.9917 93.5513 92.5147
KrvskpEW 96.3220 96.7343 96.0780 96.4841 96.9089 96.9208 97.1065
SpectEW 87.0948 87.2818 86.0475 86.8869 87.0594 87.4325 87.5323
Vote 64.0552 64.3513 63.2006 63.9436 64.3290 63.6271 64.5523
Zoo 96.7110 97.7109 96.9901 96.4038 97. 6132 97.3910 97.8537

Table 4  Comparative analysis 
using average OFS of AEO-
DMOA and the MH methods

Daraset PSO MVO WOA SSA AEO DMOA AEO-DMOA

Breastcancer 9 9 9 9 8 8 8
Churn 14 13 9 11 8 11 9
IonosphereEW 4 5 4 4 4 5 4
KrvskpEW 31 29 31 29 27 22 25
SpectEW 11 11 14 11 12 10 9
Vote 6 7 5 7 5 6 5
Zoo 13 11 8 9 6 9 6
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level of the fitness values. The results are prioritized for 
ranking based on minimum average, SD, best, and worst 
fitness values. As per Table 5, the AEO-DMOA gained 
the first rank in five out of seven datasets. DMOA showed 
the best fitness value statistics on the IonosphereEW data-
set, followed by the AEO. The developed AEO-DMOA is 
ranked five out of seven, indicating better performance due 
to switching between the algorithms. For the KrvskpEW 
dataset, DMOA showed the best fitness value performance, 
followed by AEO and AEO-DMOA, and the WOA attained 
the best Avg and SD. PSO method got the SD in both Breast-
cancer and SpectEW datasets. Overall, the results prove the 
proposed developed AEO-DMOA’s ability to balance the 
exploration and exploitation phases.

An MH method that reaches a very low fitness value in 
the smallest number of iterations performs best. The charac-
teristic average convergence curves for 100 iterations by the 
introduced AEO-DMOA and other MH methods are shown 
in Fig. 2. The number of iterations is plotted horizontally, 
while fitness values averaged over 20 independent runs are 
plotted vertically. From this figure, the AEO-DMOA con-
verges faster speed compared to others on five out of seven 
datasets. For IonosphereEW and KrvskpEW datasets, the 
proposed AEO-DMOA performed slightly inferior to AEO 
and DMOA.

Table 5  Comparative 
performance analysis of the 
fitness values from different 
MH methods

Dataset Metric PSO MVO WOA SSA AEO DMOA AEO-DMOA

Breastcancer Best 0.0160 0.0160 0.1605 0.0160 0.1605 0.0160 0.0158
Worst 0.1095 0.0893 0.0955 0.0816 0.0695 0.0765 0.0589
Avg 0.0185 0.0184 0.0187 0.0183 0.0181 0.0182 0.0178
SD 0.0008 0.0010 0.0010 0.0011 0.0010 0.0011 0.0010
Rank 6 5 7 4 2 3 1

Churn Best 0.0418 0.0422 0.0403 0.0406 0.0393 0.0415 0.0393
Worst 0.1346 0.1345 0.0817 0.0491 0.0896 0.0998 0.0484
Avg 0.1112 0.0774 0.0495 0.0431 0.0541 0.0657 0.0417
SD 0.0354 0.0353 0.0119 0.0025 0.0238 0.0216 0.0017
Rank 7 6 3 2 4 5 1

IonosphereEW Best 0.0904 0.0848 0.1045 0.0903 0.0819 0.0712 0.0862
Worst 0.0692 0.0694 0.0773 0.0742 0.0726 0.0687 0.1051
Avg 0.0692 0.0694 0.0773 0.0742 0.0683 0.0651 0.0757
SD 0.0072 0.0075 0.0094 0.0080 0.0061 0.0035 0.0063
Rank 3 4 7 5 2 1 6

KrvskpEW Best 0.0500 0.0518 0.0519 0.0546 0.0426 0.0442 0.0493
Worst 0.0451 0.0502 0.0404 0.0475 0.0427 0.0353 0.0450
Avg 0.0264 0.0373 0.0236 0.0379 0.0380 0.0205 0.0312
SD 0.0049 0.0077 0.0036 0.0099 0.0061 0.0079 0.0062
Rank 4 5 2 7 6 1 3

SpectEW Best 0.1227 0.1390 0.1338 0.1227 0.1263 0.1162 0.1032
Worst 0.1328 0.1307 0.1444 0.1350 0.1328 0.1219 0.1216
Avg 0.1328 0.1307 0.1444 0.1350 0.1271 0.1286 0.1266
SD 0.0066 0.0099 0.0088 0.0086 0.0107 0.0076 0.0071
Rank 5 4 7 6 3 2 1

Vote Best 0.3756 0.3712 0.3824 0.3734 0.3748 0.3743 0.3703
Worst 0.3597 0.3574 0.3674 0.3615 0.3568 0.3542 0.3413
Avg 0.3597 0.3565 0.3674 0.3615 0.3574 0.3644 0.3546
SD 0.0074 0.0058 0.0082 0.0074 0.091 0.0063 0.0051
Rank 4 2 7 5 3 6 1

Zoo Best 0.0731 0.0731 0.0620 0.0421 0.0403 0.0573 0.0413
Worst 0.0406 0.0369 0.0406 0.0315 0.0383 0.0377 0.0292
Avg 0.0406 0.0369 0.0406 0.0315 0.0327 0.0313 0.0296
SD 0.0090 0.0135 0.0109 0.0066 0.0074 0.0065 0.0069
Rank 7 5 6 3 4 2 1
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4.4  Benchmark Functions

The developed AEO-DMOA is also applied to solve com-
mon global optimization problems, using twenty-eight 
benchmark test functions, eighteen CEC2017 functions, and 
ten CEC2019 test functions. The AEO-DMOA is compared 
with several other methods, and the results are given in this 
section.

4.4.1  CEC2017

To assess the effectiveness of the AEO-DMOA approach, 
three groups of test functions with various features are used. 
Many authors widely use these functions in the literature to 
test the effectiveness of different optimization methods [41]. 
The functions f1 to f7 , are called unimodal functions, which 
have a single extreme point in the search domain, as given 
in Table 6. Functions f8 to f13 , are called multimodal func-
tions, which have more than an extreme solution and f14 to 

Fig. 2  Convergence analysis of the AEO-DMOA and other MH methods for a Breastcancer, b Churn, c IonosphereEW, d KrvskpEW, e 
SpectEW, f Vote, and g Zoo datasets
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f18  are multimodal functions with fixed dimensions. These 
functions, along with their details, are given in Table 6. Fig-
ures 3, 4, and 5 show the search spaces for unimodal, multi-
modal, and multimodal with fixed dimensions.

The statistical results from the eighteen functions are pro-
vided in Table 7. Each MH algorithm is ranked based on the 
minimum average fitness value followed by the minimum 
SD of the fitness values. The results show that AEO-DMOA 
acquires the best results against its competitors in five out 
of seven unimodal test functions, four out of six multimodal 
test functions, and four out of five multimodal test functions 
with fixed dimensions. WOA is the second best method after 
AEO-DMOA, followed by AEO, PSO, DMOA, MVO, and 
SSA.

The AEO-DMOA ranked first in twelve out of all the 
tested functions using the Friedman rank test. WOA got the 
first rank in  F2,  F6,  F9, and  F10, while PSO is first in  F16 and 
 F17. The superior performance of the AEO-DMOA over the 
other used MH methods validates its priority as FS over 
others. The results also indicate that AEO-DMOA processes 
high exploitation and has a high capability in exploration. 
Moreover, statistical rank tests prove that AEO-DMOA 
is statistically significant improvement compared to other 
methods.

Figure 6 depicts the convergence behavior of the AEO-
DMOA method and other MH algorithms. From these 
figures, the developed method has a smaller fitness value 

Table 6  List of CEC2017 benchmark functions

Fun type Mathematical description Dimen-
sion

Range Fi
∗

Uni-
modal

F1(x) =
∑n

i=1
x2
i

30 [− 100, 100] 100

F2(x) =
∑n

i=1
�

�

xi
�

�

+
∏n

i=1
�

�

xi
�

�

30 [− 10, 10] 200

F3(x) =
∑n

i=1

�

∑i

j−1
xj

�2 30 [− 100, 100] 300

F4(x) = maxi
{

|

|

xi
|

|

;1 ≤ i ≤ n
}

30 [− 100, 100] 400

F5(x) =
∑n−1

i=1

�

100
�

xi+1 − x2
i

�2�

xi − 1
�2
�

30 [− 30, 30] 500

F6(x) =
∑n

i=1

��

xi + 0.5
��2 30 [− 100, 100] 600

F7(x) =
∑n

i=1
ix4

i
+ random[0, 1⟩ 30 [− 1.28, 1.28] 700

Multi-
modal F8(x) =

∑n

i=1
− xisin

�

�

�

�

xi
�

�

�

30 [− 500, 500] 800

F9(x) =
∑n

i=1

�

x2
i
− 10coscos

�

2�xi
�

+ 10
�

30 [− 5.12, 5.12] 900

F10(x) = −20exp

�

−0.2

�

1

n

∑n

i=1
x2
i

�

− exp
�

1

n

∑n

i=1
coscos

�

2�xi
�

�

+ 20 + e
30 [− 32, 32] 1000

F11(x) =
1

4000

∑n

i=1
x2
i
−
∏n

i=1
coscos

�

xi
√

i

�

+ 1
30 [− 600, 600] 1100

F12(x) =
�

n

�

10sinsin
�

�y1
�

+
∑n−1

i=1

�

yi − 1
�2�

1 + 10sin2
�

�yi+1
��

+
�

yn − 1
�2
�

+
∑n

i=1
u
�

xi, 10, 100, 4
�

,

where;yi = 1 +
xi+1

4
,

u
(

xi, a, k,m
)

= {k
(

xi − a
)m

xi > a0 − a < xi < ak
(

−xi − a
)m

xi < −a

30 [− 50, 50] 1200

F13(x) = 0.1sin
2
�

3�x1

�

+
∑n

i=1
(x

i
− 1)2

�

1 + sin
2
�

3�x1 + 1
��

+ (x
n
− 1)21 + sin

2
�

2�x
n)

�

+
∑n

i=1
u(x

i
, 5, 100, 4) 30 [− 50, 50] 1300

Multi-
modal 
(fixed 
dim)

F14(x) =
1

500
+
∑25

j=1

1

j+
∑2

i=1(xi−aji)
2 [− 65.536, 

65.536]
1400

F15(x) =
∑11

i=1
⌊ai −

xi(b21+bix2)
b2
1
+bix3+x4

⌋

2 4 [− 5, 5] 1500

F16(x) = 4x2
1
− 2.1x4

1
+

1

3
x6
1
+ x1x2 − 4x2

2
+ 4x4

2
2 [− 5, 5] 1600

F17(x) =
(

x2 −
5.1

4�2
x2
1
+

5

�
x1 − 6

)2

+ 10

(

1 −
1

8�

)

coscosx1 + 10
2  × 1: [− 5, 10]

 × 2: [0, 15]
1700

F18(x) = ⌊1 +
�

x1 + x2 + 1
�2
�

19 − 14x1 + 3x2
1
− 14x2 + 16x1x2 + 3x2

2

�

⌋ × ⌊30 +
�

2x1 − 3x2

�2
×
�

18 − 32xi + 12x2
1
+ 48x2 − 36x1x2 + 27x2

2

�

⌋

2 [− 2, 2] 1800
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than the other methods for ten functions from CEC2017 
comprising five functions from unimodal functions  (F1,  F3, 
 F4,  F5, and  F7), two multimodal functions  (F8 and  F11), and 
three multimodal functions with fixed dimension  (F14,  F16, 
and  F17). Considering all the tested functions, the devel-
oped method shows the best performance, followed by SSA, 
WOA, and DMOA and PSO is the worst. For F2, F6, F12, 

F13, and F15 functions, the developed AEO-DMOA gained 
the second-best solution.

Table 8. The results of different feature selection methods 
on CEC2017 functions (dimension = 50).

A similar performance analysis is carried out for all 
MH algorithms by increasing the dimension of CEC2017 
functions to 50. The comparative analysis supports the 

Fig. 3  Search landscape of the CEC2017 unimodal functions
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earlier claim that the developed AEO-DMOA is the best 
feature selection among all. AEO shows the second-best 
performance, followed by WOA, PSO, SSA, MVO, and 
DMOA. It must be noted that increasing the dimension-
ality of the CEC functions has certainly decreased the 
DMOA performance, but the hybridization with AEO 
does not allow the performance to decrease for the devel-
oped AEO-DMOA. This proved the cooperative relation-
ship between the two algorithms. Figure 7 shows the con-
vergence plots for CE2017 with higher dimensions for all 
MH algorithms. CEC2017 function  F16 showed the same 
average performance for all MH algorithms, as shown in 
the convergence plot, and hence ranking is based on SD.

4.4.2  CEC2019

The robustness of the developed AEO-DMOA is veri-
fied using the CEC2019 test function [42]. CEC2019 has 

ten functions, each with dimensions and search range, as 
shown in Table 9.

The comparison between the AEO-DMOA and the other 
methods of CEC2019 functions is provided in Table 10. 
From this table, the AEO-DMOA got more performance 
than other MH methods on five out of ten tested functions, 
demonstrating its worthy performance. Like earlier CEC 
function evaluations, WOA and DMOA are second best, 
followed by MVO, AEO, SSA, and PSO. The developed 
AEO-DMOA comes in the first rank in  F2,  F3,  F4,  F7, and 
 F8, WOA in the second rank in F5 F10, and PSO only first 
in F1, respectively SSA  F6 and DMOA in  F9., indicat-
ing that AEO-DMOA is significantly better than all other 
competing methods.

To further test the performance of the developed 
AEO-DMOA method to find high-quality solutions using 
CEC2019 functions, convergence behavior is plotted, as 
shown in Fig. 8. It can be seen that the AEO-DOMA has 

Fig. 4  Search space of the CEC2017 multimodal functions



 International Journal of Computational Intelligence Systems          (2023) 16:102 

1 3

  102  Page 14 of 24

the smallest fitness value of the other methods on seven 
functions, comprising  F1,  F2,  F3,  F4,  F8,  F9, and  F10 func-
tions. The developed method shows the worst performance 
for functions  F5,  F6, and  F7. However, the overall ranking 
shows that the developed AEO-DMOA has the best perfor-
mance, followed by AEO, WOA, and DMOA, while SSA 
shows the last performance on the CEC2019.

5  Discussion

One of the main goals of an efficient FS method is to 
specify the optimal number of required features for the 
machine learning task and prevent the selection of too 
many or too few features during the feature selection pro-
cess. For instance, when too many features are selected 
in a feature selection method, the probability of selecting 
redundant and irrelevant features will increase; therefore, 
the prediction accuracy will decrease. On the other hand, 

Fig. 5  Search space of the CEC2017 multimodal functions with fixed-dimension



International Journal of Computational Intelligence Systems          (2023) 16:102  

1 3

Page 15 of 24   102 

Table 7  The results of different feature selection methods on CEC2017 functions (dimension = 30)

Fun Stat PSO MVO WOA SSA AEO DMOA AEO-DMOA

F1 Mean 1.57E+02 3.24E+01 3.16E−11 8.91E+02 1.17E−02 6.42E−01 2.20E−14
SD 7.82E+01 8.55E+00 1.36E−10 4.54E+02 1.28E−02 9.42E−02 3.75E−15
Rank 7 5 2 6 3 4 1

F2 Mean 6.08E+00 6.63E+01 3.23E−09 1.77E+01 2.31E−02 1.13E+00 1.03E−05
SD 4.48E+00 4.35E+01 4.08E−09 3.77E+00 1.01E−02 5.98E−02 2.59E−06
Rank 4 7 1 6 3 5 2

F3 Mean 8.91E+03 6.12E+03 8.56E+04 7.01E+03 3.55E+02 1.45E+01 2.29E−08
SD 2.63E+03 1.78E+03 2.60E+04 4.73E+03 2.69E+02 7.38E+00 4.51E−09
Rank 7 4 6 5 3 2 1

F4 Mean 1.72E+01 2.11E+01 6.89E+01 2.03E+01 1.20E+00 6.14E−01 2.54E−06
SD 2.31E+00 9.30E+00 2.34E+01 4.60E+00 4.39E−01 5.94E−02 2.38E−06
Rank 4 6 7 5 3 2 1

F5 Mean 2.26E+04 3.85E+03 2.87E+01 9.52E+04 3.43E+01 1.12E+02 2.13E+01
SD 2.95E+04 4.27E+03 2.27E−01 8.18E+04 2.01E+01 1.46E+01 8.25E+00
Rank 2 6 3 7 4 5 1

F6 Mean 1.69E+02 2.85E+01 1.98E+00 9.39E+02 3.00E+00 9.27E+00 5.85E+00
SD 6.59E+01 7.01E+00 5.35E−01 3.20E+02 7.12E−01 1.73E−01 2.06E+00
Rank 6 5 1 7 2 4 3

F7 Mean 1.79E−01 1.36E−01 1.76E−02 5.58E−01 1.32E−02 8.00E+00 1.01E−03
SD 6.43E−02 4.54E−02 1.74E−02 1.65E−01 5.96E−03 1.84E+01 6.68E−04
Rank 5 4 3 6 2 7 1

F8 Mean − 7.31E+03 − 7.40E+03 − 9.66E+03 − 6.54E+03 − 5.58E+03 − 4.46E+03 − 1.15E+04
SD 6.92E+02 7.40E+02 1.51E+03 6.34E+02 9.79E+02 7.35E+02 1.24E+03
Rank 4 3 2 5 6 7 1

F9 Mean 9.97E+01 1.67E+02 1.18E−01 8.98E+01 2.75E+01 1.99E+00 3.83E+01
SD 2.08E+01 2.42E+01 5.28E−01 2.37E+01 9.77E+00 1.15E−03 2.89E+01
Rank 6 7 1 5 3 2 4

F10 Mean 4.74E+00 3.59E+00 3.07E−07 9.06E+00 2.34E−02 9.05E−01 5.83E−06
SD 4.39E−01 6.09E−01 5.96E−07 1.30E+00 8.23E−03 6.28E−02 2.34E−06
Rank 6 5 1 7 3 4 2

F11 Mean 2.49E+00 1.28E+00 7.88E−02 9.33E+00 5.37E−02 4.16E−02 5.09E−12
SD 7.13E−01 8.75E−02 2.46E−01 3.00E+00 5.00E−02 3.15E−02 1.15E−11
Rank 6 5 4 7 3 2 1

F12 Mean 9.36E+00 8.25E+00 3.49E−01 2.16E+01 3.55E−01 1.83E+00 3.31E−01
SD 4.92E+00 3.77E+00 7.00E−02 1.47E+01 2.84E−01 2.25E−02 4.52E−01
Rank 6 5 2 7 3 4 1

F13 Mean 1.38E+02 1.55E+01 1.22E+00 2.68E+04 2.07E+00 2.80E+00 1.08E+00
SD 1.40E+02 1.17E+01 3.29E−01 4.05E+04 4.89E−01 3.71E−03 1.29E+00
Rank 6 5 2 7 3 4 1

F14 Mean 1.78E+00 3.10E+00 4.47E+00 4.09E+00 5.79E+00 1.57E+02 1.61E+00
SD 2.16E+00 4.04E+00 4.55E+00 3.62E+00 4.47E+00 1.42E+02 2.18E+00
Rank 2 3 5 4 6 7 1

F15 Mean 1.81E−03 5.46E−03 6.78E−03 8.25E−03 3.66E−03 1.27E−01 1.17E−03
SD 4.38E−03 8.07E−03 3.49E−04 8.55E−03 7.20E−03 9.28E−02 1.30E−03
Rank 2 4 5 6 3 7 1

F16 Mean − 1.03E+00 − 1.03E+00 − 1.03E+00 − 1.03E+00 − 1.03E+00 5.55E−01 − 1.03E+00
SD 8.74E−15 9.95E−06 4.18E−07 2.16E−13 5.12E−07 1.68E+00 1.44E−11
Rank 1 6 4 2 5 7 3

F17 Mean 3.98E−01 3.98E−01 4.00E−01 3.98E−01 3.98E−01 5.93E−01 3.98E−01
SD 5.70E−14 1.50E−05 3.13E−03 2.47E−03 9.51E−04 3.13E−01 2.28E−07
Rank 1 3 6 5 4 7 2

F18 Mean 3.00E+00 3.00E+00 4.36E+00 3.00E+00 3.00E+00 1.05E+02 2.35E+00
SD 1.43E−13 9.60E−05 6.08E+00 1.43E−12 1.13E−03 1.33E+02 6.04E+00
Rank 2 4 7 3 5 6 1
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Fig. 6  Convergence curves of the AEO-DMOA and other methods using the tested CEC2017 functions (dimension = 30)
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Fig. 6  (continued)
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Table 8  The results of different feature selection methods on CEC2017 functions (dimension = 50)

Fun Stat PSO MVO WOA SSA AEO DMOA AEO-DMOA

F1 Mean 1.41E+03 2.89E+02 6.89E−01 7.15E−01 7.64E−12 4.67E+03 3.42E−11
SD 3.93E+02 8.19E+01 2.52E−01 1.02E−01 1.64E−11 1.42E+03 5.21E−11
Rank 6 5 3 4 1 7 2

F2 Mean 3.01E+01 3.00E+11 2.66E−01 1.19E+00 1.13E−08 3.89E+01 5.36E−05
SD 9.15E+00 1.34E+12 7.44E−02 1.10E−01 2.96E−08 5.76E+00 9.85E−06
Rank 5 7 3 4 1 6 2

F3 Mean 2.90E+04 3.25E+04 2.95E+03 3.88E+01 2.57E+05 2.34E+04 4.76E−06
SD 8.18E+03 5.90E+03 1.34E+03 1.71E+01 5.43E+04 1.99E+04 1.96E−05
Rank 5 6 3 2 7 4 1

F4 Mean 3.09E+01 5.07E+01 5.85E+00 6.50E−01 6.67E+01 2.47E+01 8.34E−06
SD 2.74E+00 8.41E+00 1.73E+00 7.71E−02 2.78E+01 3.92E+00 7.02E−06
Rank 5 6 3 2 7 4 1

F5 Mean 3.10E+05 2.81E+04 1.60E+02 1.38E+02 4.87E+01 8.87E+05 4.65E+01
SD 1.33E+05 2.11E+04 1.90E+02 1.89E+01 4.70E−02 4.62E+05 1.09E+01
Rank 6 5 4 3 2 7 1

F6 Mean 1.33E+03 2.81E+02 8.05E+00 1.44E+01 3.65E+00 4.50E+03 1.04E+01
SD 3.21E+02 6.08E+01 1.35E+00 2.45E−01 9.51E−01 1.82E+03 3.51E+00
Rank 6 5 2 4 1 7 3

F7 Mean 7.10E−01 5.90E−01 4.14E−02 8.56E+00 2.22E−02 1.84E+00 1.28E−03
SD 2.15E−01 1.69E−01 1.60E−02 8.29E+00 2.66E−02 4.70E−01 1.03E−03
Rank 5 4 3 7 2 6 1

F8 Mean − 1.04E+04 − 1.14E+04 − 8.21E+03 − 6.95E+03 − 1.53E+04 − 9.02E+03 − 1.85E+04
SD 1.18E+03 8.92E+02 1.87E+03 8.65E+02 2.29E+03 1.24E+03 2.60E+03
Rank 4 3 6 7 2 5 1

F9 Mean 2.67E+02 3.32E+02 7.09E+01 2.00E+00 1.80E+01 2.26E+02 4.18E+01
SD 5.26E+01 4.70E+01 3.10E+01 2.14E−02 8.05E+01 3.19E+01 6.56E+01
Rank 6 7 4 1 2 5 3

F10 Mean 7.52E+00 7.16E+00 2.99E−01 6.41E−01 1.29E−07 1.15E+01 1.60E−05
SD 5.30E−01 4.53E+00 3.40E−01 1.93E−02 1.48E−07 9.07E−01 5.27E−06
Rank 6 5 3 4 1 7 2

F11 Mean 1.85E+01 3.56E+00 4.80E−01 2.35E−02 1.23E−01 4.09E+01 1.23E−10
SD 2.03E+01 6.09E−01 1.38E−01 1.63E−02 3.02E−01 8.05E+00 2.60E−10
Rank 6 5 4 2 3 7 1

F12 Mean 2.65E+03 3.30E+01 1.15E+00 1.58E+00 1.89E−01 2.26E+03 6.71E−01
SD 4.84E+03 3.94E+01 3.75E−01 2.35E−02 8.48E−02 3.83E+03 4.82E−01
Rank 7 5 3 4 1 6 2

F13 Mean 1.85E+05 4.25E+02 6.44E+00 4.80E+00 2.33E+00 8.46E+05 3.63E+00
SD 1.76E+05 7.32E+02 1.70E+00 2.41E−02 6.95E−01 7.71E+05 2.07E+00
Rank 6 5 4 3 1 7 2

F14 Mean 1.45E+00 1.93E+00 6.67E+00 1.03E+02 3.65E+00 2.92E+00 1.64E+00
SD 6.01E−01 2.25E+00 4.24E+00 1.45E+02 3.75E+00 2.30E+00 1.67E+00
Rank 1 3 6 7 5 4 2

F15 Mean 1.85E−03 6.58E−03 3.61E−03 1.01E−01 7.70E−04 5.46E−03 2.92E−03
SD 4.37E−03 8.75E−03 7.22E−03 6.94E−02 4.63E−04 7.58E−03 6.27E−03
Rank 2 6 4 7 1 5 3

F16 Mean − 1.03E+00 − 1.03E+00 − 1.03E+00 1.70E−01 − 1.03E+00 − 1.03E+00 − 1.03E+00
SD 1.14E−13 8.62E−06 4.82E−07 8.34E−01 1.49E−07 1.78E−13 1.54E−11
Rank 1 2 3 7 4 5 6

F17 Mean 3.98E−01 3.98E−01 3.98E−01 7.73E−01 4.00E−01 3.98E−01 3.98E−01
SD 4.85E−15 1.36E−05 6.28E−05 7.97E−01 3.13E−03 3.24E−13 5.74E−12
Rank 1 2 3 7 6 4 5

F18 Mean 3.00E+00 3.00E+00 3.00E+00 8.96E+01 4.35E+00 3.00E+00 4.93E+00
SD 4.17E−14 6.79E−05 1.04E−03 1.06E+02 6.04E+00 2.09E−12 8.61E+00
Rank 1 2 3 7 5 4 6
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Fig. 7  Convergence curves of the AEO-DMOA and other methods using the tested CEC2017 functions (dimension = 50)
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Fig. 7  (continued)

Table 9  CEC2019 benchmark 
functions

No Function F
∗
I
= F

I(x
∗) Dimension Search range

1 Storn’s Chebyshev Polynomial Fitting Problem 1 9 [− 8192, 8192]
2 Inverse Hibert Matrix Problem 1 16 [− 16384, 16384]
3 Lernard-Jones minimum energy cluster 1 18 [− 4, 4]
4 Rastrigin’s function 1 10 [− 100, 100]
5 Griewangk’s function 1 10 [− 100, 100]
6 Weierstrass function 1 10 [− 100, 100]
7 Modified Schwefel’s function 1 10 [− 100, 100]
8 Expanded Schaffer’s F6 function 1 10 [− 100, 100]
9 Happy Cat function 1 10 [− 100, 100]
10 Ackley function 1 10 [− 100, 100]
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when too few features are selected, they cannot represent 
all the information of original features [40]. However, the 
developed AEO-DMOA considered that the number of 
OFS in their fitness function showed better performance, 
and the number of final selected features by these methods 
were fewer.

Exploration of the search space and exploitation of the 
best solutions found are two conflicting objectives that 
must be taken into account when using MH methods. From 
the results provided above, AEO-DMOA demonstrated a 
better performance in balancing the factors of exploration 
and exploitation and better convergence speed.

Table 10  Results of the 
AEO-DMOA using CEC2019 
functions

Fun Stat PSO MVO WOA SSA AEO DMOA AEO-DMOA

F1 Mean 5.67E+05 4.02E+08 3.43E+10 1.49E+11 1.32E+09 2.17E+10 9.79E+09
SD 5.74E+01 5.39E+02 5.34E+03 1.07E+04 1.50E+04 1.74E+03 1.07E+03
Rank 1 2 6 7 3 5 4

F2 Mean 1.99E+01 1.75E+01 2.03E+01 1.76E+01 1.74E+01 4.09E+01 1.74E+01
SD 2.92E−01 1.79E−01 1.29E+01 1.70E−01 7.24E−02 1.14E+01 3.29E−02
Rank 5 3 6 4 2 7 1

F3 Mean 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01
SD 1.73E−03 3.44E−03 8.80E−04 9.95E−03 2.45E−03 1.16E−03 3.40E−04
Rank 4 6 2 7 5 3 1

F4 Mean 1.69E+04 1.94E+02 1.32E+02 2.19E+03 4.27E+02 6.48E+01 6.19E+01
SD 4.69E+03 1.08E+02 1.17E+02 1.31E+03 7.32E+02 1.60E+01 8.22E+00
Rank 7 4 3 5 6 2 1

F5 Mean 5.51E+00 1.56E+00 1.16E+00 2.39E+00 1.50E+00 1.33E+00 1.30E+00
SD 4.07E−01 2.00E−01 1.22E−01 3.15E−01 2.74E−01 8.90E−02 2.20E−01
Rank 7 5 1 6 4 3 2

F6 Mean 1.24E+01 1.16E+01 7.29E+00 1.08E+01 1.20E+01 1.08E+01 1.09E+01
SD 7.27E−01 9.46E−01 1.82E+00 1.40E+00 7.85E−01 9.89E−01 1.54E+00
Rank 6 4 7 1 5 2 3

F7 Mean 1.37E+03 6.55E+02 3.17E+02 8.63E+02 8.10E+02 4.91E+02 2.39E+02
SD 2.26E+02 2.79E+02 2.51E+02 2.88E+02 3.65E+02 2.97E+02 2.27E+02
Rank 7 4 2 6 5 3 1

F8 Mean 6.87E+00 6.00E+00 5.74E+00 6.37E+00 6.03E+00 5.91E+00 5.63E+00
SD 3.32E−01 6.16E−01 5.81E−01 4.50E−01 6.55E−01 6.86E−01 9.56E−01
Rank 7 4 2 6 5 3 1

F9 Mean 3.96E+03 4.46E+00 3.92E+00 1.58E+02 5.09E+00 2.92E+00 3.03E+00
SD 1.17E+03 7.37E−01 6.39E−01 1.08E+02 1.68E+00 2.94E−01 3.11E−01
Rank 7 4 3 6 5 1 2

F10 Mean 2.07E+01 2.06E+01 2.00E+01 2.05E+01 2.02E+01 2.05E+01 2.05E+01
SD 1.08E−01 1.34E−01 7.76E−02 1.09E−01 1.90E+00 1.19E−01 1.33E−01
Rank 7 6 1 3 2 4 5
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Fig. 8  Convergence behaviour for CEC2019 functions
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Based on the previous results and discussion, the devel-
oped AEO-DMOA has a high ability to explore the feasible 
region which contains the optimal solution. However, the 
time complexity of AEO-DMOA still needs more improve-
ments, when applied to handle high-dimensional data.

6  Conclusion and Future Work

The paper introduces an FS-based approach, named AEO-
DMOA, based on a hybridization of AEO and DMOA 
methods to improve the capabilities in the exploration and 
exploitation phases. The optimization starts by dividing 
the defined number of iterations into two parts; in the first 
half, AEO while DMOA is employed on the remaining 
number of iterations. The efficiency of the AEO-DMOA 
is investigated using seven datasets collected from the 
UCI repository, and an extensive study is performed on 
twenty-eight test functions, eighteen CEC2017, and ten 
CEC2019. The simulation and statistical results show 
that AEO-DMOA is competitive with other well-known 
MH methods in terms of accuracy, the number of selected 
OFS, and fitness values. In addition, the AEO-DMOA pro-
vides reliable performance on high-dimensional functions. 
The developed AEO-DMOA method can be used in other 
applications such as renewable energy, signal processing, 
and big data. Also, it can be adopted for solving other 
complex optimization problems such as vehicle routing, 
timetabling, and engineering design.
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