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Abstract
Over the past decades, different classification approaches with different characteristics have been developed to achieve more 
efficient and accurate results. Although the loss function used in the training procedure is a significant influential factor in 
the performance of classification models, it has been less considered. In general, in previous research, two main categories 
of continuous and semi-continuous distance-based loss functions are often applied to estimate the unknown parameters 
of classification models. Among these, continuous distance-based cost functions are among the most commonly used and 
most popular loss functions in diverse statistical and intelligent classifiers. In particular, the fundamental of this category 
of the loss functions is based on the continuous reduction of the distance between the fitted and actual values with the aim 
of improving the performance of the model. However, since the goal function of classification models belongs to the class 
of discrete ones, the application of learning procedures based on a continuous distance-based function is not coordinated 
with the nature of these problems. Consequently, it is theoretically illogical and practically at least inefficient. Accordingly, 
in order to fill this research gap, the discrete direction-based loss function in the form of mixed-integer programming is 
proposed in the training procedure of statistical, shallow/deep intelligent classifiers. In this paper, the impact of the loss 
function type on the classification rate of the classifiers in the energy domain is investigated. For this purpose, the logistic 
regression (LR), multilayer perceptron (MLP), and deep multilayer perceptron (DMLP), which are respectively among the 
most widely used statistical, shallow intelligent, and deep learning classifiers, are exemplarily chosen. Numerical outcomes 
from 13 benchmark energy datasets show that, in all benchmarks, the performances of the discrete direction learning-based 
classifiers, i.e., discrete learning-based logistic regression (DILR), discrete learning-based multilayer perceptron (DIMLP), 
and discrete learning-based deep multilayer perceptron (DIDMLP), is higher than its conventional versions. In addition, the 
proposed DILR, DIMLP, and DIDMLP models can on average yield an 89.88%, 94.53%, and 96.02% classification rate, 
which indicate a 6.78%, 5.90%, and 4.69% improvement from the classic versions, which only produce an 84.17%, 89.26%, 
and 91.72% classification rate. Consequently, the discrete direction-based learning methodology can be a more suitable, 
effective, and valuable alternative for training processes in statistical and shallow/deep intelligent classification models.

Keywords Classification processes · Discrete and continuous learning algorithms · Classification rate · Logistic regression 
(LR) · Multilayer perceptrons (MLPs) · Deep multilayer perceptrons (DMLPs) · Energy applications

Abbreviations
ANN  Artificial neural network
BN  Bayesian network
CNN  Convolutional neural networks
DT  Decision tree
DMLP  Deep multilayer perceptron

DIDMLP  Discrete learning-based deep multilayer 
perceptron

DILR  Discrete learning-based logistic regression
DIMLP  Discrete learning-based multilayer perceptron
XGBoost  Extreme gradient boost
ELM  Extreme learning machine
FN  False negative
FP  False positive
LGBM  Light gradient boosting machine
KNN  K-nearest neighbor
GA  Genetic algorithm
MLP  Multilayer perceptron
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SVM  Support vector machine
NB  Naïve Bayes
RF  Random forest
LDA  Linear discriminant analysis
LR  Logistic regression
TN  True negative
TP  True positive

1 Introduction

Classifiers in the energy sector play a fundamental role in 
the decisions' quality made by resource managers, policy-
makers, and planners. A variety of classification methods 
with different characteristics such as certainty (Fuzzy and/
or Crisp), type (Statistical and/or Intelligent), complexity 
(Deep and/or Shallow), linearity (Linear and/or Nonlinear), 
structure (Single and/or Hybrid), cost function (Distance 
and/or Direction) etc., have been developed for classifica-
tion. These models have been applied in various applica-
tions of the energy sector such as system stability, network 
efficiency, wave energy, solar energy, electrical energy, gas 
turbine, and consumption management. Some well-known 
statistical approaches in this field include Linear Discrimi-
nant Analysis (LDA), K-Nearest Neighbor (KNN), Logistic 
Regression (LR), Naïve Bayes (NB), and Bayesian Network 
(BN). Support Vector Machine (SVM), Multilayer Percep-
tron (MLP), Artificial Neural Network (ANN), Decision 
Tree (DT), Random Forest (RF), Light Gradient Boosting 
Machine (LGBM), Extreme Learning Machine (ELM), 
Extreme Gradient Boost (XGBoost) are among the most 
well-known intelligent classifiers. Deep Multilayer Percep-
trons (DMLP) and Convolutional Neural Networks (CNN) 
are also two deep intelligent classifiers that are applied in the 
energy domain more than other deep classifiers.

Logistic regression, multilayer perceptron, and deep multi-
layer perceptron are common linear single statistical and non-
linear single shallow/deep intelligent classifiers that are exten-
sively applied in modeling and data mining [1]. The distance 
and direction are also among the most popular and widely used 
cost/loss functions in the different classification approaches [2]. 
Musbah et al. [3] have compared and evaluated the performance 
of some different classifiers in order to determine the most 
accurate ones to specify the energy source for supplying the 
demand. These classifiers include the Gaussian Naïve Bayes, 
K-Nearest Neighbor (KNN), Decision Tree (DT), and Random 
Forest (RF). Empirical results of this study indicates that the 
DT classifier can outperform other classification methods. Song 
et al. [4] have assessed and compared the accuracy of KNN, 
DT, DA, and SVM classifiers to classify energy consumers. 
Their results show that the KNN can yield more accurate results 
than other classifiers. Chen et al. [5] have evaluated the perfor-
mance of RF, DT, and Extreme Gradient Boost (XGBoost) tree 

methods in order to classify the energy requirements of rural 
and urban households. In this study, the XGBoost yields the 
best results. Banihashemi et al. [6] have applied the DT method 
for classifying the level of energy consumption of buildings. 
Wang et al. [7] have designed the CNN classifier to forecast 
solar irradiance based on weather classification. The final goal 
is photovoltaic power prediction by using weather classifica-
tion. Empirical results of this study indicates that the proposed 
model outperforms MLP, KNN, and SVM methods. Liu et al. 
[8] have classified solar radiation zones using the SVM. The 
parameters of the model are determined by the Genetic Algo-
rithm (GA) optimization.

Yan et al. [9] have developed a Bayes classification method 
to classify household appliances. Their results show that their 
developed classifier can yield desired accuracy. Wang et al. [10] 
have established a multi-feature KNN model to specify occu-
pancy distribution for controlling the ventilation, heating, and 
air-conditioning systems in buildings. Jiang and Yao [11] have 
established a C-Support Vector classifier for modeling personal 
thermal sensation. The findings of this study can be used for 
correctly setting the conditioning system. Shao et al. [12] have 
predicted electricity prices in Canada and New York markets 
by using a Bayesian ELM classifier. The presented model had 
higher performance than other considered classifiers. Bai et al. 
[13] have classified the Chinese climate for building energy 
efficiency. Protásio et al. [14] have classified Eucalyptus clones 
for combustion and energy purposes. Sabia et al. [15] have 
classified the energy performances of wastewater treatment 
plants. Patnaik et al. [16] have diagnosed microgrid faults in 
the XGBoost classifier, which is equipped with preprocessing 
and feature extraction procedures. Radhakrishnan et al. [17] 
have detected disturbances in the photovoltaic power network 
by applying hybrid structures of NB, J48 DT, and LR mod-
els. They indicate that their presented model can yield better 
accuracy than individual classifiers. Eskandari et al. [18] have 
also classified the fault of photovoltaic systems based on the 
hybrid structure of KNN, SVM, and NB methods. They also 
indicate that their proposed classifier can yield more accurate 
results that its components. Li et al. [19] have designed a hybrid 
structure of the ELM, XGBoost, and the LGBM for detecting 
the Intrusion of cyber-physical energy systems. Bi et al. [20] 
have designed an ANN classifier to diagnose faults in wind 
turbine generators.

In addition to the type of classifier, that significantly affects 
the obtained performance, the type of cost/loss function is 
another factor that may meaningfully affect the classification 
rate. Although several researchers have used regular cost/loss 
functions such as mean squared error (MSE), sum squared 
error (SSE), mean absolute error (MAE), root mean squared 
error (RMSE), etc. However, some others have developed new 
or compared existing cost/loss functions in order to find the 
desired ones for classification purposes. In general, cost/loss 
functions that are used in different classifiers are categorized 
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into two main categories (1) Distance-based and (2) Direction-
based cost/loss functions. In distance-based cost/loss func-
tions, the distance, or difference of actual and predicted values; 
or their probability is considered as cost function; while, in 
direction-based cost/loss functions, the matching of actual and 
predicted values, or their probability is considered as cost func-
tion. Moreover, cost/loss functions can be classified into three 
classes, including (1) Continuous, (2) Semi-continuous, and (3) 
Discrete cost/loss functions based on the type of function. The 
outputs of a continuous-based cost/loss function can continu-
ously take the whole of values in its relevant range. While, in 
the semi-continuous cost/loss functions, the output can continu-
ously change only in some parts of its relevant range. Similarly, 
in the discrete cost/loss functions, the output can only take some 
discrete values. In this way, the cost/loss functions can be gen-
erally categorized into six main categories as shown in Fig. 1.

Zhang et al. [21] have proposed tangent loss, as a con-
tinuous distance-based loss function, that calculates the 
tangent of differences between actual and predicted values. 
Their results demonstrate the higher performance of the 
proposed tangent loss-based deep neural networks than 
cross-entropy-based classifiers in natural language pro-
cessing and computer vision tasks. Hazarika and Gupta 
[22] have developed a new ε-insensitive Huber loss func-
tion, that belongs to the semi-continues distance-based 
loss functions, for dealing with noise in datasets. The 
results show that the random vector functional link with 
the proposed loss function outperforms SVM and ELM in 
biomedical datasets. Ozyildirim and Kiran [23] have stud-
ied the relationships between loss functions and the accu-
racy of classifiers. Their results indicate that, in certain 
circumstances, the MLP based on the squared hinge loss 
function is superior to the classifier with cross-entropy. 
Torre et al. [24] have presented a weighted kappa loss 
function for deep learning classifiers that fall in the cat-
egory of the continuous direction-based loss function. 
Based on obtained results, the superiority of kappa-based 

classifiers to the logarithmic-based classifier is confirmed. 
Liang and Zhang [25] have designed a support vector 
machine based on the quantile function for classification 
purposes of uncertain data. Their results show the higher 
performance of the classifier with ε-insensitive pinball 
loss function than the hinge loss function for classifying 
real-world and artificial datasets. In other research, the 
SVM is applied with semi-continuous direction-based loss 
functions, such as hinge loss [26], ramp loss [27], and 
truncated pinball loss [28], rescaled hinge loss [29] in the 
learning process.

Literature indicates that despite the fact that discrete 
direction-based cost/loss functions have more consist-
ency with goal function of classification; the continuous 
distance-based cost/loss functions are often used. There-
fore, presenting a classification methodology that uses the 
discrete distance-based loss function for the training pro-
cedure and optimizing the model's parameters, to match 
the training procedure with the goals of classification, is 
an efficient and reasonable approach. It is also a supe-
rior approach to conventional classification approaches 
for achieving maximum classification rates. Accordingly, 
by replacing the usual learning process with the discrete 
learning-based procedure in the logistic regression, multi-
layer perceptron, and deep multilayer perceptron classifiers 
as the most widely used and popular statistical and shal-
low/deep intelligent models, the new versions of continu-
ous learning-based LR, MLP, and DMLP are developed. 
Also, the evaluation of the efficiency and superiority of the 
discrete learning-based logistic regression, discrete learn-
ing-based multilayer perceptron, discrete learning-based 
deep multilayer perceptron to a continuous learning-based 
LR, MLP, and DMLP classifiers in various domains of 
energy sector based on 13 widely used benchmark datasets 
in the UCI database are demonstrated based on the clas-
sification rate.

Fig. 1  Cost/loss functions clas-
sification chart
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Accordingly, the primary goal of this study is to conduct a 
comparative study of the classification rate of discrete learn-
ing-based statistical and shallow/deep intelligent models 
against continuous learning-based versions that are applied 
in the energy decision-making sector. In other words, the 
main purpose of this paper is to highlight the significance of 
the direction learning-based procedure in the classification 
modeling, on the quality of decisions made in the energy 
sector with statistical and intelligent decision support sys-
tems. The rest of the paper is designed in the following style. 
In Sect. 2, the multilayer perceptron based on the concep-
tion of the discrete direction-based learning process is math-
ematically formulated as an example. In Sect. 3, the selected 
datasets for evaluating the discrete learning-based models 
are described and the evaluation metrics of the models are 
introduced. In addition, the analysis and comparison of the 
discrete direction learning-based models' performances and 
the conventional models are presented in Sect. 4. In Sect. 5, 
some discussions and future research gaps are suggested. 
Lastly, the conclusions are presented in Sect. 6.

2  The Discrete Direction Learning‑Based 
Multilayer Perceptron (DIMLP)

The multilayer perceptron is a common intelligent classifica-
tion method that is extensively used in modeling and data 
mining. The main reasons for the popularity of the MLP are 
basically related to its desired accuracy which comes from 
some unique features, including self-adaptive data-driven 
procedures, flexible nonlinear modeling, and general approx-
imation. Despite all advantages reported for the MLP, it also 
has some disadvantages and limitations that may reduce its 
performance and accuracy. Noteworthy endeavor has been 
made in the literature to improve the accuracy and classi-
fication rate of multilayer perceptrons. However, in all of 
them, a common continuous distance-based loss function 
is applied in their training procedures. In this way, in this 
paper, a novel multilayer perceptron has been established 
based on a discrete learning-based algorithm.

Commonly, an m-variable MLP binary classifier, com-
prising the target variable Y ∈ {−1,+1} and m features, 
X1,X2, ...,Xm ∈ ℜ can be generally shown as follows [30]:

where, �j, �ij are connection weights of the network, g and 
f  are respectively the hidden and output layer activation 
functions,p and m are respectively the number of input and 
hidden nodes, N is the sample size, and ut is the stochastic 
disturbance term. A popular training method for estimating 

(1)

Yt = f

(
�0 +

p∑
j=1

�j.g

(
�0j +

m∑
i=1

�i,j.Xt, i

))
+ ut t = 1, 2, 3, ...,N

the unknown weights and biases of MLP is according to a 
gradient optimization in which a continuous distance-based 
loss function (sum squared of misclassification) is mini-
mized [31]. Regardless of the fact that this loss function is 
one of the widely used and popular and in the learning pro-
cess of classifiers in various applications. The inconsistency 
between the nature of the loss function, which is continuous 
based on distance, and the purpose of classification models, 
which is discrete, is unreasonable and inefficient.

The idea of the training procedure based on continuous-
distance is such that at each stage of training, the fitted val-
ues are continuously approaching the actual values, which 
is in coordination with the goals of causal models and time 
series that have continuous outputs. Therefore, using this 
type of learning process in causal and time series models 
is efficient and rational due to improving the performance 
of the model. In the case of classification models and time 
series classification, the output of this type of learning 
process should be reported in a discrete form. Therefore, 
after the end of the learning process, the predicted values 
convert to discrete variables. However, if the direction of 
the training and discretization process is aligned, the use 
of such procedures is effectual and efficient. Otherwise, 
if the direction of the training procedure and discretiza-
tion is non-aligned, the impact of the training procedure is 
eliminated, and therefore, by imposing the computational 
cost, this type of training procedure is unreasonable and 
quite ineffective. Generally, developing accurate classifiers 
in the light of a continuous-distance learning-based model 
may be totally unsuitable and quite inefficient.

Therefore, in this paper, to achieve a more reasonable 
training process for an intelligent classifier, a discrete 
direction-based learning methodology is presented and 
implemented on the multilayer perceptrons. The principal 
notion of the presented training methodology is to maxi-
mize a discrete matching function of the predicted and 
actual values instead of minimizing a continuous distance-
based loss function. Based on this, the procedure of esti-
mating the unknown parameters of the MLP in the discrete 
direction-based learning method can be shown as follows:

where, the Match
(
yt, ŷt

)
 is the matching function of the 

actual ( yt ∈ {−1,+1} ) and the predicted ( ̂yt ∈ ℜ ) at time t, 
which is shown in the binary form as follows:

(2)Max
N∑
t=1
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�
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where, the ŷs
t
= Std.

(
ŷ
t

)
 is the standardized valve of the ŷt at 

time t which compute as follows:

where, the ŷMin , ŷMax , and ŷ
t
 are the Minimum, maximum, 

and Mean of ŷt . Now, Eq. (2) can be rewritten by the Sign 
function as follows:

Or in a more simplified as:

In this manner, we have that:

Lastly, using the sigmoid (Sigm.) and linear function as hid-
den and output transfer functions, respectively, Eq. (7) can be 
converted to a mixed-integer programming form as Eq. (8). In 
which, � and M are a very small and a very large very number, 
respectively:

(4)ŷS
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�̂j free of sign

The learning process of the MLP or determining the opti-
mal weights and biases of the model is typically conducted 
by using backpropagation and gradient descent techniques. 
The backpropagation learning algorithm can change the 
weights of the multilayer perceptron automatically and pro-
duces and generate output for a set of input features. The 
gradient decent technique is a measure that determines the 
alteration in error when there is a change in weights and 
it minimizes a cost (loss) function (sum squared of clas-
sification errors). To design an MLP model, the weights 
are initialized by applying a random value weight assign-
ment. Then, the backpropagation algorithm and gradient 
descent optimization are applied to regulate the connection 
weights of the MLP. The weights are adjusted in such a 
manner that the cost function and loss in error value are 
minimized. Generally, it can be said that the procedure of 
training and estimating unknown weights of the MLP classi-
fier is conducted by minimizing a continuous distance-based 
loss function (sum squared of misclassification). Despite 
the widespread use of this approach, there is a critical issue 
concerning the characteristic of classification itself and the 
training procedure. The intelligent classifiers have a continu-
ous distance-based loss function, which is in conflict with 
the discrete nature of classification. Generally, utilizing a 
continuous loss function for the classification issue which 
has an actually discrete target function is irrational or at least 
quite inefficient. The purpose of this study is to propose a 
discrete learning-based approach for the learning process 
of the MLP model to obtain a more reasonable and efficient 
classification result. The fundamental notion of the proposed 
approach is maximizing a discrete matching function of the 
predicted and actual values instead of minimizing the sum of 
errors squares as a continuous distance-based loss function.

Finally, some of the most theoretical/practical advan-
tages and disadvantages of the proposed DIMLP classifier 
are presented. In general, several features have been pre-
sented in the literature for theoretical/practical evaluating/
comparing different classification approaches. Some of the 
most important of them, from the theoretical point of view, 
involve convergence, speed of convergence, the universality 
of modeling, and modeling of uncertainty [32]. Due to the 
fact that the main difference between the proposed DIMLP 
model rather than the conventional MLP model is only its 
cost function. Thus, the proposed model, similar to its con-
ventional version, are universal approximator, but cannot 
model uncertain patterns. However, since the proposed cost 
function is formulated as mixed-integer programming; thus, 
its speed of convergence is generally lesser than the conven-
tional MLP, while both converge. In a similar fashion, some 
of the most important practical features, based on the degree 
of importance, are accuracy, computational time and cost, 
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interpretability, ease of use and implementation [33]. Since 
the proposed cost function is more matched by the goal func-
tion of classification; it is expected that the proposed DIMLP 
model can yield more accurate results than its conventional 
version. Nevertheless, the computational time and cost of 
the proposed DIMLP model, due to its discrete variables, 
is higher than the conventional MLP classifier. Therefore, 
the most serious disadvantage of the proposed model is its 
computational time and cost. Moreover, the proposed model, 
similar to its conventional version and other intelligent clas-
sifiers, has low interpretability. Thus, the second disadvan-
tage of the proposed model is its low interpretability. Analo-
gously, the designing process and procedure of determining 
the desired architecture of the proposed model, similar to 
conventional MLP, is a problematical task. Thus, the third 
disadvantage of the proposed DIMLP model is that its use 
and implementation are not simple.

3  Data Description and Evaluation Metrics

In this section, a brief explanation of the used datasets in this 
paper is provided. In addition, criteria applied for evaluat-
ing the performance of the presented DILR, DIMLP, and 
DIDMLP in comparison with its classic versions are pre-
sented. In this research, the classification rate, as presented 
in Eq. (9) is mainly considered to compare and assess the 
performance of the presented classifiers with the conven-
tional ones. Moreover, the F1-score, precision, and recall are 
also considered to assess the performance of classifiers. The 
formulation of these criteria is given in Eq. (10) to Eq. (12), 
respectively [34]. In this research, 13 benchmark datasets 
regarding the classification category from the UCI website 
have been selected [35]. These case studies consist of simu-
lated or real examples in various energy applications such 
as System stability, System simulation, Network efficiency, 
Wave energy, Solar energy, Consumption management, Gas 
turbine, and Electrical energy from 1989 to 2019 are consid-
ered to comprehensively evaluate the direction-based clas-
sifier. The number of attributes in the models varied from 3 
to 81 and the instance size variation of these datasets is 167 
to 71,999 data points. These examples have several kinds 
of explanatory variables, containing two main categories of 
single and mixed explanatory variables. The subcategories 
of single features include integer, real, and categorical. In 
addition, three sub-categories of mixed explanatory vari-
ables, covering 2–1) integer, real, 2–2) categorical, real, and 
2–3) categorical, integer. More detailed information about 
these datasets, such as the number of attributes, the attrib-
utes' characteristic, and the instances' size have been sum-
marized in Table 1.

where true negative (TN) is the negative data that is cor-
rectly recognized as negative, true positive (TP) is positive 
data that is correctly identified as positive, false negative 
(FN) is the positive data that is misdiagnosed as negative, 
and false positive (FP) is the negative data that is misidenti-
fied as positive.

4  Empirical Result

In this section, the proposed DILR, DIMLP, and DIDMLP 
classifiers and all the analyses are presented in detail for one 
of these datasets, Auto MPG, as an example. This dataset 
contains seven attributes of 392 records, which are utilized 
to forecast car fuel consumption. The predictor attributes are 
cylinders (3, 4, 5, 6, 8), displacement, horsepower, weight, 
acceleration, model year (70–82), and origin (1–3) (respec-
tively,  X1 to  X7) to classify cars as low consumption and 
high consumption. Statistical characteristics of sample are 
shown in Table 2. The plot of the attributes against each 
other based on the target variable is shown in Fig. 2. In this 
paper, 314 data points of the data, i.e., approximately 80% of 
dataset, are randomly chosen as training set, and the remain-
ing 78 data points, i.e., approximately 20% of dataset, are 
regarded as the test set. Furthermore, the estimation proce-
dure of classifiers is repeated 100 times to remove the effect 
of the random choice of the data. In this paper, all modeling 
of the DILR, DIMLP, DIDMLP, and classic LR, MLP, and 
DMLP classifiers are run in MATLAB and GAMS package 
software. The performance of the presented DILR, DIMLP, 
DIDMLP, and conventional LR, MLP, and DMLP classi-
fiers, as well as the improvement percentage of the discrete 
direction learning-based models compared to the conven-
tional versions, are reported in Table 3.

Empirical outcomes of this example demonstrate that the 
presented DILR, DIMLP, and DIDMLP models, by benefit-
ing from the discrete direction-based learning approach, can 

(9)

Classification Rate

=
True Negative + True Positive

False Negative + True Negative + False Positive + True Positive

(10)
F1 Score =

2(Recall × precision)
Recall + precision

=
2(True Positive)

(False Negative + False Positive) + 2(True Positive)

(11)Recall =
True Positive

False Negative + True Positive

(12)Precision =
True Positive

False Positive + True Positive
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obtain a 94.64%, 97.85%, and 99.77% classification rate, 
respectively. While the conventional LR, MLP, and DMLP 
models, which applied the continuous distance-based loss 
function, can only achieve a 91.53%, 95.28%, and 98.56% 
classification rate, respectively. It is shown that the proposed 
DILR, DIMLP, and DIDMLP models can improve the per-
formance of their classic ones by 3.40%, 2.70%, and 1.23%, 
respectively.

In addition, these improvements are not limited to clas-
sification rates and are also confirmed by other perfor-
mance measurements. For example, the proposed DILR, 
DIMLP, and DIDMLP models can reach 94.39%, 97.74%, 
and 99.76% in the precision criterion, respectively, while 
the classic LR, MLP, and DMLP classifiers can only pro-
duce 91.17%, 95.05%, and 98.48%, respectively. In this 
way, the improvements of the proposed statistical, shallow, 
and deep classifiers rather than their traditional versions 
in the precision are, respectively, equal to 3.53%, 2.82%, 
and 1.29%. Furthermore, these improvements in the recall 
criterion and F1-score are equal to 3.03%, 2.42%, and 
1.10%, and 3.28%, 2.62%, and 1.20%, respectively. These 

results clearly illustrate that the superiority of the pro-
posed classifiers is not dependent on the type of model, 
e.g., statistical, shallow intelligent/deep intelligent, and the 
performance indicators, e.g., precision, classification rate, 
F1-score, and recall. Accordingly, they can primarily indi-
cate the importance and effectiveness of the consistency 
between discrete direction-based learning processes and 
classification cost function. Moreover, it can be seen that 
these performance measurements are overall consistent.

After that, to more comprehensively assess the perfor-
mance of the presented DILR, DIMLP, and DIDMLP mod-
els, in addition to their classical versions, their classifica-
tion rates are compared with some of the widely used and 
most popular classifiers with different characteristics. For 
this purpose, a total of 17 famous statistical and shallow/
deep intelligent models in both single and hybrid forms are 
considered (Table 4). Numerical outcomes illustrate that 
the presented DILR, DIMLP, and DIDMLP models can 
on average improve 0.99%, 4.39%, and 6.44% of the clas-
sification rate of the considered classifiers. The presented 
DILR, as the single statistical classifier, outperforms all 

Table 1  The general characteristics of the selected benchmarks

No. Name Year Sample size Number 
of attrib-
utes

Attribute type Domain of application

1 Electrical Grid Stability Simulated Data 2018 10,000 11 Real Smart network (predicting system stabil-
ity)

2 Optical Interconnection Network 2018 640 9 Integer, real Electronic (network efficiency)
3 Solar Flare 1989 323 7 Categorical Solar energy
4 Tamilnadu Electricity Board Hourly 

Readings
2013 45,781 3 Real Consumption

5 Appliances Energy Prediction 2017 19,735 27 Real Appliances
6 Auto MPG 1993 392 7 Real, categorical Consumption management
7 Gas Turbine CO and NOx Emission 2019 7152 10 Real Predicting hourly net energy of gas 

turbine
8 Combined Cycle Power Plant 2014 9568 4 Real Electrical energy
9 Superconductivty Data 2018 21,263 81 Real Electrical engineering
10 Servo 1993 167 4 Integer, categorical System simulation
11 Yacht Hydrodynamics 2013 308 6 Real Predicting the hydrodynamic performance 

of a yacht
12 Wave Energy Converters 2019 71,999 48 Real Forecasting total production capacity
13 Energy Efficiency 2012 768 7 Integer, real Evaluation of heating and cooling load

Table 2  Statistical 
characteristics of the selected 
dataset (Auto MPG)

Features Mean Standard deviation Mode Median Minimum Maximum Skewness Kurtosis

X2 194.412 104.644 97 151 68 455 0.702 – 0.778
X3 104.469 38.491 150 93.500 46 230 1.087 0.697
X4 2977.584 849.403 2130 2803.500 1613 5140 0.520 – 0.809
X5 15.541 2.759 14.500 15.500 8 24.800 0.292 0.444
X6 75.980 3.684 73 76 70 82 0.020 – 1.167
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Fig. 2  The plot of attributes against each other according to their classes (blue: 0, red: 1)
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single and hybrid statistical classifiers. It even can yield 
more classification rates than some shallow intelligent 
classifiers, such as decision tree, random forest, and 
probabilistic neural network. Consequently, the presented 
DILR model can on average improve 4.52% and 2.74% 
of the classification rate of single and hybrid classifiers, 
respectively.

Similarly, the presented DIMLP, as a single intelligent 
model, outperforms all statistical and single/hybrid shallow 
intelligent classifiers. The DIMLP even can yield more clas-
sification rate than the deep naive Bayes classifier, as a deep 
intelligent model. Empirical outcomes demonstrate that the 
presented DIMLP can on average improve the 7.37%, 3.75%, 
and 1.94% classification rates of statistical, as well as single 
and hybrid shallow intelligent models, respectively. The pre-
sented DIDMLP, as a single deep intelligent model, can also 
improve by 2.68%, 0.54%, and 0.94% the classification rate 
of the deep naive Bayes classifier, deep convolutional neu-
ral network, and principal component analysis-based deep 
genetic cascade of the SVM, respectively.

Finally, to remove the effects of data characteristics on 
the performance of the models, 12 other benchmark datasets 
were also used. The classification rates of the conventional 
DILR, DIMLP, and LR, MLP classifiers, as well as the 
improvement of the discrete direction learning-based models 
in comparison with the classic versions, are separately given 
for each datasets in Tables 5 and 6, respectively. According 
to the numerical outcomes, the presented DILR, DIMLP, 
and DIDMLP models have better performance than the con-
tinuous learning-based LR, MLP, and DMLP models in all 
fields of application and categories, including system sta-
bility, system simulation, network efficiency, wave energy, 
solar energy, consumption management, gas turbine, and 
electrical energy. Of course, it is not an unexpected outcome 

and was a pre-expected consequence. Because, as mentioned 
previously, it can be generally indicated that the classifi-
cation rate of the discrete direction learning-based models 
will not be worse than its continuous distance-based learn-
ing version, due to more consistency between goal and cost 
function.

These improvements are not constant in all categories 
and vary from each category to another. The results show 
that the lowest and highest improvement of DILR is in the 
fields of electrical energy (combined cycle power plant) 
and system simulation (servo) with a classification rate 
of 0.27% and 34.38%. Overall, the DILR can on average 
enhance the 6.78% classification rate of the classical LR. 
Finally, it must be also notated that the DILR model can 
achieve the perfect classification rate (i.e., 100%) in some 
case studies. The frequency of this matter is approximately 
equal to 23.08%, e.g., in 3 out of 13 cases, while it is never 
obtained by the LR in no cases and domains. These results 
first indicate that it is a regular event in the discrete learn-
ing algorithms, while in the traditional continuous ones 
it is completely an uncommon event. Second, it indicates 
that the concept of linear separability is totally changed 
in the discrete learning algorithms and completely differs 
from its traditional continuous version. In general, based 
on the empirical outcomes and consequences, the DILR 
model can be considered an appropriate alternative to clas-
sic classification models in different application fields to 
achieve a better classification rate.

Based on the reported performances in Table 6, the lowest 
and highest improvement of DIMLP is in the fields of wave 
energy (wave energy converters) and consumption man-
agement (Tamilnadu Electricity Board Hourly Readings) 
with a classification rate of 0.41% and 29.74%. Overall, the 
DIMLP can on average enhance the 5.90% classification rate 

Table 3  Classification rate of 
the discrete learning-based 
models and classic models 
(Auto MPG dataset)

Bold values indicates the average and improvement values

Criteria Model Learning algorithms Improvement

Discrete learning-
based version

Continuous learning-
based version

Classification Rate LR 94.64% 91.53% 3.40%
MLP 97.85% 95.28% 2.70%
DMLP 99.77% 98.56% 1.23%

Precision LR 94.39% 91.17% 3.53%
MLP 97.74% 95.05% 2.82%
DMLP 99.76% 98.48% 1.29%

Recall LR 95.18% 92.38% 3.03%
MLP 98.07% 95.75% 2.42%
DMLP 99.79% 98.70% 1.10%

F1-score LR 94.78% 91.77% 3.28%
MLP 97.90% 95.40% 2.62%
DMLP 99.78% 98.59% 1.20%
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Table 4  Comparison of the presented DILR, DIMLP, and DIDMLP with other classifiers (Auto MPG dataset)

Bold values indicates the average and improvement values

Model Type/category (structure) Classification rate Improvement

DILR DIMLP DIDMLP

Probit regression (PR) Single/statistical
(N/A)

91.48% 3.49% 6.96% 9.06%

Linear discriminant analysis (LDA) Single/statistical
(N/A)

90.61% 4.48% 7.99% 10.11%

Quadratic discriminant analysis (QDA) Single/statistical
(N/A)

90.89% 4.16% 7.66% 9.77%

K-nearest neighbor (KNN) Single/statistical
(N/A)

91.22% 3.78% 7.27% 9.37%

Entropy difference approach (EDA) Single/statistical
(N/A)

88.52% 6.95% 10.54% 12.71%

Generalized logistic regression (GLR) Hybrid/statistical
(N/A)

92.13% 2.76% 6.21% 8.29%

Self-organizing map-based logistic regression (SOM-LR) Hybrid/statistical
(N/A)

92.48% 2.37% 5.81% 7.88%

Genetic algorithm-based K-nearest neighbor (GA-KNN) Hybrid/statistical
(N/A)

91.75% 3.18% 6.65% 8.74%

Decision tree (DT) Single/intelligent (shallow) 93.76% 0.97% 4.36% 6.41%
Random forest (RF) Single/intelligent (shallow) 94.33% 0.36% 3.73% 5.77%
Probabilistic neural network (PNN) Single/intelligent (shallow) 93.29% 1.48% 4.89% 6.95%
Support vector machine (SVM) Single/intelligent (shallow) 95.87% – 1.25% 2.07% 4.07%
Hybrid MLP–SVM Hybrid/intelligent (shallow) 96.06% – 1.45% 1.86% 3.86%
Particle swarm optimization– support vector machine(PSO–

SVM)
Hybrid/intelligent (shallow) 95.91% – 1.29% 2.02% 4.02%

Deep naive Bayes classifier Single/intelligent (deep) 97.17% – 2.57% 0.70% 2.68%
Deep convolutional neural network Single/intelligent (deep) 99.23% – 4.60% – 1.39% 0.54%
Principal component analysis-based deep genetic cascade of 

the SVM
Hybrid/intelligent (deep) 98.84% – 4.22% – 1.00% 0.94%

Average 93.74% 0.99% 4.39% 6.44%

Table 5  Classification rate 
of the presented DILR and 
conventional LR classifiers for 
all datasets

Bold values indicates the average and improvement values

No. Dataset Classification rate Improvement

DILR Classic LR

1 Electrical Grid Stability Simulated Data 87.38% 80.33% 8.77%
2 Optical Interconnection Network 83.44% 77.08% 8.24%
3 Solar Flare 98.83% 97.96% 0.89%
4 Tamilnadu Electricity Board Hourly Readings 50.02% 49.88% 0.29%
5 Appliances Energy Prediction 66.40% 63.48% 4.61%
6 Auto MPG 94.64% 91.53% 3.41%
7 Gas Turbine CO and NOx Emission 99.95% 99.35% 0.61%
8 Combined Cycle Power Plant 95.87% 95.61% 0.27%
9 Superconductivity Data 93.69% 89.62% 4.55%
10 Servo 98.20% 73.08% 34.38%
11 Yacht Hydrodynamics 100.00% 80.43% 24.32%
12 Wave Energy Converters 100.00% 98.88% 1.13%
13 Energy Efficiency 100.00% 97.00% 3.09%

Average 89.88% 84.17% 6.78%
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of the classical MLP. Finally, it must be also notated that 
the DIMLP can achieve the perfect classification rate (i.e., 
100%) in some case studies. The frequency of this matter is 
approximately equal to 30.77%, e.g., in 4 out of 13 cases, 
while it is never obtained by the MLP in cases and domains.

Moreover, the average classification rate, precision, 
F1-scores, and recall of the presented DILR, DIMLP, and 
DIDMLP classifiers and the conventional LR, MLP, and 
DMLP models for the 13 benchmark datasets are reported 
in Table 7. Accordingly, the average classification rate of 
the DILR, DIMLP, and DIDMLP classifiers in the field of 
energy applications based on the 13 aforementioned datasets 
is 89.88%, 94.53%, and 96.02%, which is achieved at 6.78%, 
5.90%, and 4.69% improvement than the 84.17%, 89.26%, 

and 91.72% classification rate of the conventional versions, 
respectively. These performances and improvements are also 
plotted in Fig. 3.

Furthermore, these improvements are not limited to the 
classification rate and are also repeated in other criteria. 
For example, the proposed DILR, DIMLP, and DIDMLP 
models can achieve an 88.76%, 93.84%, and 95.50% in the 
precision criterion, respectively, while the classic LR, MLP, 
and DMLP classifiers can only yield 82.72%, 88.09%, and 
90.75%, respectively. In this way, the improvements of the 
proposed statistical, shallow, and deep classifiers rather than 
their traditional versions in the precision are, respectively, 
equal to 7.31%, 6.52%, and 5.23%. Besides, these improve-
ments in the recall criterion and F1-score are equal to 5.48%, 

Table 6  Classification rate 
of the presented DIMLP and 
conventional MLP classifiers for 
all datasets

Bold values indicates the average and improvement values

No. Dataset Classification rate Improvement

DIMLP MLP

1 Electrical Grid Stability Simulated Data 92.41% 86.13% 7.29%
2 Optical Interconnection Network 89.75% 86.33% 3.96%
3 Solar Flare 99.61% 98.46% 1.17%
4 Tamilnadu Electricity Board Hourly Readings 73.55% 56.69% 29.74%
5 Appliances energy prediction 80.15% 71.29% 12.43%
6 Auto MPG 97.85% 95.28% 2.70%
7 Gas Turbine CO and NOx Emission 100.00% 99.55% 0.45%
8 Combined Cycle Power Plant 98.39% 97.73% 0.68%
9 Superconductivity Data 98.09% 94.21% 4.12%
10 Servo 99.14% 86.69% 14.36%
11 Yacht Hydrodynamics 100.00% 89.86% 11.28%
12 Wave Energy Converters 100.00% 99.59% 0.41%
13 Energy efficiency 100.00% 98.63% 1.39%

Average 94.53% 89.26% 5.90%

Table 7  Classification rate of 
the presented discrete direction 
learning-based and conventional 
versions for all datasets

Bold values indicates the average and improvement values

Criteria Model Learning algorithms Improvement

Discrete learning-
based version

Continuous learning-
based version

Classification rate LR 89.88% 84.17% 6.78%
MLP 94.53% 89.26% 5.90%
DMLP 96.02% 91.72% 4.69%

Precision LR 88.76% 82.72% 7.31%
MLP 93.84% 88.09% 6.52%
DMLP 95.50% 90.75% 5.23%

Recall LR 91.57% 86.81% 5.48%
MLP 95.44% 91.05% 4.82%
DMLP 96.68% 93.10% 3.85%

F1-score LR 90.14% 84.71% 6.41%
MLP 94.63% 89.55% 5.68%
DMLP 96.09% 91.91% 4.54%
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4.82%, and 3.85%, and 6.41%, 5.68%, and 4.54%, respec-
tively. These results show that the superiority of the pro-
posed classifiers is not dependent on (1) the type of model, 
e.g., statistical, shallow intelligent/deep intelligent, (2) the 
performance indicators, e.g., precision, classification rate, 
F1-score, and recall, and (3) the data characteristics, such 
as example size, type of attributes, and number of attributes. 
Accordingly, they can indicate the importance and effec-
tiveness of the consistency between discrete direction-based 
learning processes and classification cost function.

5  Discussions and Future Research 
Suggestions

This section discusses the accomplishments of this survey, 
followed by some recommendations for future research.

• This paper conducts a comparative study of the classifica-
tion rate of discrete learning-based statistical and shal-
low/deep intelligent models against classic versions that 
are applied in the energy decision-making sector.

• This is the first research that evaluates the efficiency and 
classification accuracy of discrete learning-based statisti-
cal and discrete learning-based shallow/deep intelligent 
classification models against the most popular continuous 

learning-based versions. The results have demonstrated 
that maximizing a discrete matching function of pre-
dicted and actual values in the training process of classi-
fiers can reduce the misclassification rate.

• This study reveals that the consistency between loss func-
tion during the training procedure and the nature of clas-
sifier models in terms of discrete or continuous have a 
significant effect on the performance and generalizability 
of classifiers. However, this critical and effective matter 
has been overlooked in the training procedures of con-
ventional statistical and shallow/deep intelligent models.

• The empirical results provide further support to the 
assumption that considering a continuous distance-based 
loss function for classification purposes is non-sequitur 
or at least insufficient.

• In this paper, the proposed approach has been imple-
mented on the LR, MLP, and DMLP models as the 
most frequent and popular statistical and shallow/deep 
intelligent classifiers. However, the presented discrete 
direction-based learning approach is a completely gen-
eral methodology that can be applied to other classes of 
classification models.

The following issues are some of the potential research 
gaps for future works:

Fig. 3  The classification rate 
and improvement of the DILR, 
DIMLP, and DIDMLP against 
conventional versions
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• Conducting a comparative study for assessing the effi-
ciency and accuracy of the proposed classifiers against 
statistical, shallow/deep intelligent classifiers with other 
types of loss functions.

• Developing an advanced version of the proposed classi-
fiers using a combination of several loss functions in the 
categories of discrete, semi-continuous, and continuous.

• Implementing the discrete direction learning-based 
approach on other class of models including rule and 
tree classifiers, instance-based classifiers, Bayesian clas-
sifiers, other neural networks, and SVM.

• Examining the data properties such as dimension, noise, 
and outlier, missing attribute values on the performance 
of classifiers in the categories of linear/ nonlinear, statis-
tical/intelligent, and shallow/deep models that are devel-
oped based on different loss functions.

• Developing the discrete direction learning-based method 
for other types of classification problems such as multi-
class and multi-label issues.

• Investigating the effectiveness of the type of loss function 
as discrete, semi-continuous, and continuous on the accu-
racy of linear/nonlinear, crisp, fuzzy, statistical/intelligent, 
and shallow/deep classifiers in diverse fields of science.

• Assessing the generalizability of discrete direction learn-
ing-based classifiers in other scopes of science such as 
medicine, finance, environment, management, and engi-
neering.

6  Conclusion

As data science and machine learning have developed over 
the years, most classification methods have become more 
complex to achieve results that are more accurate. Various 
techniques have been developed to enhance the accuracy of 
the statistical and intelligent classification models. These 
techniques include data preprocessing, feature selection, 
hybridization, and ensembling. Logically, the consistency 
between the goal function and the learning procedure is one 
of the most important factors influencing the achievement 
of the maximum classification rate, especially in the energy 
sector; nevertheless, it was ignored in all previously devel-
oped classifiers models. Accordingly, this paper conducts 
a comparative study of the classification rate of a discrete 
learning-based approach based on the most common sta-
tistical and shallow/deep intelligent models versus classic 
classifiers, which are widely used for decision-making in 
the energy sector. The empirical results demonstrated that 
although the classic classifiers yield a greater degree of 
accuracy at the price of complexity, however, the discrete 
learning-based approach is much superior to classic versions 
by utilizing more consistency between the discrete direction-
based learning process and classification cost function. The 

outcomes of the study support the claim that, in the light 
of this perspective, which is replacing a continuous learn-
ing-based loss function with a discrete learning-based loss 
function, the rate of classification in the energy applications 
has achieved higher accuracy in comparison to the classic 
statistical, shallow/deep intelligent versions.
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