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Abstract
Loop closure detection (LCD) plays an important role in visual simultaneous location and mapping (SLAM), as it can 
effectively reduce the cumulative errors of the SLAM system after a long period of movement. Convolutional neural net-
works (CNNs) have a significant advantage in image similarity comparison, and researchers have achieved good results by 
incorporating CNNs into LCD. The LCD based on CNN is more robust than traditional methods. As the deep neural network 
frameworks from AlexNet and VGG to ResNet have become smaller while maintaining good accuracy, indoor LCD does not 
need robots to finish a large number of complex processing operations. To reduce the complexity of deep neural networks, 
this paper presents a new lightweight neural network based on MobileNet V2. We propose a strategy to use Efficient Channel 
Attention (ECA) to insert into Compressed MobileNet V2 (ECMobileNet) for reducing operands while maintaining preci-
sion. A corresponding loop detection method is designed based on the average distribution of ECMobileNet feature vectors 
combined with Euclidean distance matching. We used TUM datasets to evaluate the results, and the experimental results show 
that this method outperforms the state-of-the-art methods. Although the model was trained only on the indoorCVPR dataset, 
it also demonstrated superior performance on the TUM datasets. In particular, the proposed approach is more lightweight 
and highly efficient than the current existing neural network approaches. Finally, we used TUM datasets to test LCD based 
on ECMobileNet in PTAM, and the experimental results show that this lightweight neural network is feasible.
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Abbreviations
LCD  Loop closure detection
SLAM  Simultaneous location and mapping
ECA  Efficient channel attention

BoW  Bag of words
SE  SEnet
P–R  Precision–recall
GAP  Global average pooling
PTAM  Parallel tracking and mapping
CNN  Convolutional neural networks
ECMobileNet  Efficient Channel attention + compressed 

MobileNet V2
Dwise  Depthwise

1 Introduction

With the development of indoor service robots, an increasing 
number of indoor robots are being introduced into our lives. 
Due to the low cost of visual sensors that can obtain rich 
scene information, visual SLAM has garnered significant 
attention [1]. As an essential component of indoor device 
robots, visual SLAM [2] not only assists the robots in navi-
gation but also aids in obstacle avoidance [3]. LCD in SLAM 
[4, 5] enables a robot or observing agent to identify that it 
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has returned to a previously visited area [6]. Therefore, LCD 
is crucial for maintaining the accuracy of a machine's posi-
tion during exploration. When the robot returns to its start-
ing point after a period of movement, its position may not 
coincide with its original position due to posture drift. Using 
LCD, the estimated position can be recalibrated, effectively 
eliminating drift and minimizing cumulative errors, thus 
enabling the creation of a more accurate map [7], as illus-
trated in Fig. 1.

An important aspect of improving visual LCD perfor-
mance is to obtain effective scene descriptions based on the 
input images [8]. Traditional LCD methods rely on hand-
crafted feature descriptors for image matching. Lowe et al. 
[9] designed SIFT feature which has become a commonly 
used image feature descriptor in the field of computer vision, 
but the calculation process is very time-consuming and 
cannot meet the real-time requirements of SLAM. Rublee 
et al. [10] on SIFT features improved and put forward the 
ORB feature. Bay et al. [11] proposed SURF feature, a fea-
ture of accelerated robustness, which greatly improves the 

computing speed while appropriately reducing robustness. 
The BoW model applied initially to text retrieval [12], and 
the study found that it can also recognize images. In other 
words, building vocabulary’s visual words [13]. The BoW 
extracts image features by SIFT and ORB, while it belongs 
of traditional feature description. However, the common 
feature of traditional feature description is that it is unable 
to efficiently extract various dynamic changes in the scene, 
resulting in the feature extraction is not obvious or wrong. 
Furthermore, the size of vocabulary in BoW requires more 
memory [14], which is not very realistic for indoor robotics.

In recent years, deep learning has become increasingly 
popular for extracting image features. Deep neural networks 
are particularly effective at image recognition and classifica-
tion [15]. The CNN features are demonstrated which have 
stronger robustness to counter viewpoint changes, light con-
ditions, and scale variations, and can effectively solve the 
traditional method’s shortcomings [16]. Zhang X [16] has 
proposed a general algorithm for inserting convolutional 
networks into LCD, as shown in Fig. 2. This algorithm 
extracts image feature vectors using CNNs and compares the 
similarity of images to achieve LCD. Although the current 
common VGG and ResNet solve the traditional method’s 
defects, the SLAM adds huge computational operations [17]. 
As a result, real-time SLAM with deep neural networks is 
not practical in many real-world scenarios. Lightweight 
neural networks, such as small CNNs, have recently been 
successfully applied in many areas. These models main-
tain high accuracy while using very few parameters. For 
example, Google's MobileNet V1 [18], proposed in 2016 
and published in 2017, uses deep separable convolution and 
a stack of deep separable modules to achieve high accuracy 
on mobile devices. MobileNet V2 [19] and MobileNet V3 
[20] were subsequently proposed with smaller parameters 
and higher accuracy. Similarly, the ShuffleNet model [21] 
is extremely lightweight and computationally efficient. Like 
MobileNet and SqueezeNet, ShuffleNet is primarily intended 

Fig. 1  The green line is the true trajectory. The red line is the drift-
ing trajectory. The blue line indicates that the machine is back to true 
trajectory by LCD

Fig. 2  The image is using CNN 
to detect loops
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for use on mobile devices. Using lightweight neural net-
works can reduce computational overhead and improve real-
time performance in LCD.

In this paper, we propose a new lightweight neural net-
work model ECMobileNet based on MobileNet V2 that can 
be integrated into LCD. We use Efficient Channel Attention 
(ECA) to insert MobileNet's bottlenecks and delete some 
bottlenecks to reduce the number of parameters. First, we 
train the ECMobileNet using the indoorCVPR dataset and 
achieve the desired results. We then use the public dataset 
images as input to the ECMobileNet to obtain image fea-
ture vectors. Second, we reduce the vector size and use the 
Euclidean Distance algorithm to calculate similarity scores 
for comparing images and determining whether they belong 
to LCD. Third, we demonstrate the feasibility of this algo-
rithm by comparing it to the current mainstream algorithm 
in several aspects, including the number of parameters and 
the PR curve. Finally, we integrate this LCD algorithm into 
PTAM to verify its effectiveness using the TUM RGB-D 
dataset. Compared to the motion trajectory obtained using 
PTAM alone, the motion trajectory obtained using this 
method is smoother and more consistent with the real tra-
jectory, which can effectively reduce the cumulative error of 
the entire system. The main contributions of this paper are 
summarized as follows:

(1) A new lightweight neural network model ECMobileNet 
is proposed.

(2) Using the specific small indoor dataset also can make 
get good results.

(3) We demonstrate that our approach achieves competi-
tive recall rates at 100% precision when compared to 
state-of-the-art methods using four challenging public 
image sequences.

(4) We show that this LCD algorithm is feasible in the 
SLAM system.

The remainder of the paper is organized as follows. Sec-
tion 2 summarizes related work in LCD. Section 3 describes 
the proposed approach. Section 4 presents experimental 
results. Finally, Sect. 5 concludes the study.

2  Related Work

2.1  Efficient Channel Attention

Qilong Wang et al. [22] propose an ECA module for deep 
CNN, which avoids dimension reduction and effectively cap-
tures information from local cross-channel interaction. The 
ECA module is shown in Fig. 3.

To understand ECA, it is necessary to first be familiar 
with SENet [23] (SE). The author of ECA has experimen-
tally evaluated the effects of dimensionality reduction and 
non-linear cross-channel interaction in the SE block, which 
motivated the proposal of the ECA module. Additionally, the 
author has developed a method for adaptively determining 
ECA parameters and ultimately demonstrates how it can be 
used with deep CNNs. The weights of channels in SE block 
can be computed as Eq. (1), where g(χ) = 1

WH

∑W,H

i=1,j=1
�ij is 

channel-wise global average pooling (GAP) and σ is a Sig-
moid function

The ECA modules are described starting with Eq. (2). To 
verify their effectiveness, the authors compared the original 
SE block with three variants (SE-Var1, SE-Var2, and SE-
Var3), all of which were not subjected to the dimensionality 
reduction operation. According to the paper, SE-Var1 with 
no parameter was still superior to the original network, indi-
cating that channel attention can improve the performance 
of deep CNN. In addition, SE-Var2 learns the weight of 
each channel independently, which is slightly superior to 
the SE block while involving fewer parameters. This may 
indicate that channels and their weights need to correspond 
directly while avoiding dual sensitivity reduction, which is 
more important than considering non-linear channel depend-
ence. Furthermore, SE-Var-3, which uses a single FC layer, 
performs better than two FC layers with dimensionality 
reduction in the SE block. All of the above results clearly 
show that avoiding dimensionality reduction helps to learn 
effective channel attention and improve accuracy. Later, the 
authors combined the advantages of SEVar-2 and SEVar-3 
and proposed a new local cross-channel interaction method. 
However, the results were not satisfactory, and therefore, 

(1)� = �(f
{
W1,W2

}
(g(�)).

Fig. 3  Diagram of this efficient channel attention module. Given the 
aggregated features obtained by global average pooling (GAP), ECA 
generates channel weights by performing a fast 1D convolution of 
size k, where k is adaptively determined via a mapping of channel 
dimension C
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another method for local cross-channel interaction was pro-
posed. This method was called ECA

ECA module aims at guaranteeing both efficiency and 
effectiveness. Specifically, the author employs a band matrix 
Wk to learn channel attention, and Wk has clearly Wk in a 
matrix as follows:

As for Eq. (1), the weight of yi is calculated by only con-
sidering the interaction between yi and its k neighbors, i.e., 
where Ωk

i
 indicates the set of k adjacent channels of yi in 

Eq. (3).

As for Eq. (4) to further improve the performance, it is 
also possible to have all the channels share the weight infor-
mation and the information interaction between channels is 
achieved by a 1D convolution of kernel size k. C1D stands 
for one-dimensional convolution. To get the k-value, the cov-
erage of cross-channel information interactions should also 
be proportional to the channel dimension C

In other words, there may be a mapping ϕ of Eq. (5) 
between k and C. The simplest mapping is a linear func-
tion �(k) = y ∗ k − b ; however, the relations characterized 
by linear functions are too limited. Therefore, we introduce 
a possible solution by extending the linear function to a non-
linear function. Then, given the channel dimension C, kernel 

(2)
{
w1,w2

}
(y) = W2ReLU

(
W1y

)
.

⎡
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i

(4)� = �(C1Dk(y))

(5)C = ϕ(k) = 2
y∗k−b

.

size k can adaptively determine the convolution size k for-
mula as follows [Eq. (6)]. Finally, we compared the number 
of parameters about SE and ECA. We can know both the 
accuracy and the number of parameters ECA is better than 
SE that ECA is an upgrade of SE

2.2  MobileNet V2

MobileNet V2 [19] is a lightweight neural network model 
proposed by Google, which improves on MobileNet V1 [18] 
by enhancing the depthwise (Dwise) separable convolution 
and adding an inverted residual block. The improved depth-
wise separable convolution block (bottleneck) is shown in 
Fig. 4. First, it employs 1 × 1 convolution to increase the 
number of channels, then uses 3 × 3 deep convolution in a 
high-dimensional space, followed by another 1 × 1 convolu-
tion to reduce the number of channels, and finally applies 
the linear activation function. When stride = 1, MobileNet 
V2 uses residual connections to connect the inputs and out-
puts. However, when stride = 2, residual connections are not 
necessary, since the features of the inputs and outputs differ 
in size. Figure 5 compares the residual block of ResNet [24] 
with the inverted residual block of MobileNet V2. The acti-
vation function used is ReLU6, which sets any value above 
0–6; if the value bigger than 6, the value is 6, and if the value 
smaller than 0, the value is 0. The ReLU6 function has a 
value range of [0,6] and offers better representation perfor-
mance at low-precision floating-point numbers. To reduce 
the individual convolution block size, MobileNet uses the 
extended convolution length, which significantly reduces the 
network parameters and makes the network long and narrow. 
This design is advantageous for mobile devices, as the CPU 
is the primary processor. The CPU, with cache memory, can 
process long and thin programs much faster than the GPU. 
Hence, the MobileNet network outperforms numerous other 
neural networks on mobile devices.

(6)k = �(C) =
||||
log2C

y
+

b

y

||||odd.

Fig. 4  The image is improved 
depthwise separable convolu-
tion; if strides = 1, we need 
to shortcut that means using 
residual connection
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2.3  SlAM System Framework

In this section, we describe how we build an SLAM system 
based on PTAM [25], with ECMobileNet used as the loop 
closure detector (LCD). PTAM comprises two threads for 
tracking and mapping, but does not include loop closure 
detection. For the tracking thread, the main task is to extract 
FAST features from the image, estimate the pose based on 
the previous frame, or initialize the pose through global relo-
cation. It then tracks the reconstructed local map, optimizes 
the pose, and determines new keyframes according to set 
rules [26]. The mapping thread completes the construction 
of local maps by inserting keyframes, verifying newly gener-
ated map points, filtering them to generate new map points, 
and applying local bundle adjustment to remove redundant 
keyframes. To add loop closure detection based on ECMo-
bileNet into PTAM, a new keyframe is defined through the 
tracking thread, transmitted to the mapping thread to form 
a local map, and sent to the LCD to judge whether a loop 
is formed.

PTAM is a landmark project in the field of visual 
SLAM. Before PTAM, the mainstream algorithm was 
MonoSLAM [27] based on Kalman filtering, which used 
a single thread to update the camera position pose and 
map by every frame. The computational complexity of 
map update was very high and achieved only real-time 
processing (30  Hz). MonoSLAM could only process 
about 10–12 most stable feature points per frame by the 
filtering method. The biggest contribution of PTAM is its 
dual-threaded architecture for tracking and mapping. The 
tracking thread only needs to update the camera position 

pose by every frame, which can be easily calculated in real 
time. The mapping thread does not need to update by every 
frame, so the original bundle adjustment (BA), which can 
only be used in offline structure from Motion, can also be 
used. This optimization algorithm can obtain higher accu-
racy per unit of computation time than the filtering method 
[28]. This multi-threaded processing is more in line with 
modern CPU trends, and almost all subsequent visual 
SLAM algorithms have followed this idea. For example, 
ORB-SLAM [10] incorporated loop closure detection, 
improving the practicality of PTAM and the accuracy of 
SLAM algorithms for map building, making the VSLAM 
system able to move longer distances. Later on, ORB-
SLAM2 [29] and ORB-SLAM3 [30] were proposed.

3  Proposed Approach

3.1  Overview

The structure of the loop closure detection based on 
ECMobileNet which was put in the PTAM is shown in 
Fig. 6 for testing the effect of loop closure detection. Our 
proposed ECMobileNet is a lightweight neural network 
through MobileNet V2 that inserts the ECA and reduces 
some useless blocks. We designed an algorithm to extract 
the image features from the ECMobileNet and compute the 
similarity of images. Finally, setting a threshold to judge 
whether the current frame is or not loop.

Fig. 5  ResNet first applies 
1 × 1 convolution to reduce 
the dimensions, followed by 
standard convolution in the 
down-dimension space, and 
another 1 × 1 convolution to 
increase the dimensions. The 
residuals then connect the two 
high-dimensional parts. In 
contrast, MobileNet first applies 
1 × 1 convolution to increase 
the dimensions, followed by 
standard convolution in the up-
dimension space, and another 
1 × 1 convolution to reduce the 
dimensions. The residuals then 
connect the two low-dimen-
sional parts
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3.2  ECMobileNet

From MobileNet V2 to MobileNet V3, improvements were 
made by adding SE to improve precision and deleting 
unnecessary parts of output layers, resulting in MobileNet 
V3 [23]. After analyzing the SE and ECA, which belong 
to channel attention, we found that ECA has more efficient 
results with fewer parameters than SE. To incorporate 
ECA into the MobileNet V2 bottleneck, we designed the 
structure shown in Fig. 7. First, the image input is raised 
in dimensions using 1 × 1 convolution, and then, a standard 
convolution is performed in the up-dimension space. Next, 
the feature map data are optimized by the ECA’s GPA pool 
and two fully connected layers. Finally, a 1 × 1 convolution 
is used to reduce the number of channels (using a linear 
activation function). When the stride = 1, the input and 
output feature maps have the same shape, and the input and 
output are connected using a residual connection. When 

the stride = 2 (downsampling stage), the feature of down-
dimension is directly outputted. However, the insertion of 
ECA resulted in a bloated framework. To reduce the total 
model's parameters, we decided to cut some unnecessary 
bottlenecks and created the ECMobileNet structure shown 
in Table 1. We tested ECMobileNet on public datasets 
CIFAR-10 and CIFAR-100, achieving the same precision 
as MobileNet V2. We also used ECMobileNet to train the 
indoorCVPR dataset and obtained good results. Therefore, 
this model can be used in LCD.

Fig. 6  In this image is the entire SLAM system including tracking, local mapping, and loop closure detection

Fig. 7  This is a bottleneck, from this picture when the Dwise deals 
with conv using ECA and not changes the conv block

Table 1  In this table, the t expresses the multiple of 1 × 1 convolution 
to raise dimensions, the c means the number of channels about 1 × 1 
convolution, the n show times of bottleneck from MobileNet V2 to 
ECMobileNet, and the s is the stride

Input Operator t c n s

224
2×3 conv2d – 32 1- > 1 2

112
2×32 Bottleneck 1 16 1- > 1 1

112
2×16 Bottleneck 6 24 2- > 2 2

56
2×24 Bottleneck 6 32 3- > 2 2

28
2×32 Bottleneck 6 64 4- > 3 2

14
2×64 Bottleneck 6 96 3- > 2 2

14
2×96 Bottleneck 6 160 3- > 2 1

72×160 Bottleneck 6 320 1- > 1 2
72×320 conv2d 1 × 1 – 1280 1- > 1 1
72×1280 Avgpool – – 1- > 1 1
1 × 1 × 1280 conv2d 1 × 1 – k – –
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3.3  Loop Closure Detection Algorithm

LCD Frame [31] is composed of Input Image, Feature 
Extraction, Similarity Calculation, and Loop Judgment. 
First, the keyframe images are put into the ECMobileNet 
to get the pooled layer feature vectors v(1 × 1x1280), as 
shown in Fig. 8 and the feature vectors v are normalized 
through min–max normalization as follows [Eq. (7)]. Next, 
compressing the feature vectors v becomes 1 × 1x128. To 
ensure that each vector value is involved in the operation, 
we will every ten values of the vector group to become 
one value through addition and insert weight σ as follows 
[Eq. (8)] and put the new vector in the historical feature 
vectors store

When the number of historical feature vectors exceeds 
a certain threshold, a new feature vector is obtained from 
the latest keyframes using ECMobileNet. The new feature 
vector is then compared with the historical feature vec-
tors using the Euclidean distance, as shown in Eq. (9), to 
obtain the similarity score. Finally, this score is compared 
with a threshold value to determine if a loop is detected. If 
the similarity score is greater than the threshold value, the 
result indicates a loop, and the SLAM system will perform 
graph optimization of the Essential Graph. If the similarity 
score is smaller than the threshold value, the system will 
calculate the next feature vector

(7)vi =
vi − min(v)

max(v) − min(v)

(8)ai =

�

�∑j+10

j
vj

�

10
j = i ∗ 10.

4  Experimental Results and Discussion

This section presents the experimental results and discussion 
on various aspects of ECMobileNet to determine if it meets 
our requirements. The experimental results demonstrate that 
ECMobileNet is a highly effective network that performs 
well, as expected.

4.1  Experimental Environment and Datasets

In this experiment, we utilized the Linux platform and Ten-
sorFlow deep learning framework, with Python language 
used for data analysis. We used the TUM indoor datasets 
as the test for loop closure detection, while IndoorCVPR 
dataset served as the training set for ECMobileNet. The 
IndoorCVPR dataset is a small collection of indoor scene 
images comprising 67 categories with a total of 15,620 
images. The number of images per category varies, but each 
category has at least 100 images and all images are in JPG 
format. The TUM RGB-D datasets contain 39 sequences 
recorded in various indoor scenes using Microsoft Kinect 
sensors. The sequences cover Testing and Debugging, 
Handheld SLAM, Robot SLAM, Structure VS. Objects, 3D 
Object Reconstruction, Validation Files, and Calibration 
Files. Each sequence contains multiple data points that can 
be used to evaluate the performance of various tasks. The 
TUM datasets come with standard trajectories and compari-
son tools, making them ideal for research purposes. We used 
the test sets shown in Table 2 for our experiments.

(9)d(anow, ahis) =

√∑n

i=1
anow − xhis.

Fig. 8  The whole process of LCD based on ECMobileNet
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4.2  Neural Network Size of Comparison Between 
Parameters

In our quest for a neural network model with the smallest 
possible size, we compared the parameter counts of differ-
ent neural networks for 224 × 224x3 images under 67 clas-
sifications, as shown in Fig. 9. It is evident that the number 
of parameters in ECMobileNet is smaller than that of other 
lightweight neural networks, such as MobileNet V2 and 
MobileNet V3. This proves that ECMobileNet is indeed a 
lightweight neural network with a clear advantage in terms 
of parameter count. In comparison to the improved neural 
network, MobileNet V2, the parameter count is reduced by 
26.5%, and the parameter count of MobileNet V2 is twice 
that of ECMobileNet. Moreover, the parameter count of 
the large model ResNet18 is only one-tenth that of ECMo-
bileNet. Hence, the number of parameters of ECMobileNet 
is almost the same as that of ShuffleNet.

4.3  Performance Evaluation: Precision–Recall Curve

To compare the algorithms, analyze the experimental results, 
and evaluate their performance, we compared the traditional 
ORB with ShuffleNet V1, MobileNet V2, ResNet18, and 
ECMobileNet based on image similarity. The evaluation 
method used in the experiment is the precision–recall rate 
curve, which is currently recognized as a standard evalua-
tion method. In the SLAM system, precision is of higher 
importance than recall, because a low recall rate may result 

in some true loops being unrecognized, while low accuracy 
can lead to incorrect results in the backend optimization and 
ultimately result in an incorrect map construction [32]. The 
precision–recall rate is calculated as follows:

In the formula, TP represents a true positive, which 
means that a true loop is detected as a loop by the algorithm; 
FP means a false positive, and a wrong loop is detected as 
a loop by the algorithm; FN means a false negative. The 
experimental results are shown in Fig. 10. The results show 
that when the recall rate is 60%, the precision of the ECA 
algorithm in this paper is very high and stable. The shuf-
fleNet’s behavior is very bad. ResNet is although the best 
result but very unstable. MobileNet V2 is not as good as 
ECMobileNet. ORB cannot achieve 100% precision and the 
area of the Precision–Recall Curve is small. From an overall 
point of view, the algorithm curve of this paper is biased to 
the upper right. Experiments have proved that the algorithm 
proposed in this paper performs better on the same hardware 
conditions and test set, ensuring a certain accuracy rate.

4.4  The Performance of PTAM

The accuracy of localization is crucial for map building in a 
visual SLAM system. Loop closure detection plays a critical 
role in localization, especially for robots that need to move 
repeatedly. In this paper, we conducted experiments based 
on PTAM and set the loop closure detection threshold rela-
tively high to ensure accuracy. Reducing the threshold could 
result in false loop closures and distort the maps. To dem-
onstrate the applicability of the ECMobileNet-based loop 
closure detection algorithm in an SLAM system, we ran 
PTAM with loop closure detection on several scenarios of 
TUM RGB-D datasets, as shown in Fig. 11. The trajectories 
after loop closure detection were more stable, indicating the 
effectiveness of the algorithm. We also observed that even a 
single lap of error could cause significant drift, emphasizing 
the importance of loop closure detection in visual SLAM.

5  Conclusion

To reduce the parameters of the neural network while main-
taining real-time LCD, we propose using ECMobileNet. 
Although both the ECA and SE modules are channel atten-
tion mechanisms with similar properties, we found that ECA 
is smaller and performs better than SE, so we chose to adopt 

precision =
TP

TP + FP

recall =
TP

FN + TP
.

Table 2  The pictures of TUM datasets

Datasets Resolution Images Description

freiburg1_desk 640 × 480 608 Indoor
freiburg1_floor 640 × 480 1242 Indoor
freiburg2_large_with_loop 640 × 480 5182 Indoor
freiburg3_long_office_household 640 × 480 2585 Indoor

Fig. 9  This figure express the parameters of neural networks, and the 
parameters of ECMobileNet are very small
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ECA and achieved very good results. For our dataset selec-
tion, we focused on the indoor environment and used the 
indoorCVPR dataset, which we modified slightly to better 
target indoor environments. Our final results were as good 
as we hoped for the public TUM datasets. The compression 
of the MobileNet V2 module was just an idea that was tried 
and the experiments showed that the reduction of the bot-
tleneck did not reduce the accuracy, just like MobileNet V3 
removed the invalid output layer of MobileNet V2. Over-
all, ECMobileNet was built with a very small number of 
parameters and performed better than the current ResNet, 
which performs very well in image features. We created a 
loop closure detection algorithm based on ECMobileNet 
to verify whether it could be implemented in SLAM, and 

as expected, the LCD algorithm worked effectively. How-
ever, there are some shortcomings and areas for improve-
ment in our study. First, in this paper, we used TensorFlow 
on a GPU for our experiments, which means that we could 
not take full advantage of the benefits of lightweight neural 
networks on a CPU. We have no way of knowing exactly 
how this algorithm behaves on a microprocessor. Second, 
the indoorCVPR dataset is relatively small, and the train-
ing effect on some networks was limited. To address these 
issues, in the future, we plan to rewrite all network models 
through the TensorFlow Lite framework and then port them 
to the microprocessor for experiments. We will also expand 
the number of indoorCVPR dataset to make it more com-
prehensive and have stronger generality.

Fig. 10   P–R curve about TUM datasets
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