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Abstract
The log-logistic distribution is more comprehensively applied in the area of survival and reliability engineering analysis for

modeling the lifetime data practices of both human and electronic designs. The goal of this paper is to develop a

generalization of the classical pattern log-logistic distribution, known as the neutrosophic log-logistic distribution (NLLD),

to model various survival and reliability engineering data with indeterminacies. The developed distribution is especially

useful for modeling indeterminate data that is roughly positively skewed. This paper discusses the developed NLLD’s main

statistical properties such as neutrosophic survival function, neutrosophic hazard rate, neutrosophic moments, and neu-

trosophic mean time failure. Furthermore, the neutrosophic parameters are estimated using the well-known maximum

likelihood (ML) estimation method in a neutrosophic environment. A simulation study is carried out to establish the

achievement of the estimated neutrosophic parameters. As a final point, the proposed NLLD applications in the real world

have been discussed with the help of real data. The real data illustrated that the efficiency of the proposed model as

compared with the existing models.
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Abbreviations
NLLD Neutrosophic log-logistic distribution

LLD Log-logistic distribution

PDF Probability density function

CDF Cumulative density function

MGF Moment generating function

CF Characteristic function

MLE Maximum likelihood estimation

NAB Neutrosophic average bias

NMSE Neutrosophic Mean Square Error

NWD Weibull distribution

NED Neutrosophic exponential distribution

LL Log-likelihood value

AIC Akaike Information Criteria

BIC Bayesian information criteria

KS Kolmogorov–Smirnov

1 Introduction

The log-logistic distribution (LLD) is introduced and

developed under the name of Fisk distribution by [11] for

an applications of economics. Due to the increasing and

decreasing hazard function nature of log-logistic distribu-

tion, it is more applicable in survival analysis [13]. Studied

the log-logistic distribution in survival analysis specifically

mortality rate of cancer patients undergo analysis or

treatment [4]. Developed the log-logistic distribution for

survival data analysis using MCMC [38]. Presented the

systems of frequency curves generated by transformations

of logistic variables, discussed the nature of the distribution

and found that LLD is a special case of Burr XII. Sampling

properties of estimators of the log-logistic distribution with

application to Canadian precipitation data discussed by

[29]. They showed that LLD has more applicable in

hydrology to model stream flow and precipitation. Some

more applications of LLD in reliability estimation and

quality control aspects please refer [2, 16, 17, 23–25].

The objective of this study is to create a novel neutro-

sophic log-logistic distribution for use in material engi-

neering, specifically in applications involving alloy metal

melting points. The melting point of a substance is very
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important in determining the quality of that material. Cal-

culating the melting point is not just quantitatively chal-

lenging, but also conceptually challenging. Finding the

hotness at which the solid and liquid stages are equal is the

method for determining the melting point at constant

pressure. While, the correctness of the current possibilities

is strongly believed to determine the grade of the achieved

melting hotness. Hence, the material engineer who wish to

choose a pragmatic prospective for their definite resources

and are fascinated in the melting temperature constituted

by this possible for more details refer [22].

Nevertheless, it is more sensible to consider that the

LLD is the best depicted distribution for the alloy metal

melting point data based on interval set of quantities for

vague parameters. In this situation, neutrosophic statistics

is the better environment to address alloy metal melting

point based on interval data. The concept of the neutro-

sophic theory is invented and studied extensively by [30]

for indeterminacies in the data. The new school of thought

on neutrosophic theory is an expansion of fuzzy logics or

fuzzy sets for more details, see [7, 26, 31–33, 35, 37].

Furthermore, the neutrosophic statistics is pioneered by

[34] and it is an expansion to the classical statistics which

addresses through uncertain or vague data and corre-

sponding statistical probability distributions. The general-

ization of interval statistics is neutrosophic statistics and

also studies fuzzy interval sets. The neutrosophic statistics

becomes classical statistics when data is known or deter-

ministic. Whereas, in real-world application, most of the

data sets are vague or undeterministic or unclear, partially

unknown or incomplete than determinate data in this situ-

ations neutrosophic statistical procedures are desirable for

more details refer [5, 19, 21].

This study aims to extend the traditional log-logistic

distribution for modeling industrial data in a neutrosophic

context. Few scholars have been drawn to work on neu-

trosophic probability distributions in recent years; for

additional information, see [6] developed neutrosophic

Weibull distribution. Neutrosophic exponential distribution

applications for complex data analysis was studied by

[10, 28] presented neutrosophic beta distribution with

properties and applications, [1] studied neutrosophic

Kumaraswamy distribution with engineering application,

[27] discussed on neutrosophic extension of the Maxwell

model, [18] attempted on statistical development of neu-

trosophic gamma distribution with applications to complex

data analysis [3]. Developed a neutrosophic conditional

probabilities with theories and applications [14]. Studied

the Basics of neutrosophic simulation for converting ran-

dom numbers associated with a uniform probability

distribution into random variables follow an exponential

distribution. To begin the log-logistic distribution’s neu-

trosophic adaptation, a new model is being created. Par-

ticularly when the data presented interval statistics, this

sort of approach is competent of solving real-world prac-

tical challenges when dealing with indeterminate data in

either a univariate or multivariate circumstance. The neu-

trosophic statistics is an extension of interval statistics, for

more details refer [36]. He discussed the neutrosophic

statistics deals with all types of indeterminacy, while

interval statistics deals only with indeterminacy that may

be represented by intervals. Furthermore, he pointed out

that neutrosophic statistics is based on set analysis, while

interval statistics on interval analysis, therefore, the inter-

val statistics is a particular case of the neutrosophic

statistics (that uses all types of sets, not only intervals).

The remaining paper is reported as under: A description

about NLLD is given in Sect. 2. The various statistical

properties of NLLD are presented in Sect. 3. In Sect. 4, the

estimation of neutrosophic parameters is explained. The

extensive simulation study is carried out in Sect. 5. An

industrial application of the developed NLLD using the

alloy melting points data is given in Sect. 6 and in Sect. 7,

the concluding remarks and future study are presented.

2 Neutrosophic Log-Logistic Distribution

The neutrosophic statistics concept is introduced by [34]

and extensively studied by [8]. According to these authors,

the neutrosophic variable could be expressed as:

XN ¼ XL þ INXU ;IN 2 IL; IU½ �, where XL and INXU denote

the determined and indeterminate parts, correspondingly.

Note that IN 2 IL; IU½ � is an undetermined interval. Assume

that the neutrosophic random variable XN 2 XL;XU½ � fol-

lows to the NLLD having neutrosophic scale parameter

rN 2 rL; rU½ � and neutrosophic shape parameter

bN 2 bL; bU½ �. Reminder that XL; rL; bL and XU ; rU ; bU are

the lower values and the upper values, respectively. The

neutrosophic probability density function (PDF) of NLLD

is given by

f xN ; bN ; rNð Þ ¼ bN
rN

xN=rNð ÞbN�1

1 þ xN=rNð ÞbN
h i2

; xN � 0; bN [ 0; rN [ 0

ð1Þ

And neutrosophic cumulative density function (CDF) is

given below:
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F xN ; bN ; rNð Þ ¼ xN=rNð ÞbN

1 þ xN=rNð ÞbN
; xN � 0; bN [ 0; rN [ 0:

ð2Þ

The nature of PDF curves for various neutrosophic

parametric combinations are given in Fig. 1. The NLLD is

very bendy owing to different neutrosophic patterns of the

neutrosophic density function. The neutrosophic distribu-

tion is unimodel and its dispersion decreases as bN
increases. The structures of CDF curves for various neu-

trosophic parametric combinations are given in Fig. 2.

Survival function s xNð Þ is given by

s xNð Þ ¼ 1 � F xNð Þ ¼ 1 þ xN=rNð ÞbN
h i�1

: ð3Þ

Hazard rate function h xNð Þ is obtained as

h xNð Þ ¼ f xNð Þ
s xNð Þ ¼

bN
rN

xN=rNð ÞbN�1

1 þ xN=rNð ÞbN
: ð4Þ

The nature of survival function curves for different

neutrosophic parametric combinations are given in Fig. 3

and hazard rate function curves depicted in Fig. 4. From

Fig. 4, it is interesting to note that hazard function is

decreasing monotonically when bN � 1; 1½ � and hazard

function is increasing monotonically when bN [ 1; 1½ �.

3 Statistical Properties

This section deals with some statistical properties of the

NLLD and the outcome are publicized as follow:

Theorem 1 The kth moment about origin of NLLD is

Fig. 1 The pdf curves of NLLD for various neutrosophic parameters
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rkLC 1 � k=bLð ÞC 1 þ k=bLð Þ; rkUC 1 � k=bUð ÞC 1 þ k=bUð Þ
� �

:

Proof By definition, the kth raw moment is given as

l
0

kN ¼ E Xk
N

� �
¼

Z 1

0

xkNf xN ; bN ; rNð ÞdxN

¼
Z 1

0

xkN
bN
rN

xN=rNð ÞbN�1

1 þ xN=rNð ÞbN
h i2

dxN

¼
Z 1

0

xkL
bL
rL

xL=rLð ÞbL�1

1 þ xL=rNð ÞbL
h i2

dxL;

2
64

Z 1

0

xkU
bU
rU

xU=rUð ÞbU�1

1 þ xU=rUð ÞbU
h i2

dxU

3
75:

ð5Þ

After simplification, the Eq. (5) becomes

l
0

kN ¼ rkL

Z 1

0

z
ð1�k=bLÞ�1
L 1 � zLð Þð1þk=bLÞ�1dzL;

�

rkU

Z 1

0

z
ð1�k=bUÞ�1
U 1 � zUð Þð1þk=bUÞ�1dzU

�
:

where zL ¼ 1 þ xL=rLð ÞbL
h i�1

and

zU ¼ 1 þ xU=rUð ÞbU
h i�1

¼ rkLB 1 � k=bL; 1 þ k=bLð Þ; rkUB 1 � k=bU ; 1 þ k=bUð Þ
� �

:

Hence; l
0

kN ¼ rkLC 1 � k=bLð ÞC 1 þ k=bLð Þ;
�

rkUC 1 � k=bUð ÞC 1 þ k=bUð Þ
�
:

ð6Þ

The above results holds good when k\bN 2 bL; bU½ �.
In particular, the first four raw moment are obtained on

substituting k = 1, 2, 3 and 4 in Eq. (6).

The neutrosophic mean (NM) of NLLD is obtained as

Fig. 2 The cdf curves of NLLD for various neutrosophic parameters
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NM ¼ l
0

1N ¼ rLC 1 � 1=bLð ÞC 1 þ 1=bLð Þ;½
rUC 1 � 1=bUð ÞC 1 þ 1=bUð Þ�:

ð7Þ

And neutrosophic variance (NV) of NLLD is obtained

as

NV ¼ l2N ¼ l
0

2N � l
0

1N

� 	2

¼
r2
L C 1 � 2=bLð ÞC 1 þ 2=bLð Þ � C 1 � 1=bLð ÞC 1 þ 1=bLð Þð Þ2
n o

;

r2
U C 1 � 2=bUð ÞC 1 þ 2=bUð Þ � C 1 � 1=bUð ÞC 1 þ 1=bUð Þð Þ2
n o

2
64

3
75:

ð8Þ

Theorem 2 The moment generating function (MGF) of

NLLD is

MXN
tð Þ ¼

X1
k¼0

trLð Þk

k!
B 1 � k=bL; 1 þ k=bLð Þ;

"

X1
k¼0

trUð Þk

k
B 1 � k=bU ; 1 þ k=bUð Þ

#
:

Proof By definition MGF is given as

MXN
tð Þ ¼ E etxNð Þ ¼

Z 1

0

etxN f xN ; bN ; rNð ÞdxN

¼
Z 1

0

etxN
bN
rN

xN=rNð ÞbN�1

1 þ xN=rNð ÞbN
h i2

dxN

¼
Z 1

0

etxL
bL
rL

xL=rLð ÞbL�1

1 þ xL=rNð ÞbL
h i2

dxL;

2
64

Z 1

0

etxU
bU
rU

xU=rUð ÞbU�1

1 þ xU=rUð ÞbU
h i2

dxU

3
75

¼
X1
k¼0

tk

k!

Z 1

0

xkL
bL
rL

xL=rLð ÞbL�1

1 þ xL=rNð ÞbL
h i2

dxL;

2
64

X1
k¼0

tk

k!

Z 1

0

xkU
bU
rU

xU=rUð ÞbU�1

1 þ xU=rUð ÞbU
h i2

dxU

3
75: ð9Þ

Fig. 3 The survival function curves of NLLD for various neutrosophic parameters
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After simplification, the Eq. (9) becomes

MXN
tð Þ ¼

X1
k¼0

tk

k!
rkL

Z 1

0

z
ð1�k=bLÞ�1
L 1 � zLð Þð1þk=bLÞ�1dzL;

"

X1
k¼0

tk

k!
rkU

Z 1

0

z
ð1�k=bUÞ�1
U 1 � zUð Þð1þk=bUÞ�1dzU

#

where zL ¼ 1 þ xL=rLð ÞbL
h i�1

and zU ¼ 1 þ xU=rUð ÞbU
h i�1

¼
X1
k¼0

trLð Þk

k!
B 1 � k=bL; 1 þ k=bLð Þ;

"

X1
k¼0

trLð Þk

k!
B 1 � k=bU ; 1 þ k=bUð Þ

#

Hence; MXN
tð Þ ¼

X1
k¼0

trLð Þk

k!
C 1 � k=bLð ÞC 1 þ k=bLð Þ;

"

X1
k¼0

trUð Þk

k!
C 1 � k=bUð ÞC 1 þ k=bUð Þ

#
:

ð10Þ

Theorem 3 The characteristic function (CF) of NLLD is

UXN
tð Þ ¼

X1
k¼0

itrLð Þk

k!
B 1 � k=bL; 1 þ k=bLð Þ;

"

X1
k¼0

itrUð Þk

k
B 1 � k=bU ; 1 þ k=bUð Þ

#
:

Proof By definition CF is given as

Fig. 4 The hazard rate function curves of NLLD for various neutrosophic parameters
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Table 2 Simulated average neutrosophic biases and MSEs of parameters when rN 2 1; 2½ � and bN 2 2:25; 2:75½ �

n NAB NMSE

rN bN rN bN

20 [0.0150, 0.0200] [0.1641, 0.2005] [0.0313, 0.0824] [0.2593, 0.3873]

30 [0.0105, 0.0143] [0.1057, 0.1292] [0.0207, 0.0548] [0.1515, 0.2263]

40 [0.0080, 0.0109] [0.0777, 0.0950] [0.0152, 0.0405] [0.1033, 0.1544]

50 [0.0065, 0.0089] [0.0642, 0.0784] [0.0121, 0.0323] [0.0821, 0.1226]

100 [0.0032, 0.0043] [0.0327, 0.0399] [0.0061, 0.0162] [0.0384, 0.0574]

150 [0.0023, 0.0031] [0.0213, 0.0260] [0.0039, 0.0105] [0.0253, 0.0379]

200 [0.0018, 0.0025] [0.0163, 0.0200] [0.0030, 0.0079] [0.0186, 0.0278]

250 [0.0015, 0.0021] [0.0138, 0.0168] [0.0023, 0.0063] [0.0150, 0.0224]

300 [0.0013, 0.0019] [0.0115, 0.0140] [0.0020, 0.0053] [0.0123, 0.0184]

Table 3 Simulated average neutrosophic biases and MSEs of parameters when rN 2 1; 2½ � and bN 2 3:75; 4:25½ �

n NAB NMSE

rN bN rN bN

20 [0.0054, 0.0084] [0.2735, 0.3099] [0.0109, 0.0339] [0.7202, 0.9250]

30 [0.0039, 0.0061] [0.1762, 0.1997] [0.0073, 0.0226] [0.4207, 0.5404]

40 [0.0030, 0.0048] [0.1295, 0.1467] [0.0054, 0.0168] [0.2871, 0.3687]

50 [0.0025, 0.0039] [0.1069, 0.1212] [0.0043, 0.0134] [0.2280, 0.2929]

100 [0.0012, 0.0019] [0.0545, 0.0617] [0.0022, 0.0067] [0.1067, 0.1371]

150 [0.0009, 0.0014] [0.0354, 0.0402] [0.0014, 0.0044] [0.0704, 0.0904]

200 [0.0007, 0.0011] [0.0272, 0.0309] [0.0011, 0.0033] [0.0517, 0.0664]

250 [0.0006, 0.0010] [0.0229, 0.0260] [0.0008, 0.0026] [0.0416, 0.0534]

300 [0.0006, 0.0009] [0.0191, 0.0217] [0.0007, 0.0022] [0.0342, 0.0439]

Table 1 The Neutrosophic statistical constants of NLLD

Statistic rN 2 1; 2½ �
bN 2 2:25; 2:75½ �

rN 2 1; 2½ �
bN 2 2:5; 3:25½ �

rN 2 1; 2½ �bN 2 3:75; 4:25½ � rN 2 1; 2½ �
bN 2 6:5; 7:5½ �

rN 2 2:0; 2:75½ �bN 2 2:5; 3:25½ �

Mean [1.418, 2.512] [1.321, 2.349] [1.127, 2.195] [1.040, 2.059] [2.643, 3.230]

Variance [5.784, 6.155] [2.530, 2.752] [0.414, 1.123] [0.093, 0.267] [5.204, 10.119]

Mode [0.654, 1.516] [0.713, 1.645] [0.864, 1.787] [0.953, 1.930] [1.425, 2.261]

Median [1, 2] [1, 2] [1, 2] [1, 2] [2.00, 2.750]

Skewness [0.197, 0.239] [0.167, 0.216] [0.129, 0.145] [0.073, 0.084] [0.167, 0.216]

Kurtosis [1.417, 1.472] [1.386, 1.441] [1.353, 1.366] [1.321, 1.326] [1.386, 1.441]
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UXN
tð Þ ¼ E eitxN

� �
¼

Z 1

0

eitxN f xN ; bN ; rNð Þ dxN

¼
Z 1

0

eitxN
bN
rN

xN=rNð ÞbN�1

1 þ xN=rNð ÞbN
h i2

dxN

¼
Z 1

0

eitxL
bL
rL

xL=rLð ÞbL�1

1 þ xL=rNð ÞbL
h i2

dxL;

2
64

Z 1

0

eitxU
bU
rU

xU=rUð ÞbU�1

1 þ xU=rUð ÞbU
h i2

dxU

3
75

¼
X1
k¼0

itð Þk

k!

Z 1

0

xkL
bL
rL

xL=rLð ÞbL�1

1 þ xL=rNð ÞbL
h i2

dxL;

2
64

X1
k¼0

itð Þk

k!

Z 1

0

xkU
bU
rU

xU=rUð ÞbU�1

1 þ xU=rUð ÞbU
h i2

dxU

3
75: ð11Þ

After simplification, the Eq. (11) becomes

/XN
tð Þ ¼

X1
k¼0

itð Þk

k!
rkL

Z 1

0

z
ð1�k=bLÞ�1
L 1 � zLð Þð1þk=bLÞ�1dzL;

"

X1
k¼0

itð Þk

k!
rkU

Z 1

0

z
ð1�k=bUÞ�1
U 1 � zUð Þð1þk=bUÞ�1dzU

#

where zL ¼ 1 þ xL=rLð ÞbL
h i�1

and zU¼

1 þ xU=rUð ÞbU
h i�1

.

¼
P1
k¼0

itrLð Þk
k! B 1 � k=bL; 1 þ k=bLð Þ;

�

P1
k¼0

itrLð Þk
k! B 1�ð k=bU ; 1 þ k=bUÞ�.

Table 4 Simulated average neutrosophic biases and MSEs of parameters when rN 2 2:0; 2:75½ � and bN 2 2:5; 3:25½ �

n NAB NMSE

rN bN rN bN

20 [0.0243, 0.0197] [0.1823, 0.2370] [0.1003, 0.1105] [0.3201, 0.5409]

30 [0.0172, 0.0142] [0.1175, 0.1527] [0.0666, 0.0736] [0.1870, 0.3160]

40 [0.0131, 0.0109] [0.0863, 0.1122] [0.0492, 0.0546] [0.1276, 0.2156]

50 [0.0106, 0.0089] [0.0713, 0.0927] [0.0391, 0.0435] [0.1014, 0.1713]

100 [0.0052, 0.0043] [0.0363, 0.0472] [0.0196, 0.0218] [0.0474, 0.0802]

150 [0.0037, 0.0032] [0.0236, 0.0307] [0.0127, 0.0142] [0.0313, 0.0529]

200 [0.0029, 0.0025] [0.0182, 0.0236] [0.0096, 0.0107] [0.0230, 0.0388]

250 [0.0025, 0.0022] [0.0153, 0.0199] [0.0076, 0.0085] [0.0185, 0.0312]

300 [0.0022, 0.0019] [0.0128, 0.0166] [0.0064, 0.0071] [0.0152, 0.0257]

Table 5 The neutrosophic parametric estimation and goodness of fit for alloy melting points data

Model Parameter MLE 2LL AIC BIC KS

D-value p-value

NLLD rN [492.696,

512.952]

[164.287,
165.162]

[168.287,
169.162]

[170.067,
170.943]

[0.101, 0.117] [0.942, 0.984]

bN [36.418, 38.934]

NWD Scale aN [505.091,

525.665]

[167.005,

167.536]

[171.001,

171.533

[172.782,

173.317]

[0.146, 0.115] [0.789, 0.950]

Shape bN [21.267, 22.494]

NED rN [461.958,

491.642]

[259.349,

260.784]

[261.349,

262.784]

[262.239,

263.674]

[0.6156,

0.62181]

[3.032e-07,

4.289e-07]
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Hence; UXN
tð Þ ¼

X1
k¼0

itrLð Þk

k!
C 1 � k=bLð ÞC 1 þ k=bLð Þ;

"

X1
k¼0

itrUð Þk

k!
C 1 � k=bUð ÞC 1 þ k=bUð Þ

#
:

ð12Þ

Theorem 4 The mode of NLLD is rN
bN�1
bNþ1

� 	1=bN
.

Proof By definition mode is the value of the variate which

obtained on solving
of ðxNÞ
oxN

¼ 0 and o2f ðxN Þ
ox2

N

\0:

By taking logarithm on both sides of Eq. (1), we get

log f xNð Þð Þ ¼ log
bN
rN


 �
þ bN � 1ð Þ log xN=rNð Þ

� 2 log 1 þ xN=rNð ÞbN
� 	

) of ðxNÞ
oxN

¼ bN � 1ð Þ
xN

� 2bN
rN

xN=rNð ÞbN�1

1 þ xN=rNð ÞbN

( )
f xNð Þ:

ð13Þ

of ðxNÞ
oxN

¼ 0 ) bN � 1ð Þ
xN

� 2bN
rN

xN=rNð ÞbN�1

1 þ xN=rNð ÞbN

( )
¼ 0

) bN � 1ð Þ
xN

¼ 2bN
rN

xN=rNð ÞbN�1

1 þ xN=rNð ÞbN

) bN � 1ð Þ
2bN

¼ xN=rNð ÞbN

1 þ xN=rNð ÞbN

) xN ¼ rN
bN � 1

bN þ 1


 �1=bN

: ð14Þ

On differentiating Eq. (13), we can easily shown that
o2f ðxNÞ
ox2

N
xNj \0.

Hence, the mode is rN
bN�1
bNþ1

� 	1=bN
where

rN 2 rL; rU½ � and bN 2 bL; bU½ � :

3.1 Quantile Function

A quantile function, another useful statistical characteristic

of NLLD, is crucial to the Monte Carlo simulation method.

To produce the random numbers for the probability dis-

tribution model, this function is also helpful. The formula

for the NLLD quantile function is

QN pð Þ ¼ F�1
N pð Þ ¼ rN

p

1 � p


 �1=bN

where rN

2 rL; rU½ � and bN 2 bL;bU½ � : ð15Þ

When p = 0.5, the median of the NLLD is rN .

3.2 Measures of Skewness and Kurtosis Based
on Quantile Function

The quantitative measure of skewness and Kurtosis based

on quantile function is defined by [12] and [20], respec-

tively. The following formula is used to determine the

neutrosophic skewness and kurtosis of NLLD under neu-

trosophic environment.

Skewness SkN ¼ QN 6=8ð Þ � 2QN 4=8ð Þ þ QN 2=8ð Þ
QN 6=8ð Þ � QN 2=8ð Þ :

ð16Þ

Kurtosis KuN ¼ QN 7=8ð Þ � QN 5=8ð Þ þ QN 3=8ð Þ � QN 1=8ð Þ
QN 6=8ð Þ � QN 2=8ð Þ :

ð17Þ

For different neutrosophic scale and shape parameters,

Table 1 shows the neutrosophic mean, neutrosophic vari-

ance, neutrosophic mode, neutrosophic median, neutro-

sophic skewness, and neutrosophic kurtosis. According to

Table 1’s findings, for given neutrosophic scale parameters,

various statistic values fall when neutrosophic share para-

metric values grow.

4 Estimation of Parameters

The neutrosophic parameters of the developed NLLD are

obtained by using the maximum likelihood estimation

(MLE) technique. Suppose XN1;XN2; :::;XNn be a neutro-

sophic random sample of NLLD then the log-likelihood

function could be expressed as:

l rN ; bNð Þ ¼ n ln bNð Þ � n ln rNð Þ þ bN � 1ð Þ
Xn
i¼1

ln xNi=rNð Þ

� 2
Xn
i¼1

ln 1 þ xNi=rNð ÞbN
h i

:

ð18Þ
ol rN ; bNð Þ

orN
¼ 0

) � n

rN
� n bN � 1ð Þ

rN

þ 2bN
rN

Xn
i¼1

xNi=rNð ÞbN

1 þ xNi=rNð ÞbN
� 	

¼ 0 ð19Þ
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ol rN ; bNð Þ
obN

¼ 0

) n

bN
þ
Xn
i¼1

ln xNi=rNð Þ

� 2
Xn
i¼1

xNi=rNð ÞbN ln xNi=rNð Þ
1 þ xNi=rNð ÞbN

� 	

¼ 0: ð20Þ

The MLEs of rN ; bNð Þ say r̂N ; b̂N
� 	

where rN 2
rL; rU½ � and bN 2 bL; bU½ � are obtained on solving the

Eqs. (19) and (20).

5 Simulation

In this section, a simulation study is carried out to examine

the effectiveness of neutrosophic MLEs of the neutrosophic

parameters rN and bN of the proposed NLLD. For simula-

tion, a random sample of sizes, n = 20, 30, 40, 50, 100,

150, 200, 250 and 300 are generated from NLLD with

various amalgams of neutrosophic parameters. Using sim-

ulated data, estimated MLEs of the neutrosophic parame-

ters of various sample sizes for 5000 replications. Hence,

the neutrosophic average of the estimators, the neutro-

sophic average bias (NAB) and neutrosophic Mean Square

Error (NMSE) are obtained for all sample sizes. The esti-

mates of NAB and NMSE are employed to assess the

characteristics of the superior neutrosophic estimator. In

Table 2, the simulated results for rN 2 1; 2½ � and bN 2
2:25; 2:75½ � presented. In Table 3, the simulated results for

rN 2 1; 2½ � and bN 2 3:75; 4:25½ � presented. In Table 4, the

simulated results for rN 2 2:0; 2:75½ � and bN 2 2:5; 3:25½ �
presented. In Tables 2, 3 and 4, the simulated NAB and

NMSE are reported. From Tables 2, 3 and 4, it is noticed

that as sample sizes increase the NAB and NMSE are

decreases for both neutrosophic parameters as expected.

Furthermore, when neutrosophic shape parameter increases

from bN 2 2:25; 2:75½ � to bN 2 3:75; 4:25½ � at fixed neu-

trosophic scale parameter rN 2 1; 2½ � the NAB and NMSE

are decreases across all sample sizes. Also, same phe-

nomenon is observed when neutrosophic scale parameter

increases.

6 Industrial Utilization

Comparing the proposed novel neutrosophic probability

distribution to existing neutrosophic probability distribu-

tions based on data set, the current part shows how useful

and thin it is. The well thought-out data set is regarding the

alloy melting points data taken from [9] and these data

were first used by [15]. A combination of material

constituents, including at least one metal, makes up an

alloy. These alloys might have characteristics that make

them beneficial for being distinct from pure metals and

useful for increasing strength or hardness while also low-

ering the cost of the material. Examples of alloys include

red gold, which is composed of a copper and gold alloy,

white gold, which is composed of a silver and gold alloy,

etc. The data on alloy melting points are frequently taken

from a distribution with a set of aggregate melting points

by manufacturing engineers involved in the production of

bimetals. In general, evaluating melting points is quite

challenging, therefore observations are indeterministic and

can be communicated in intervals. For ready reference, the

18 uncertain data observations of melting points of alloys

are as follows:

[563.3, 545.5], [529.4, 511.6], [523.1, 503.5], [470.1,

449.2], [506.7, 489.0], [495.6, 479.1], [495.3, 467.9],

[520.9, 495.6], [496.9, 472.8], [542.9, 519.1], [505.4,

484.0], [550.7, 525.9], [517.7, 500.9], [499.2, 483.0],

[500.6, 480.0], [516.8, 499.6], [535.0, 515.1], [489.3,

464.4].

The model adequacy of the proposed NLLD is com-

pared with neutrosophic Weibull distribution (NWD)

developed by [6] and neutrosophic exponential distribution

(NED) applications for complex data analysis studied by

[10]. The decision about the best model fit would be con-

sidered by means of the following criterion selection

measures: log-likelihood value (LL), Akaike Information

Criteria (AIC), Bayesian information criteria (BIC) and

Kolmogorov–Smirnov (KS) test. The criterion for best

fitted model is that highest values of 2LL and smallest

values of AIC, BIC, KS statistic. Also, for larger p-value

indicates that the best fitted model for the neutrosophic

data. The neutrosophic maximum likelihood estimators and

model adequacy measures are given in Table 5. The results

indicate that the developed NLLD is more efficient for

melting points of alloys data than the contemporary NWD

and NED. The bold values in the table shows that the

efficiency of the proposed model.

7 Conclusion

A new generalized version of distribution namely

NLLD has been recommended in this paper. This devel-

oped model is helpful in various survival and reliability

engineering data for indeterminacies. The chief statistical

properties of the developed NLLD such as neutrosophic

survival function, neutrosophic hazard rate, neutrosophic

moments, and neutrosophic mean time failure have been

discussed. The neutrosophic MLEs have been formulated

and depicted neutrosophic average bias and MSEs for

various sample sizes. Additionally, neutrosophic random
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sample concept is established and hence capable of use

authenticate the systematic outcome of the developed

NLLD. The simulation study has been conducted to

investigate achievement of the computed neutrosophic

parameters. The outcome from simulations depict that the

sample size and neutrosophic parametric value play a vital

role in perfectly estimating an unsuspected parameter.

The melting point of alloy material usage also confirms

the validity of the NLLD in applied material science under

neutrosophic cases. It is considered that by augmentation

of the capacity of NLLD in stress-strength reliability

studies and quality control studies, also broadened for

further neutrosophic distributions.
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