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Abstract
In response to the fast and intensive traffic changes and the presence of redundant links in the network topology in data centre 
networks, multipath routing has become the dominant approach. Existing multipath routing algorithms are still inadequate 
in terms of adapting to dynamic changes in the network state quickly and the cooperation of path selection and sub-flow 
assignment. Therefore, this paper proposes a sub-flow adaptive multipath routing algorithm for data centre networks (SAMP). 
The deep deterministic policy gradient (DDPG) algorithm is introduced. DDPG combines deep learning (DL) and reinforce-
ment learning (RL) to implement different network state changes quickly, especially in the process of topology, to achieve 
dynamic migration of the optimised decisions that have been learned. An adaptive multipath routing model for subflows is 
established to accomplish collaborative scheduling of path selection and subflow assignment based on the real-time state 
of the network. The experimental results show that the algorithm can be well adapted to the data centre network, and when 
compared with several traditional methods, it reduces the latency by an average of 31.3%, improves the task transmission 
success rate by an average of 14.9%, and increases the throughput by 37.1%.
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Abbreviations
DDPG  Deep deterministic policy gradient
DL  Deep learning
RL  Reinforcement learning
DCN  Data centre network

DJSP  Dijkstra’s shortest path
ECMP  Equal cost multipath
WCMP  Weight cost multipath
DEFT  Dynamic error free transmission
SHR  Software-defined hybrid routing
MLF  Flow characteristics algorithm
DRL  Deep reinforcement learning
SAMP  Sub-flow Adaptive Multipath Routing
SDN  Software defined network

1 Introduction

In recent years, emerging applications such as streaming 
media, online classrooms, and network disks have gradu-
ally started to be deployed in the cloud, which also places 
higher performance demands on the data centre network 
(DCN), which is the infrastructure for cloud computing 
and storage [1]. Currently, however, routing policies based 
on Dijkstra’s shortest path (DJSP) are so fixed that routing 
paths have a high repetition rate, which makes data centre 
network topologies often suffer from link redundancy [2]. 
Compared to traditional single-path routing, multipath rout-
ing makes better use of network resources. Since different 
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transmission tasks require different numbers of sub-flow 
paths and the actual conditions vary between paths, the num-
ber of subflows, path selection, and allocation ratios are the 
focus of current research on multipath routing in data centre 
networks.

In traditional data centre networks, there exist mul-
tipath routing such as equal cost multipath (ECMP) [3, 4]
algorithm, weight cost multipath (WCMP) algorithm [5], 
dynamic error free transmission (DEFT) algorithm [6]. 
These multipath routing algorithms often depend on the 
static link state for path selection and subflow allocation 
decisions, and lack the awareness of the dynamic character-
istics of the flows. They cannot fully utilise the free links to 
share the network load [7, 8]. Then some researchers con-
sider the dynamic characteristics of flows in the sub-flow 
allocation process, such as software-defined hybrid routing 
(SHR) algorithm [9] and multipath routing on link real-
time status and flow characteristics algorithm [10] (MLF), 
although the dynamic characteristics of long and short flows 
have been taken into account and multipath transmission 
is optimised through focused scheduling. However, this 
approach is still inadequate for sensing dynamic changes 
in the network state, and will not allow sub-path selection 
and allocation from a global perspective, thereby affecting 
multipath transmission performance.

In recent years, with the development of machine learning 
algorithms, various approaches based on machine learning 
algorithms have emerged to solve routing problems. Cheng 
et  al. [11] proposed a RL-based routing algorithm that 
can choose paths in a limited way. However, all flows are 
handled uniformly in routing. Rischke et al. [12] proposed 
QR-SDN, which is a scheme based on reinforcement learn-
ing. Xu et al. [13] used the Q-routing algorithm to design a 
multipath routing method. However, there are limitations in 
the highly dynamic and time-varying environment. With the 
introduction of deep reinforcement learning (DRL), combin-
ing the perceptual capabilities of deep learning (DL) with 
the decision making capabilities of reinforcement learning 
(RL) in a generic form. DRL has shown significant capabili-
ties in dealing with highly dynamic time-varying environ-
ments and complex state spaces. Fu et al. [14] used Deep 
Q-learning to generate optimal routing paths for SD-DCN, 
but there was a lack of cooperation in both subpath selection 
and sub-flow assignment.

In summary, in the dynamic changing environment of the 
data centre network state, these multipath routing algorithms 
are not yet able to simultaneously collaborate on subpath 
selection, sub-flow assignment and adjust the paths used for 
multipath transmission adaptively based on the changing 
network state in real time. The concrete performances are 
as follows:

(1) Existing algorithms lack real-time updates on the net-
work state and path changes. For different transmission tasks 

in different network states, it is necessary to select the right 
number and structure of sub-paths based on path changes, 
to improve network performance to the maximum extent.

(2) Existing algorithms are not yet taking into account the 
combination of the path itself and the subflow allocations. 
As a result, the sub-stream allocation and scheduling cannot 
fully cooperate with the changes in path selection, which 
limits the performance of multipath transmission.

Multipath routing is essentially to select the appropriate 
path among the multiple reachable paths between the source 
node and the sink node and allocate sub-streams for parallel 
transmission [15]. So, it can be transformed into optimal 
control tasks. Considering the tight connections between 
network states, routing decisions and the inadequacies of 
existing work, this paper proposes a sub-flow adaptive mul-
tipath routing algorithm for data centre networks (SAMP). 
Aiming at the routing characteristics of fast and intensive 
traffic changes and redundant links in the network topol-
ogy in data centre networks, this paper introduces the deep 
reinforcement learning method DDPG, which combines 
deep learning and reinforcement learning. It can quickly 
achieve changes of different network states, especially in 
the process of data centre network changes represented by 
the topology, and can achieve dynamic migration of the 
already learned optimisation decisions. A sub-flow adaptive 
multipath routing model is also established to complete col-
laborative scheduling of path selection and subflow assign-
ment based on the real-time state of the network. Using the 
centralised control and consistent state view of the network 
provided by the software defined network (SDN) as the basis 
for deployment implementation, the algorithm is deployed 
with the software defined network to learn routing policies 
and achieve dynamic adjustments by interacting with the 
network environment. Compared with traditional algorithms, 
SAMP has a greater improvement in indicators such as trans-
mission delay and throughput. The main contributions of 
this paper are as follows:

(1) Aiming at the real-time network state change problem, 
this paper introduces deep reinforcement learning algorithm 
to adaptively select the appropriate number and structure of 
sub-paths according to the network status, and dynamically 
update the routing strategy through feedback and the reward 
optimisation strategy.

(2) Aiming at the lack of coordination between sub-flow 
allocation and path selection, this paper establishes a sub-
flow adaptive multipath routing model on the basis of rein-
forcement learning. This allows the algorithm to take into 
account the distribution of sub-streams when selecting the 
optimal path, so as to make the full use of the advantages of 
multipath transmission.

The rest of this paper is arranged as follows: the second 
part introduces the problem description and related concepts; 
the third part introduces the multipath routing algorithm and 



International Journal of Computational Intelligence Systems           (2023) 16:25  

1 3

Page 3 of 11    25 

the deployment implementation framework; the fourth part 
introduces the experimental settings and results analysis; 
the fifth part summarises the full text and outlook future 
research directions.

2  Problem Description and Related 
Concepts

2.1  Problem Description

Some recent studies have shown that not all streams are 
suitable for multipath transmission. Therefore, in a cer-
tain network state, the performance of multipath routing is 
related to the number of sub-paths and the distribution ratio 
of sub-streams.

Taking the classic topology Fat-tree [16] of the data 
center network in Fig. 1 as an example, the forwarding rate 
of the intermediate node Ni(0 ≤ i ≤ 12) is aiMB∕s , and the 
to-be-forwarded traffic size of the node Ni is XiMB . ti = Xi∕ai 
is the queuing delay of the task at node i. To simplify the 
path selection, this paper devises hierarchical relationships 
for the exchange nodes. Then the multipath calculation can 
avoid taking paths with retracements in the hierarchy. So 
among the Fat-tree, between node A and node B, there are 
eight paths like A,N1,N5,N3,B ; A,N1,N5,N11,N6,N3,B and 
so on. For the transfer task Task of size S from node A to 
node B, S∕ai is the sending delay of the task at node i. Paral-
lel transmission is performed using paths A,N1,N5,N3,B 
and A,N1,N6,N3,B . The parallel transmission delay 
i s  T1 = max(t1 + t5 + t3 + S1∕a1 + S1∕a5 + S1∕a3, t1
+ t6 + t3 + S2∕a1 + S2∕a6 + S2∕a3)  ,  w h e r e 
S = S1 + S2 . Single-path transmission using paths 
A,N1,N6,N3,B . The single-path transmission delay is 
T2 = t1 + t6 + t3 + S∕a1 + S∕a6 + S∕a3 . By comparing T1 
and T2, it can be found that the effect of using different 

numbers of paths for transmission is largely affected by the 
states of nodes A,N1,N2,N3,N4,N5,N6 . Similarly, when 
selecting paths A,N1,N5,N3,B and A,N1,N6,N3,B for par-
allel transmission, distributing more sub-streams to a rela-
tively idle path can greatly improve the transmission effect. 
Therefore, from these two points, the problems to be solved 
in this paper can be described as follows: we should design 
an adaptive multipath routing algorithm with real-time net-
work status and transmission tasks as inputs. The algorithm 
outputs a reasonable multipath routing strategy, which can 
select a reasonable number of sub-paths and sub-stream 
allocation ratio for different transmission tasks to improve 
network transmission performance.

2.2  Related Concepts and Model

When using reinforcement learning method to solve practi-
cal problems, it is necessary to abstract the problem scene 
and transform it into a model that reinforcement learning 
method can understand. In this paper, the actual application 
scenario is network routing, which will be modelled in this 
section.

For the classic data centre network topology Fat-tree 
as shown in Fig. 1. The network links, forwarding nodes, 
sending and receiving terminals can be represented by 
an undirected graph G = (V ,E, c(v),m, n) . In graph G, 
V = {v1, v2,…} is the node set in the network, representing 
transport layer equipment, which is composed of edge layer, 
core layer and convergence layer. E is the set of edges in 
the network, representing links, c(vi) represents the capacity 
of forwarding nodes vi in set V, and m and n represent the 
number of edges and nodes in graph G, respectively. For the 
convenience of discussion, an adjacency matrix with n rows 
and n columns D = [Dij]n×n is used to represent the undi-
rected graph G, as shown in formula (1). When node i and 
node j are neighbour nodes, both Dij and Dji are 1, otherwise 
they are 0. Similarly, the communication between nodes in 
the network is represented by a traffic matrix M = [mij]x×x 
in the form of formula (1), where x is the number of edge 
layer nodes, and mij is the traffic from the source node vi to 
the target node vj . When there is no communication volume 
between the source-sink node, the corresponding commu-
nication volume will be set to 0.

In this paper, the routing model is constructed based on rein-
forcement learning. Reinforcement learning, as an impor-
tant branch of machine learning, is different from supervised 
learning and unsupervised learning. It continuously inter-
acts with the environment through agent, and can learn the 

(1)D =

⎡⎢⎢⎣

D11 ⋯ D1n

⋮ ⋱ ⋮

Dn1 ⋯ Dnn

⎤⎥⎥⎦
.

Fig. 1  Data centre network Fat-tree topology
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optimal strategy for solving problems online [16]. In this 
paper, the routing model based on reinforcement learning is 
shown in Fig. 2, which includes agent, environment, action, 
state and reward [17]. The workflow of the model can be 
described as follows: the agent perceives the current state of 
the environment St , makes the corresponding action at and 
executes it. The environment returns the reward Rt under the 
actionat and reaches the next state. After a certain number 
of interactions with the environment, the agent can finally 
learn the optimal strategy.

However, in practical applications, the reinforcement learn-
ing method cannot be simply applied to the routing problem. 
Designing reasonable rewards, actions and states for optimisa-
tion goals is the key to solving the problem [18]. Therefore, 
for the problems mentioned above, this section uses the model 
in Fig. 2 as the basis to define rewards, states and actions as 
follows:

2.2.1  Reward

In reinforcement learning, agent learns by trial and error, and 
gets reward to guide behaviour. Therefore, it is necessary to set 
reward for agent to find good strategies. In this paper, the goal 
is to improve the network transmission performance. Although 
throughput is very important for data centre network, it is more 
important to ensure that the transmission does not time out. 
Therefore, this paper needs to maximise the throughput of the 
network while ensuring that the transmission delay meets the 
quality of service requirements. Specifically, the setting of the 
reward function is shown in Formula (2).

In the above formula, i represents the sequence number of 
the current scenario, TQos represents the delay requirement of 
the current network service quality, Ti represents the average 

(2)ri =

{
T Ti < TQos
R Otherwise

.

transmission delay of the completed stream in the current 
scenario, and R is a constant less than 0, T is the current 
throughput. When the transmission delay of the completed 
stream meets the quality of service requirements, the reward 
is the throughput and guides the agent to learn in the direc-
tion of improving the throughput. Otherwise, a constant less 
than 0 is used to guide the agent to learn in the direction of 
reducing the delay.

2.2.2  State

The state usually represents the environment. In the rout-
ing scenario, the routing strategy is usually determined 
based on the current network status. In the above, the 
current network status is represented by a traffic matrix. 
Therefore, we can set the state to the current traffic matrix 
of the network, the dimension of which is equal to the 
number of edge layer nodes.

2.2.3  Action

In the routing scenario, the agent takes action based on 
the current traffic matrix and transforms them into cor-
responding routing decision according to certain rules. 
It can be seen from the above problem description that 
for each transmission task, the routing decision needs to 
allocate a reasonable number of sub-paths and subflow 
allocation ratio. Therefore, the action needs to include ele-
ments such as the number of sub-paths and the allocation 
ratio of sub-flows.

Current routing models based on reinforcement learn-
ing mostly take link weights as action, and obtain routing 
strategies through shortest path algorithms. Although this 
design has small dimensions and is easy to converge, it can 
only represent a single-path routing strategy, and cannot 
represent the complex multipath routing strategy required 
in this paper. Based on this point, this paper considers the 
use of destination node-based routing rules as the action. 
For each node V and target node, a allocation ratio to its 
neighbor nodes is set. Taking node A as an example, the 
sub-flow allocation ratio table to the target node is shown 
in Fig. 3. Among them, the horizontal represents the target 
node, and the vertical represents the allocation ratio of node 
A to the neighbor nodes. However, this can only indicate 
the allocation ratio of sub-streams, and cannot select sub-
paths. Therefore, for each component allocation ratio, the 
model additionally sets a threshold � . When the allocation 
ratio corresponding to the neighbour node is greater than the 
threshold, the node is selected as the next hop node. Through 
this method, the number of sub-paths and the sub-flow 

Fig. 2  Reinforcement learning model about routing
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allocation ratio between the source node–target node pair 
can be well found.

3  Algorithm Design and Analysis

3.1  Algorithm Implementation

In the multipath routing problem, the role of the reinforce-
ment learning agent is the routing decision maker, which 
outputs the latest routing path after obtaining network status 
information. From the time scale, the way that agent takes 
action is mainly divided into packet-level routing control 
mode and time-period-level routing control mode [19]. The 
packet-level routing control method takes action on each 
packet with finer granularity. The route control method at 
the time segment level divides the time into multiple time 
slices and takes actions for each time slice, with a larger 
granularity.

Considering that the algorithm needs to perform routing 
control based on the overall status of the network and the 
large scale of data centre network traffic, we adopt a time-
period-level routing control mechanism. The specific content 
of this mechanism is shown in Fig. 4. In Fig. 4, we use cen-
tralised control to place the reinforcement learning agent on 
the control plane. In addition, in terms of data interaction, 
there is corresponding data interfaces between the control 
plane and the data plane. In each time segment, the control 
plane measures the network status and transmits it to the 
agent. The agent gives routing instructions according to the 
network status, and updates the strategy according to the 
feedback in the next time segment.

In terms of reinforcement learning algorithm selection, 
although the table-based algorithm shown in Fig. 5 is highly 
interpretable, it is prone to dimension disaster due to the 
huge dimensions of the state and action space in the routing 
problem [20]. Therefore, this paper uses the DDPG algo-
rithm [21] combined with deep learning. The DDPG algo-
rithm uses a neural network instead of a table to represent 

the mapping of states to actions in a functional approxima-
tion manner. In this way, the problem of dimension disaster 
can be solved well, and it can fit the routing control mecha-
nism based on time segment well.

On the basis of the above, this paper uses DDPG algo-
rithm to construct agent, and regards the routing problem 

Fig. 3  Diversion ratio table of 
source node A 

Fig. 4  Route control mechanism based on time segment

Fig. 5  Table-based routing algorithm structure
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as a Markov decision process. Agent, as a routing decision 
maker, interacts with the network environment with the goal 
of obtaining the largest cumulative reward. Then when the 
environment state is St , the agent (routing decision maker) 
perceives the current environment state St (traffic matrix), 
takes action at and converts it into corresponding multipath 
routing decision execution. The environment returns the 
reward Rt under the action of at to evaluate the quality of 
the current action (routing instruction). Then algorithm 
reversely updates the DDPG neural network parameter W to 
achieve strategy improvement. It goes over and over again. 
Finally, the DDPG agent learns the optimal routing strategy, 
and outputs it in the form of neural network weight W. The 
detailed pseudo code of the algorithm is as follows.

Where Qos_target represents the optimization objective, 
like latency,for example, when the current network perfor-
mance does not meet the requirements of the target, it will 
keep optimising, and when it does, it will stop.

3.2  Deployment Framework

Considering that the algorithm is based on the acquisition 
and analysis of the real-time state of the network, it needs 
to accurately perceive the overall state view information of 
the network during deployment and implementation. On 
the other hand, it is necessary for the network to have the 
decision-making ability in logical concentration. It means 
that the network should have the unified deployment and 
control ability from the decision center to each related node. 
Therefore, we select a control mechanism-based SDN archi-
tecture, and its structure is shown in Fig. 6.

The specific workflow of the mechanism can be described 
as follows: in each time segment, the network executes traffic 
forwarding according to the strategy generated in the previ-
ous time segment. Then the mechanism uses the collected 
current network state as the input of the decision-making 
module. Agent generates a new control strategy and trans-
forms it into a flow table. Finally, it is sent to the network 
through SDN for the next time segment execution. By anal-
ogy, a closed-loop feedback is formed.

3.3  Analysis of Algorithm

In terms of the convergence of the algorithm, this paper 
conducts experiment on the training of the algorithm under 
different network loads. The experiment records the change 
of time delay during training. By changing the transmission 
delay between each iteration, we can observe the conver-
gence of the algorithm. Because the transmission delay in 
different network environments fluctuates to a certain extent, 
the experiment sets a threshold. When the time delay fluc-
tuation is less than the threshold, we believe that the time 
delay is still in a stable state.

Figure  7 shows the convergence of the algorithm in 
terms of delay under different network loads. It can be seen 
from Fig. 7 that under the three network loads of low load, 
medium load and high load, as the training continues, the 
transmission delay continues to decrease, and generally 
stabilises between the iteration schedule of 40–60. At this 

Fig. 6  Routing control mechanism for SAMP

Fig. 7  Schematic diagram of algorithm convergence
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point, it can be considered that the algorithm finally con-
verges to the optimal value, and the agent has learned a bet-
ter strategy. Therefore, it can be judged that the algorithm 
in this paper has good convergence.

Considering the influence of the number of sub-paths 
on the multipath transmission effect, the algorithm needs 
to select the number of sub-paths according to the actual 
network state. Therefore, this paper counts the number of 
sub-paths selected for transmission tasks between node A 
and node B under different network loads.

The result is shown in Fig. 8, where the network state 
is divided into low load, medium load, and high load. For 
each network state, Fig. 8 shows the proportion of different 
sub-paths in the path used by the transmission task in the 
form of a bar graph. Through comparison, it can be found 
that more transmission tasks use one or two paths for trans-
mission under low load conditions. As the network load 
increases and the busyness of network nodes increases, the 
algorithm adjusts the number of sub-paths. Among them, 
in the high load state, the algorithm makes 21% and 42% 
of the transmission tasks use three and four sub-paths for 
transmission to prevent node congestion. Therefore, it can be 
seen that under different network conditions, the algorithm 
in this paper can effectively adjust the number of sub-paths 
to ensure the transmission effect.

4  Experimental Design and Analysis

4.1  Experimental Setup

To verify the actual performance of the SAMP algorithm 
in this paper, we design a data centre network multipath 
transmission control test environment for experiments. 
The network environment adopts a level-3 fat-tree network 

with 16 processing nodes, and the structure is shown in 
Fig. 9. Among them, different nodes have different buffer 
capacities. Hosts that support the installation of OpenvS-
witch are used to simulate SDN network forwarding equip-
ment. So that it can collect network status information 
including link load, bandwidth usage and buffer length. 
Then it can upload the information to the control center, 
and perform transmission decision issued by the center. 
Server C installs floodlight as the SDN network control-
ler to obtain overall network status information. At the 
same time, the routing control mechanism is deployed in 
server C to make transmission decisions. Then the deci-
sion results are deployed to each node.

In terms of network traffic, the experiment generates 
three different intensities of low, medium and high traffic 
matrices based on the gravity model. The total amount 
and distribution of the traffic are different. In addition, the 
hidden layer of DDPG’s actor network consists of three 
fully connected layers. Each fully connected layer has 30 
neurons, and the learning rate is set to 0.0001 to update 
the network parameters. The critic network of DDPG is 
composed of three fully connected layers. Each fully con-
nected layer has 50 neurons, and the learning rate is set 
to 0.0001 to update the network parameters. Both neural 
networks choose ReLU as the activation function.

The comparison algorithms used in the experiment 
are as follows: algorithm one uses the traditional OSPF 
for data transmission; algorithm two uses the equal cost 
multipath (ECMP) routing algorithm for data transmis-
sion; algorithm three uses the weight cost multipath 
(WCMP) routing algorithm for data transmission. In addi-
tion, the experiment assumes that the traffic transmission 

Fig. 8  The adjustment of the algorithm about the sub-path A level-3 fat-tree network with 16 processing nodes

SDN Controller

C

Fig. 9  Experimental network environment
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is not affected by the link, and the link bandwidth is set 
to 1000MB. In terms of data statistics, the experiment 
ignores the background traffic, converts the packet loss 
rate into the task transmission success rate as a perfor-
mance indicator. It also sets the statistical unit of delay to 
ms and sets the statistical unit of throughput to MB.

4.2  Result Analysis

To study the ability of the SAMP algorithm to calculate the 
multipath routing and sub-flow allocation ratio in real time 
according to the network status, we use delay, packet loss 
rate, and throughput as performance indicators to calculate 
the difference between the SAMP algorithm and the com-
parison algorithm under static network load and dynamic 
network load. Under static network load, we divide the net-
work load into three intensities: low, medium and high. We 
compare the differences between different algorithms under 
the same network load. Under dynamic network load, we set 
the initial network load intensity to low load, and make the 
network load higher in the iterative process. In this way, we 
can compare the range of changes in various performance 
indicators of various algorithms in the face of network load 
changes. Based on the above content, we design the follow-
ing three experiments.

4.2.1  Experiments on Transmission Delay Under Different 
Network Loads

From the perspective of delay, this experiment compares 
the difference in delay between different algorithms under 
static and dynamic network loads. Under static network 
load, the experiment compares the transmission delay differ-
ence of different algorithms under different network loads. 
Under dynamic network load, the experiment compares the 

performance of each algorithm before and after the node 
load changes.

The results of experiment are shown in Figs. 10 and  11. 
Figure 10 shows the statistics of the transmission delays of 
different algorithms under different network loads. Figure 11 
shows the performance of the various algorithms during the 
progress of the change of network load.

It can be seen from Fig. 10 that under different network 
loads, SAMP can provide a transmission delay lower than 
the other four comparison algorithms, and the gap becomes 
larger as the network load becomes higher. Especially 
under high network load, the transmission delay of SAMP 
is 37.5%, 32.6%, 23.8% and 5.5% less than the comparison 
algorithms, respectively. This also shows that SAMP can 
make full use of the advantages of multipath transmission. 
In Fig. 11, the network load change occurs at the iteration 
progress of 50–60. At this time, the transmission delay of 
SAMP has achieved convergence. After the network load 
change occurred, although the delay increased for a period of 
time, as the online learning of SAMP progressed, the delay 
quickly decreased by 12.9% and converged to stability. How-
ever, the comparison algorithms cannot effectively adjust the 
strategy for the real-time network status, which causes the 
transmission delay to be at a relatively large value.

In a few exceptional cases, like the span size of the net-
work load change greatly, it will affect the effectiveness of 
the policy. Our approach will implement more iterations to 
adjust the policy to adapt the new network environment.

4.2.2  Experiments on the Transmission Success Rate Under 
Different Network Loads

From the perspective of task transmission success rate, the 
experiment compares the difference in task transmission 
success rate between different algorithms under static and Fig. 10  Transmission delay under static network load

Fig. 11  Transmission delay under dynamic network load
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dynamic network load. Among them, under the dynamic 
network load, the experiment counts the difference in the 
overall task transmission success rate of each algorithm 
affected by the change of the network load in the iteration.

The results of experiment are shown in Tables 1 and  2. 
The task transmission success rates of each algorithm under 
static network load and dynamic network load are respec-
tively counted.

By comparing the task transmission success rate of each 
algorithm in Table 1 under different network loads, it can be 
found that each algorithm can maintain a higher success rate 
under low network load. With the increase of network load, 
ECMP, WCMP and Q-routing benefit from multipath trans-
mission, and can still carry out task transmission. But their 
task transmission success rate has decreased to a certain 
extent. OSPF is limited by single-path transmission. This 
situation leads to a rapid decline in the success rate of task 
transmission. Under high load, the task transmission success 
rate of other algorithms is 40.1%, 17.8%, 6.6% and 2.6% 
less than SAMP. In addition, Table 2 shows the difference 
in the task transmission success rate of each algorithm under 
dynamic network load. In Table 2, the task transmission suc-
cess rate of other algorithms is 23.1%, 18.3%, 12.1% and 
6.2% less than SAMP, respectively. Combining the differ-
ence in the task transmission success rate of each algorithm 
under static and dynamic network load, it can be considered 
that SAMP can adjust the routing strategy in time to avoid 
the decrease of task transmission success rate.

4.2.3  Experiments on the Throughput Under Different 
Network Loads

From the perspective of throughput, the experiment com-
pares the difference in throughput between different methods 
under different network loads. The result is shown in Fig. 12, 
which counts the differences in throughput of each algorithm 
under different static network loads.

By comparing the histogram in Fig. 12, it can be found 
that as the network load becomes higher, the throughput 
under each algorithm has a decreasing trend. However, rela-
tively speaking, due to the influence of the task transmission 
success rate, the throughput of SAMP decreases slightly. 
And under high load, with the help of good route discovery 
and sub-flow distribution capabilities, SAMP can still guar-
antee high throughput. In addition, comparing the changes 

in throughput of each algorithm before and after the network 
load changes, the differences between the algorithms can be 
found. Even if the network load changes from a low load to a 
high load, the throughput of SAMP is very small, only a 14% 
drop. This is due to the online learning capabilities provided 
by reinforcement learning, which can adjust routing and sub-
flow distribution according to the real-time state of the net-
work. In contrast, the comparison algorithms cannot adapt 
well to the new network environment after the network load 
changes, and the throughput drops by 57%, 39.3%,30.2% and 
21.9%, which has a greater impact on network transmission.

5  Conclusion

For multipath transmission in data centre network, exist-
ing multipath routing methods introduce machine learning, 
which can adapt to the dynamic changes in data centre net-
works well. However, these methods lack cooperation in path 
selection and sub-flow assignment. Therefore, this paper 
proposes a sub-flow adaptive multipath routing algorithm 
for data centre network (SAMP). Considering the superiority 
of machine learning in dynamic environments, the deep rein-
forcement learning algorithm DDPG is introduced to imple-
ment different network state changes quickly, especially in 
the process of topology, to achieve dynamic migration of the 
optimised decisions that have been learned. To address the 
problem of lack of cooperation between path selection and 

Table 1  Transmission success rate in static network load

Networl load SAMP OSPF ECMP WCMP Q-routing

Low load 99.63% 96.73% 98.85% 99.85% 99.71%
Medium load 97.69% 80.61% 86.63% 89.88% 94.65%
High load 82.19% 42.17% 64.39% 75.58% 79.61%

Table 2  Transmission success rate in static network load

Comparison algo-
rithm

SAMP OSPF ECMP WCMP Q-routing

Success rate 95.72% 73.11% 77.42% 83.64% 89.57%

Fig. 12  Throughput under different network load
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sub-flow assignment, a sub-flow adaptive multipath routing 
model is established, it can accomplish collaborative sched-
uling of path selection and sub-flow assignment according 
to the real-time state of the network. Experiments show that 
compared with commonly used routing algorithms, SAMP 
algorithm can reduce the latency by an average of 31.3%, 
improve the task transmission success rate by an average of 
14.9% and increase the throughput by 37.1%.

On the basis of the above conclusions, we put forward 
prospects for follow-up research. Considering the influence 
of model design on the convergence of the algorithm, we 
hope to optimise the dimensionality of the routing model, 
and improve the convergence speed and self-adjustment abil-
ity of the SAMP algorithm.

Author Contributions YL, YC and LL: conception. YL: experiment 
and analysis of data. YL, YC, XX and QF: preparation of the man-
uscript. JC: supervision. All authors contributed to the article and 
approved the submitted version. All authors have read and agreed to 
the published version of the manuscript.

Funding This work was financially supported by Primary Research 
and Development Plan of China (No. 2020YFC2006602), National 
Natural Science Foundation of China (No. 62072324, No. 61876217, 
No. 61876121, No. 61772357), University Natural Science Foundation 
of Jiangsu Province (No. 21KJA520005), Primary Research and Devel-
opment Plan of Jiangsu Province (No. BE2020026), Natural Science 
Foundation of Jiangsu Province (No. BK20190942).

Availability of Data and Materials Data and materials can be requested 
from the corresponding author.

Code Availability Code can be requested from the corresponding 
author.

Declarations 

Conflict of Interest The authors declare no conflict of interest.

Ethics Approval This work accord with ethics approval.

Consent to Participate Approve.

Consent for Publication Approve.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Fan, F., Y.K.L. Hu, B.: Routing in black box: modularized load 
balancing for multipath data center networks[c]. In: /IEEE INFO-
COM 2019-IEEE Conference on Computer Communications. 
IEEE (2019)

 2. Lu, Y., Xu, M., Zhengzhi X.: FAMD: A Flow-Aware Marking and 
Delay-based TCP algorithm for datacenter networks[J]. Network. 
Comput. Appl 174, 102912 (2021)

 3. Liu, Z., L.M. Zhao, A.: A port-based forwarding load-balancing 
scheduling approach for cloud datacenter networks[j]. Cloud. 
Comput 10(1), 1–14 (2021)

 4. Besta, M., Domke, J., Schneider, M., et al. High-performance 
routing with multipathing and path diversity in ethernet and hpc 
networks[J]. IEEE Trans. Parallel Distrib. Syst 32(4), 943–959 
(2020)

 5. Cheng, Y.J.X.: Namp: network-aware multipathing in software-
defined data center networks[j]. IEEE/ACM Trans. Network. 
28(2), 846–859 (2020)

 6. Awad, M.K., Ahmed, M.H.H., Almutairi, A.F., et al. Machine 
learning-based multipath routing for software defined networks[J]. 
J. Netw. Syst. Manage 29(2), 1–30 (2021)

 7. Huang, J., Lan, J., Hu, Y., et al. A Segment Routing Based Mul-
tipath Flow Transmission Mechanism[J]. Acta. Electonica. Sin 
46(6), 1488 (2018)

 8. Li, W., Liu, J., Wang, S., et al. Survey on traffic management in 
data center network: from link layer to application layer[J]. IEEE 
Access 9, 38427–38456 (2021)

 9. Cai, Y., Wang, C.: Software defined data center network hybrid 
routing mechanism[j]. J. Commun. 37, 44–52 (2016)

 10. Maksić, N.: Two-phase load balancing for data center networks 
using openflow[c]. 2017 25th telecommunication forum (telfor). 
In: IEEE, pp. 1–4 (2017)

 11. Cheng, C.: Research on Reinforcement Learning Based Routing 
Planning Algorithm in sdn [d][j]. Zhejiang Business University 
(2018)

 12. Rischke, J., Salah, H., Sossalla, P.: Qr-sdn: towards reinforce-
ment learning states, actions, and rewards for direct flow routing 
in software-defined networks[j]. IEEE Access 8, 174773–174791 
(2020)

 13. Xu, X., Gu, L., Chen, J., et al. An intelligent multipath routing 
and subflow distribution cooperative algorithm[J]. Comput. Eng 
047(009), 136–144 (2021)

 14. Fu, Q., Sun, E., Meng, K., et al. Deep Q-learning for routing 
schemes in SDN-based data center networks[J]. IEEE Access 8, 
103491–103499 (2020)

 15. Yang, Y., Yang, J.-H., Wen, H.-S.: Routing algorithm design based 
on timeslot of transmission for data centers[J]. J. Software 29(8), 
2485–2500 (2018)

 16. Li, Y.: Deep reinforcement learning: an overview [J]. arXiv pre-
print arXiv: 1701. 07274 (2017)

 17. Liu, W.: Intelligent routing based on deep reinforcement learn-
ing in software-defined data-center networks[c]. In: 2019 IEEE 
Symposium on Computers and Communications (ISCC). IEEE, 
pp. 1–6 (2019)

 18. Pinyoanuntapong, P., W.P. Lee, M.: Delay-optimal traffic engi-
neering through multi-agent reinforcement learning[c]. In: IEEE 
INFOCOM 2019-IEEE Conference on Computer Communica-
tions Workshops (INFOCOM WKSHPS). IEEE, pp. 435–442 
(2019)

 19. Xu, Q., Zhang, Y., Wu, K., et al. Evaluating and boosting rein-
forcement learning for intra-domain routing [C]. In: 2019 IEEE 
16th International conference on mobile Ad Hoc and sensor sys-
tems (MASS). IEEE, pp. 265–273 (2019)

http://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/1701.07274


International Journal of Computational Intelligence Systems           (2023) 16:25  

1 3

Page 11 of 11    25 

 20. Liu, C.Y., Xu, M., Geng, N., et al. A survey on machine learning 
based routing algorithms[J]. J. Comput. Res. Dev 57(4), 671–687 
(2020)

 21. Luong, N. C, Hoang, D. T., Gong, S., et al. Applications of deep 
reinforcement learning in communications and networking: a 
survey[J]. IEEE Commun. Surv. Tutorials 21(4), 3133–3174 
(2019)

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	A Sub-flow Adaptive Multipath Routing Algorithm for Data Centre Network
	Abstract
	1 Introduction
	2 Problem Description and Related Concepts
	2.1 Problem Description
	2.2 Related Concepts and Model
	2.2.1 Reward
	2.2.2 State
	2.2.3 Action


	3 Algorithm Design and Analysis
	3.1 Algorithm Implementation
	3.2 Deployment Framework
	3.3 Analysis of Algorithm

	4 Experimental Design and Analysis
	4.1 Experimental Setup
	4.2 Result Analysis
	4.2.1 Experiments on Transmission Delay Under Different Network Loads
	4.2.2 Experiments on the Transmission Success Rate Under Different Network Loads
	4.2.3 Experiments on the Throughput Under Different Network Loads


	5 Conclusion
	References


