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Abstract
With the rapid development of economy, the sharp increase in the number of urban cars and the backwardness of urban 
road construction lead to serious traffic congestion of urban roads. Many scholars have tried their best to solve this problem 
by predicting traffic congestion. Some traditional models such as linear models and nonlinear models have been proved to 
have a good prediction effect. However, with the increasing complexity of urban traffic network, these models can no longer 
meet the higher demand of congestion prediction without considering more complex comprehensive factors, such as the 
spatio-temporal correlation information between roads. In this paper, we propose a traffic congestion index and devise a new 
traffic congestion prediction model spatio-temporal transformer (STTF) based on transformer, a deep learning model. The 
model comprehensively considers the traffic speed of road segments, road network structure, the spatio-temporal correlation 
between road sections and so on. We embed temporal and spatial information into the model through the embedding layer 
for learning, and use the spatio-temporal attention module to mine the hidden spatio-temporal information within the data 
to improve the accuracy of traffic congestion prediction. Experimental results based on real-world datasets demonstrate that 
the proposed model significantly outperforms state-of-the-art approaches.

Keywords Traffic congestion prediction · Free-stream velocity · Road network structure · Spatio-temporal information · 
Transformer
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PrePCT  Predictor for position congestion tensor
GCN  Graph convolutional network
NGSIM  Next Generation SIMulation
AJB  Amended Jarque-Bera
NLP  Natural language processing
CV  Computer visual
DCRNN  Diffusion convolutional RNN
ST-GCN  ST-graph convolution network
MAE  Mean absolute error
RMSE  Root mean squared error
MAPE  Mean absolute percentage error

1 Introduction

In the past decade, with the rapid growth of global popula-
tion and the acceleration of urbanization, cities have become 
more and more crowded, and urban road traffic is inevitably 
facing the problem of traffic congestion. Traffic congestion 
not only leads to inefficient transportation, but also increases 
the time and money spent by travelers. The environmental 
pollution problems are also aggravated by the increasing 
emissions of vehicles. Therefore, it is considered to be one 
of the important tasks for municipal management to solve 
the traffic congestion problem efficiently.

Current research on traffic congestion prediction can 
be mainly divided into three directions: linear models 
[9–15], nonlinear models [16–22] and neural network mod-
els [23–38]. Among them, linear models usually consider 
the traffic prediction values in a probability distribution 
model and make predictions by calculating the variation 
pattern of the predicted values on the timeline, for exam-
ple, in literature [12, 15]. However, this type of models 
does not consider the spatio-temporal correlation between 
roads at all. The quantified road congestion is not a simple 
time-flow prediction problem. Considering that the gen-
eral activity habits of most residents are regular, and roads 
may show the same changes at different times or different 
roads may show the same changes at the same time, all 
these potential relationships may help us to make better 
congestion prediction. Nonlinear models are mainly based 
on clustering and classification models, where researchers 
work to simplify complex flow changes into several differ-
ent types of patterns and use them as a benchmark, such as 
in literature [16, 19]. But again, such type of models suffers 
from a lack of applicability. Considering the unsupervised 
nature of clustering, the optimal clustering criteria may 
also be completely different in areas with very different 
traffic conditions. Neural network models are widely used 
in congestion prediction because of their strong learning 
and in-depth mining ability for large-scale datasets, for 
example, in literature [24, 30]. But since traffic flow and 
road network structure are two completely different types 

of information, it is difficult for the neural network to learn 
both features at the same time. Of course, some scholars 
have tried, for example, in literature [49, 50], to integrate 
the road network structure information into the graph net-
work and learn it at the same time. However, the predic-
tion accuracy still needs to be further improved. The model 
also needs to consider more critical impact factors, such 
as traffic flow, speed, running time, spatial and temporal 
correlation between road segments, etc.

Based on the above problems in traffic congestion pre-
diction, we propose a new traffic congestion index with 
the introduced free-stream velocity of the road segment to 
reflect the road capacity and devise our prediction model 
Spatio-temporal Transformer (STTF).

Although there are many traffic data, such as traffic vol-
ume, vehicle speed and travel time that can reflect traffic con-
gestion to some extent, the reason why we use free-stream 
velocity instead of traffic volume is that there are large gaps 
between main roads and non-main roads on traffic conditions 
in cities (especially large and densely populated cities). For 
example, traffic volume and speed are closely related to the 
geographical location of the road and the capacity of the road. 
A high traffic volume may only mean that the road segment 
is busy and does not necessarily indicate congestion. A low 
traffic volume may not necessarily indicate congestion if it is 
surrounded by residences or schools which has complex road 
conditions or has speed limits. Only traffic volume or speed 
does not accurately reflect the congestion of the road. Thus, 
we introduce the free-stream velocity to reflect the capacity 
of the road and then propose a new traffic congestion index.

besides, we deeply excavate the relationship among road 
network structure, correlation between road segments and 
road itself from spatio-temporal perspective. We take the 
construction of road network structure as the starting point 
and use the improved transformer to gradually retain the 
spatio-temporal information of roads.

The main contributions of this paper are summarized as 
follows.

• We propose a new traffic congestion index, which can 
accurately reflect the congestion degree of the road sec-
tion according to the different traffic capacity and daily 
traffic conditions of each road.

• We devise an efficient STTF model for traffic conges-
tion prediction based on the Transformer model, which 
can learn both the spatio-temporal information and road 
network structure information.

• We introduce an embedding learning module to learn the 
spatial and temporal information of the road network. 
On top of that, we encode and decode these two parts of 
information separately in the training phase to ensure that 
the model can obtain the spatio-temporal relationship of 
the data.
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• In experiments with real-world datasets, our model has 
superior performance and accuracy compared with both 
classical and state-of-the-art models.

The remainder of paper is organized as follows. Section 2 
mainly introduces the state-of-the-art research on traffic 
congestion prediction. Sections 3 and 4 mainly introduce 
the notations used in this paper and present our proposed 
model. In Sect. 5, we verify the superiority of STTF model 
by experiments. Finally, this paper is concluded in Sect. 6.

2  Related Work

Traffic congestion prediction can usually be viewed as a 
complex time series prediction problem. Considering the 
rich variety of data in the traffic domain and referring to 
Akhtar et al. [1] for an overview of research in this area, we 
can classify the research directions into direct and indirect 
types based on the type of data. Among them, the direct type 
of methods uses data that may affect traffic conditions, such 
as weather conditions [2] and emergencies [3], which often 
give direct information about the traffic status and facilitate 
drivers’ judgments. Some data that reflect the public state 
can also directly reflect the congestion, such as the diver-
sion structure of roads [4], public opinion reports [5], and 
electricity consumption [6].

The indirect type of methods is the one that has been 
studied by more scholars. These methods usually use some 
vehicle travel data, such as traffic flow, vehicle speed, etc. 
Although these data do not directly reflect the traffic conges-
tion information, researchers use these basic data to quantify 
the congestion as a parameter [7, 8], which is usually called 
Traffic Congestion Index (TCI) or Traffic Congestion Score 
(TCS) and forecast traffic congestion with TCI or TCS pre-
dictions. We can simply classify this type of research into 
three categories, which are linear models, nonlinear models, 
and neural network models.

2.1  Linear Models

Linear model-based approaches usually consider traffic 
data to satisfy a particular distribution. Such approaches 
include traditional mathematical statistical models and 
state-space models. Traditional statistical models were first 
used for traffic state prediction by Nicholson et al. [9] who 
used spectral analysis to find the interconnections of data in 
the time dimension. Later, Yang et al. [10] used road occu-
pancy, He et al. [11] used speed performance index to mine 
road congestion probability are similar reasoning. Besides, 
in recent years, Autoregressive Integrated Moving Aver-
age (ARIMA) model is also widely used in the research. 
For example, Alghamdi et al. [12] used ARIMA model to 

study the factors affecting traffic congestion and proposed 
a short-term prediction model for non-Gaussian distributed 
data. Wang et al. [13] combined ARIMA with Empirical 
Mode Decomposition (EMD), based on which the hybrid 
framework has better short-term prediction than similar 
methods. In addition, methods based on Markov Models 
(MM) and Hidden Markov Models (HMM) are also widely 
used. For example, Zaki et al. [14] used HMM to find a 
suitable Neuro-Fuzzy prediction network for congestion at 
a specific period, while Ali-Eldin et al. [15] used HMM to 
construct a two-dimensional space based on average speed 
and contrast and used it to capture the changing patterns of 
traffic conditions.

This type of linear time-series-based prediction models 
usually utilizes only the temporal characteristics of the data 
and does not consider other additional information. So, it is 
only suitable for road data with strong stability in the time 
dimension.

2.2  Nonlinear Models

With the increasing randomness and volatility of modern 
urban traffic, it is difficult for simple linear models to meet 
the requirements for congestion prediction. Therefore, 
researchers have started to use non-linear models to tap into 
traffic variations.

One of the main categories is the mining of traffic pat-
terns from the perspective of historical data using cluster-
ing models led by K-Nearest Neighbor (KNN) and Den-
sity-Based Spatial Clustering of Applications with Noise 
(DBSCAN). For example, Wen et al. [16] used DBSCAN to 
find the spatio-temporal association rules of roads and per-
formed classification simulation for different patterns of road 
links to improve the prediction accuracy. Support Vector 
Machine (SVM) is also widely used for congestion predic-
tion due to its non-linear regression capability. For example, 
Feng et al. [17] proposed an Adaptive Multi-kernel SVM 
(AMSVM) using Gaussian kernel and polynomial kernel to 
explore the stochasticity and spatio-temporal relationship 
of traffic flow. Xing et al. [18] proposed a Kernel Extreme 
Learning Machine (KELM) based on kernel function as the 
replacement of hidden layer, while Ban et al. [19] proposed 
an efficient learning method based on Symmetric-Extreme 
Learning Machine Cluster (S-ELM-Cluster), which is able 
to transform large-scale data learning to different problems 
on small-scale datasets. In addition, Decision Tree Models 
(DTM) [20], Random Forest (RF) [21] and Bayesian Net-
work (BN) [22] also have similar ideas to nonlinear methods.

2.3  Neural Network Models

With the development of deep learning, neural network 
models [23] have achieved excellent results in more and 
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more prediction fields, no exception in traffic congestion 
prediction.

Among them, Convolutional Neural Network (CNN) 
has been chosen by many researchers for its powerful fea-
ture extraction capability and adaptability to high-dimen-
sional data. For example, Zhu et al. [24] used CNN to 
detect complex traffic conditions in Bath City. Chen et al. 
[25] proposed a PCNN (Convolution-based deep Neural 
Network modeling Periodic traffic data) model capable of 
transforming one-dimensional data into image-like data 
for input. Zhang et al. [26] proposed an Analogous Self-
Attention-Residual Gated CNN (ASA-RGCNN) model 
combining gated structure and ASA structure to discover 
the impact of data spatio-temporal characteristics on dif-
ferent levels of traffic flow. Meanwhile, CNNs are usually 
combined with graph networks. SG-CNN (Road Segment 
Group-CNN) proposed by Tu et al. [27] can mine the com-
mon information between road segments, while the work 
of Zhang et al. [28] that used Spatio-Temporal Feature 
Selection Algorithm (STFSA) to extract spatio-temporal 
information and then handed over to CNN for learning, 
which had also been proved to have better prediction accu-
racy. In addition, the Long Short-Term Memory (LSTM) 
[29] network adapted from Recurrent Neural Network 
(RNN) is often used as a benchmark method for prediction 
because of its temporal learning capability. For example, 
Bai et al. [30] used LSTM to learn temporal features while 
using Predictor for Position Congestion Tensor (PrePCT) 
and CNN for spatial features. Similar ideas are used in 
literature [31–34].

Besides, some emerging models such as Graph Convo-
lutional Network (GCN) [35], Next Generation SIMulation 
(NGSIM) [36], MetaNet [37], and Attention mechanism 
[38] are able to perform high accuracy congestion predic-
tion. However, neural network models still have some urgent 
problems, such as the loss of the ability to mine hidden 
information because of the depth of the network, the high 
consumption of computational resources, and the inability to 
consider the road network structure information completely.

3  Notations

In this section, we focus on some of the basic parameters 
that will be used in this paper.

3.1  Traffic Congestion Index

According to the description in Sect. 1, we introduce the 
vehicle free-stream velocity v

free-stream
 and propose a new 

traffic congestion index TCI. we denote the current time 
period as t, and use v̂t to denote the average velocity of all 

sampled vehicles passing through one road segment or sen-
sor in time period t. Then TCI is calculated as follows,

where vfree-stream is defined as the speed of a vehicle passing 
the road segment under ideal conditions (only one vehicle 
on the road and no external factors are considered), i.e., the 
maximum withstand speed of the road. By observing the 
vehicle speed distribution in the public dataset PeMS-Bay, 
Beijing and the private dataset FUZHOU we can simply 
assume that the vehicle speed variable v conforms to the 
normal distribution N =

(
�, �2

)
 . Then the probability den-

sity function f(v) of the speed is as follows.

Then, if this assumption holds, the variables should satisfy 
the more efficient amended Jarque-Bera (AJB) test [27], i.e.,

where VS is velocity skewness, which is used to measure the 
direction and degree of skewness of the velocity sample data 
distribution. VS is represented by the third-order standard 
matrix of the velocity variable v. The VK is velocity kurtosis, 
which is used to indicate the sharpness of the peak of the 
velocity sample data distribution. VK is represented by the 
fourth-order standard matrix of the velocity variable v. The 
two variables are calculated as follows.

In the case of satisfying the AJB test we can express the free 
flow speed vfree-stream of vehicle in terms of the total overall 
expectation, i.e.,

3.2  Road Network Structure Graph

We first denote the selected road network as a weighted 
directed graph G where G = (V, E,W) . Among it, V is the set 
of nodes in the network and the number of vertices N = |V| . E 

(1)TCIt =

{
1 −

v̂t

vfree-stream
, v̂t ≤ vfree-stream

0, otherwise
,

(2)f (v) =
1√
2��

⋅ exp

�
−
(v − �)2

2�2

�
.

(3)AJB =
(VS)2

Var(VS)
+

(VK − E(VK))2

Var(VK)
,

(4)VS =E

[(v − �

�

)3
]
,

(5)VK =E

[(v − �

�

)4
]
.

(6)vfree-stream = ∫ v ⋅ f (v)dv.
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is the set of link states in the network, and W is the set of 
weights between nodes, which can be regarded as a weight 
matrix and W ∈ ℝ

N×N . Therefore, Wvi,vj
 denotes the link 

weights between nodes vi and vj . The exact calculation method 
will be given later. In the traffic road network, each node rep-
resents a specific road segment (or sensor), while the link 
between nodes indicates the connected relationship between 
road segments (or sensors). The link weights represent the 
degree of association between connected road segments (or 
sensors).

Then the time variables are defined. We define historical 
time steps as h and future time steps as f. Then the TCIt in 
the current time period t can be represented by the matrix Xt 
and Xt ∈ ℝ

N . Therefore, the TCI of the road network V in the 
past time period h is denoted as X = 

(
Xt1,Xt2,… ,Xth

)
 and 

X ∈ ℝ
N×h , while the TCI of the future f time steps that need 

to be predicted can be written as Y =
(
Xth+1,Xth+2,… ,Xth+f

)
 

and Y ∈ ℝ
N×f  . The ground truth of the TCI in the future f time 

steps can be written as U =
(
Uth+1,Uth+2,… ,Uth+f

)
.

In that case, we give a definition of the link weight coef-
ficient W so that it reflects the actual distance between two 
interconnected road segments and the correlation between the 
two road segments. Then we have the following equation,

(7)Wvi,vj
=

⎧⎪⎨⎪⎩

exp

�
−

r(vi,vj)
dvi ,vj

∕�

�
, exp

�
−

r(vi,vj)
dvi ,vj

∕�

�
≥ �

0, otherwise

,

where dvi,vj denotes the actual distance between the center 
points of the two road segments. r

(
vi, vj

)
 denotes the Pearson 

Correlation Coefficient of the traffic flow at nodes vi and vj . 
Here, � is introduced as the adjustment factor to make dvi,vj 
and r

(
vi, vj

)
 comparable, which is taken as � = 1000 . � is the 

threshold used to control the degree of W diffusion, and here 
� = 0.05.

4  STTF Model

In this section, we introduce the structure of the proposed 
STTF model and the functions of each part.

4.1  The STTF Model Structure

The Transformer model was first proposed by Vaswani et al. 
[39]. The Attention mechanism, encoder and decoder in the 
model together form the black box, which is the core struc-
ture of this model. The complex nature of its parallelized 
computation dictates that it is better than RNN in terms of 
accuracy and performance. Transformer has previously been 
widely used in the Natural Language Processing (NLP) [40] 
and Computer Visual (CV) [41] fields. Lim et al. [42] also 
used it to mine the temporal dimensional features of time 
series data, but studies using Transformer to mine spatio-
temporal patterns are less common.

Fig. 1  Structure of STTF model
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Based on the classical Transformer, we propose a new Spa-
tio-Temporal Transformer (STTF) model. The complete struc-
ture is shown in Fig. 1. The Transformer framework mainly 
consists of encoder, decoder and embedding module, which 
contains the new given ST-Embedding layer (Spatial Embed 
block & Temporal Embed block), the new given ST-Attention 
layers (Spatial Att layer & Temporal Att layer) and other clas-
sical structures. The input of the Transformer is the TCI data 
X  at h time steps in the past. The output is the predicted TCI 
data Y at f time steps in the future. Each module is set to out-
put a D-dimensional vector to facilitate the connection of the 
modules in each layer.

4.2  ST‑Embedding Layer

ST-Embedding layer is the number 1 module in Fig. 1.

Spatial Embed block Considering that the road network 
structure graph G is a directed acyclic graph with weights, 
to transform it into variables that the Transformer can learn 
and retain the structural information, we need to transform 
the network nodes into vector form represented in the vec-
tor space. Here we use the LINE algorithm proposed by 
Tang et al. [43]. The input structure graph G is vectorically 
represented and a feedforward neural network with GRLU 
activation function is added after the output to transform it 
into a D-dimensional vector. Then the final output is noted 
as sevi while sevi ∈ ℝ

D , vi ∈ V.

Temporal Embed block Spatial Embed block provides 
structural information of road data, then Temporal Embed 
block is also needed to provide temporal feature information 
for Transformer. Referring to the nonlinear method to learn 
the distribution pattern of data in time dimension by histori-
cal data, the historical data is also used here for embedding 
encoding. Considering the uniqueness of each time dimen-
sion, one-hot encoding [44] is used here to encode the time 
in the past h steps. We encode the number of days in a week 
into the vector space of ℝ7 and the time period t in a day into 
the vector space of ℝt . Finally, the two encodings are trans-
formed into the vector space of ℝ7+t by concatenation opera-
tion, and a feedforward neural network with GRLU activa-
tion function is also added to the output to transform it into 
a D-dimensional vector. In this case, we can encode the 
temporal features of the past h time steps and write the vec-
tor of the neural network output as tetj while tetj ∈ ℝ

D , tj ∈ {
t1, t2,… , th

}
.

After getting the feature information of temporal embed-
ding and spatial embedding respectively, we need to integrate 
the two parameters of the same dimensions. Here we introduce 
the new embedding coefficients stevi,tj , and we can get the fol-
lowing embedding coefficients in tj steps of node vi.

We denote this operation as ⊙ . Then the ST-Embedding 
layer structure diagram is shown below in Fig. 2.

4.3  Encoder Architecture

Encoder is the number 2 module in Fig. 1. A total of L 
encoders are included in STTF model. Each encoder con-
sists of three consecutive layers: Spatial Att layer (number 3 
module in Fig. 1), Temporal Att layer (number 4 module in 
Fig. 1), and Feed Forward layer (where Spatial Att layer and 
Temporal Att layer together form the ST-Attention layer). 
The first two attention structures have a skip-connection 
structure used to skip inter-layer connections (indicated by 
dashed lines). To improve the generalization ability, each 
attention operation is employed the normalization and drop-
out. The Feed Forward layer is mainly designed to integrate 
high-dimensional attention information and consists of two 
fully connected neural networks with ReLU activation func-
tions. After feeding the feature vector sequence X  to the 
first encoder, the ST-Embedding layer finally outputs the 
hidden representation vector of the encoder to the decoder’s 
attention layer after the L − 1 encoder’s attention operation.

Referring to the design of the attention layer in the clas-
sical Transformer structure [39], we propose a two-layer ST-
Attention layer structure consisting of Spatial Att layer and 
Temporal Att layer. Each encoder and decoder has one ST-
Attention layer, then we can note that in l-th ST-Attention 
layer in encoder or decoder, the output of Spatial Att layer 
is sa(l)vi,tj , and the output of Temporal Att layer is ta(l)vi,tj . Then 
there are l-th ST-Attention layer whose input is z(l−1)vi,tj

 and 
output is z(l)vi,tj

(8)stevi,tj = exp
(
−
(
sevi + tetj

))
.

Fig. 2  Structure of ST-Embedding layer
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Spatial Att layer To fully consider the influence of each 
road link on the specified road segment in the road network 
structure, we calculate the effect of each node in the (l − 1)

-th Spatial Att layer on the node vi in the l-th layer, i.e., 
assign different weights to each node at different time peri-
ods, which is shown in Fig. 3. Then the output hidden repre-
sentation vector of this layer is calculated below,

where �vi,v denotes the normalized attention coefficient. 
Noting its pre-normalization state as srvi,v , which is directly 
used to represent the correlation coefficient between each 
node v of upper layer and the given node vi of current layer. 
According to the classical Transformer structure [39], we 
choose to use scaled dot-product approach to represent the 
correlation between the two nodes. Then we can obtain the 
following equation,

where [a, b] denotes the calculation of the inner product 
of a and b.d denotes the dimension of the vector after the 
concatenation operation is performed. Thus, we normalize 
srvi,v using the softmax function to obtain �vi,v.

Finally, to improve the efficiency and expand the capacity 
of the network through parallel computation, we introduce 
the multi-head attention mechanism [39]. We set the number 
of attention heads to Q, i.e., use different, learnable linear 

(9)sa
(l)
vi,tj

=
∑
v∈V

(
�vi,v ⋅ z

(l−1)
v,tj

)
,

(10)

srvi,v =

�
Concat

�
z
(l−1)
vi,tj

, stevi,tj

�
, Concat

�
z
(l−1)
v,tj

, stev,tj

��
√
d

,

(11)�vi,v =
exp

�
srvi,v

�
∑

v∈V exp
�
srvi,v

� .

projections to project each parameter linearly Q times to the 
corresponding dimension. The attention function of each 
projection is computed in parallel, and the concatenation 
operation is performed after each computation. In that case, 
we denote the projection operation as p. Then, p(x) is the 
linear projection function, which is calculated below,

where both m and n denote learnable variable parameters. 
p(h)
m,n

 denotes the projection function with different param-
eters. Then these can be obtained that at the q-th projection,

Temporal Att layer To fully explore the hidden temporal 
patterns in the historical data of the same road segment, 
Temporal Att layer is introduced in encoder, whose input is 
the output sa(l)vi,tj of Spatial Att layer of the same ST-Attention 
layer. We calculate the influence of past and future moment 
of node vi in each Temporal Att layer on the present moment, 
which is shown in Fig. 4. Using the same computational 
model and time vector as in the Spatial Att layer, the hidden 
representation vector of the layer output is noted as tavi,tj , the 
attention coefficient in the layer is denoted by �tj,t , and its 

(12)p(x) = sigmoid(mx + n),

(13)�(q)
vi,v

=
exp

�
sr

(q)
vi,v

�

∑
v∈V exp

�
sr

(q)
vi,v

�

(14)

sr(q)
vi,v

=

[
p
(q)
m,n

(
Concat

(
z
(l−1)
vi,tj

, stevi,tj

))
, p

(q)
m,n

(
Concat

(
z
(l−1)
v,tj

, stev,tj

))]
√

d

q

,

(15)sa
(l,q)
vi,tj

=Concat
q

Q=1

(∑
v∈V

(
�(q)
vi,v

⋅ p(q)
m,n

⋅ z
(l−1)
v,tj

))
.

Fig. 3  Principle of spatial 
attention
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state before normalization is denoted as trtj,t , which indicates 
the impact of t time step on the current step tj of same road 
segment. The hftj is the set of all time steps before and after 
the step tj (including the current step tj ). Finally, the multi-
head attention mechanism, p(h)

m,n
 , is introduced to denote the 

projection function with different parameters. Then we have 
the following equations.

Then these can be obtained that at the q-th linear projection,
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�
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Masked-Temporal Att layer The Masked-Temporal Att 
layer (number 6 module in Fig. 1), exists only in the decoder. 
The only difference between it and the Temporal Att layer is 
that it masks the influence of future time steps on the present 
time step, thus limiting the attention of the decoder to the 
historical time steps, which is shown in Fig. 5. Therefore, by 
defining Ttj as the set of all time steps before the step tj 
(including the current step tj ), we have the equation below.

 

4.4  Decoder Architecture

Encoder is the number 5 module in Fig. 1. A total of L 
decoders are included in STTF model. The overall structure 
of each decoder is similar to that of the encoder, including 
an identical Spatial Att layer, an amended Masked-Temporal 
Att layer, a classical E-D Att layer (Encoder-Decoder Atten-
tion layer, number 7 module in Fig. 1) [39], and an identical 
Feed Forward layer. Among them, the E-D Att layer extracts 
feature information using encoder and Masked-Temporal Att 
layer’s encoding vectors. Each node’s embedding vector 
stevi,tf  at future time steps and stevi,th at historical time steps 
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Fig. 4  Principle of temporal 
attention
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correspond to the key and value in the classical structure, 
respectively. After decoder outputting the feature space vec-
tor, the prediction sequence Y is finally outputted by linear 
layer and normalization operation.

5  Experiments

To test the practical effectiveness of our model, we con-
duct experiments on two real-world large-scale datasets, 
respectively.

5.1  Datasets

Considering that FUZHOU is vehicle GPS data and PeMS-
Bay is sensor data, we first use the IVMM algorithm [45] to 
do map matching for the vehicles data in FUZHOU. After 
that, we count the speed data in both datasets in every 5, 

10, and 15 minutes and fill the missing data with 0 values 
as well as normalized the data in the way of Li et al. [46].

FUZHOU This private traffic dataset is collected by 
Department of Transport of Fujian Province. The dataset 
contains speed data for 2 months ranging from May 1 st to 
June 31 st in 2018 , gathered from part of urban roads in 
Fuzhou City, Fujian Province. The distribution of road sec-
tions is shown in the following Fig. 6a.

PeMS-Bay This public traffic dataset is collected by 
California Transportation Agencies (Cal-Trans) Performance 
Measurement System (PeMS). The dataset contains speed 
data for 6 months ranging from January 1 st to May 31 st in 
2017 from 325 sensor, gathered from highway in Bay Area, 
Los Angeles. The distribution of the sensors is shown in 
Fig. 6b below. Among them, considering the complexity of 
urban road links, we consider that the information complex-
ity of FUZHOU dataset is higher than that of PeMS-Bay 
dataset.

Fig. 5  Principle of masked-
temporal attention

Fig. 6  Dataset descrip-
tion (FUZHOU and PeMS-Bay)



 International Journal of Computational Intelligence Systems            (2023) 16:2 

1 3

    2  Page 10 of 16

5.2  Experimental Configuration

According to the method of Li et al. [46], we set a standard 
time step of 5 minutes. Thus, the historical time periods 
h = 12 time steps and the future time periods f = 12 time 
steps, i.e., both are one hour. For the use of optimizer, we 
choose Adam-warmup optimizer [47] and set the initial 
learning rate as 0.001, warmup step size and batch size as 
4000 and 20 , respectively.

In STTF model, there are three hyperparameters, namely, 
the number of layers L of Encoder and Decoder, the number 
of attention heads Q in the multi-head attention mechanism, 
and the vector dimension D of the output of each module. 
After several experiments and referring to the setting of 
the classic transformer structure, we selected the hyperpa-
rameter with the better performance, i.e., L = 4,Q = 8 , and 
D = 64 . In addition, we set the dropout rate to 0.3 and ini-
tialize the parameters of the network using Xavier weight 
initialization [48].

5.3  Baselines and Measures

We select five benchmark models for comparative experi-
ments, including some basic models in the prediction prob-
lem and some state-of-the-art deep learning models. These 
five baselines are ARIMA [12], PrePCT [30], DCRNN (Dif-
fusion Convolutional RNN) [46], ST-GCN (ST-Graph Con-
volution Network) [49], and Graph WaveNet [50]. Among 
them, ARIMA is the representative work in the linear model, 
PrePCT and DCRNN are the state-of-the-art convolutional 
neural network models, and the remaining two models are 
the state-of-the-art graph neural network models. Consider-
ing the different training mechanisms and the lack of labels, 
a comparison with the non-linear model is not made here. 
The codes of all the above models are publicly available by 
the authors, so we can all experiment with our own datasets. 
In our experiments, we measure the accuracy of the mod-
els by three widely used metrics, namely, Mean Absolute 
Error (MAE), Root Mean Squared Error (RMSE), and Mean 

Absolute Percentage Error (MAPE). For a more visual com-
parison of values, all MAE and RMSE values are artificially 
expanded by a factor of 50.

5.4  Experimental Results and Discussion

The main purpose of our experiments is to explore the pre-
diction accuracy, the generalization ability for different 
road conditions, the robustness under different time inter-
vals and time steps, and the computational efficiency of the 
model. Therefore, we design several experiments to test 
STTF model by varying the time variables and road condi-
tions. Moreover, the prediction time step indicates the time 
period of the model prediction results, the standard time step 
denotes the time period used in model learning, and the time 
interval indicates the time period of integrating data during 
data processing.

We first test the prediction accuracy of the model under 
different prediction time step. In Fuzhou dataset, complex 
road network structure data can better verify the predic-
tion ability of each model. Then all six models are made 
to predict the change value of TCI every 30 min during the 
main weekday period (June 4, 2018, Monday, 6:00–20:00). 
The visualization results are shown in the Fig. 7 below, 
where ground truth is bolded. We can find that the STTF 
model has significantly stronger accuracy compared to the 
ARIMA and PrePCT models, especially for peak values and 
moments with large change rates that STTF is better fitted 
to the ground truth. To better compare quantitatively with 
the remaining deep neural network models, we calculate 
the MAE, RMSE, and MAPE values of the six models for 
the given time periods in the FUZHOU dataset under dif-
ferent prediction ranges. The results are shown in Table 1. 
From the results we can see that ARIMA performs the worst 
under the same prediction range because of its singularity of 
temporal characteristics. The prediction ability of PrePCT 
differs more from its authors’ experimental results, prob-
ably because it is more suitable for road network prediction 
with a smaller number of nodes. The better performance of 
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Fig. 7  TCI prediction results



International Journal of Computational Intelligence Systems            (2023) 16:2  

1 3

Page 11 of 16     2 

graph-based deep learning models such as DCRNN illus-
trates that current deep learning methods are better than 
most traditional linear methods, and that neural networks 
based on graph structures are more likely to perform bet-
ter than traditional time series networks. The STTF model 
outperforms all benchmark models, which proves that our 
ST-Attention layer can better mine hidden information and 
is more efficient compared to short-term serial prediction 
methods. 

Second, we need to consider the performance of the mod-
els in road network structures with different levels of com-
plexity, where the change of road complexity is reflected in 
the difference of data collection locations. Therefore, we 
test the prediction performance of TCI for each model in the 
selected time periods (March 6, 2017, Monday, 6:00–20:00) 
of the PeMS-Bay dataset in different prediction ranges. The 
results are presented in Table 2. Combining Tables 1 and 2 
we can see that the STTF model outperforms most of the 
benchmark models, and its predictions are more stable for 
complex road networks. It only loses to Graph WaveNet in 
predicting TCI values for 60 min. Such a situation may be 

explained by the following. In the complex road networks, 
each road segment has more neighboring road segments. 
One road segment may affect more road segments. More 
valid information is credited when we consider the impact 
of all road segments on the specific one road segment in the 
structure. Whereas in a relatively simple road structure, a 
road segment may only affect some neighboring road seg-
ments. When we record its impact on all other road seg-
ments, more invalid information enters the network, which 
eventually leads to different performance of the STTF model 
in the face of road networks of different complexity.

In addition, the traffic conditions in the same city may 
have exceptions during both peak/off-peak hours and week-
days/weekends, we further validate the STTF model’s ability 
to cope with these exceptions.

Firstly, we consider that traffic volumes tend to have 
different patterns of variation at different times of the day, 
i.e., what we generally consider as morning peak, evening 
peak, and off-peak periods. This directly results in differ-
ent peaks and different rates of change of TCI values for 
each time period. Therefore, we test the generalization 

Table 1  Performance of each model in FUZHOU database under different prediction time step (predictions are made every 30 minutes and the 
optimal values under the same time step are bolded)

Prediction time 
steps

Metrics ARIMA PrePCT DCRNN ST-GCN Graph WaveNet STTF

FUZHOU 15 min MAE (×50) 3.577 2.877 2.312 2.276 2.253 2.225
RMSE (×50) 4.027 3.359 2.460 2.452 2.387 2.349
MAPE 7.5% 6.1% 5.7% 5.9% 5.57% 5.52%

30 min MAE (×50) 3.974 3.111 2.407 2.397 2.416 2.358
RMSE (×50) 4.895 3.442 2.517 2.518 2.463 2.382
MAPE 7.5% 6.6% 5.8% 6.2% 5.63% 5.52%

60 min MAE (×50) 4.339 3.247 2.528 2.522 2.543 2.497
RMSE (×50) 5.401 3.485 2.559 2.568 2.535 2.505
MAPE 12.2% 10.2% 7.5% 8.4% 7.28% 7.24%

Table 2  Performance of each model in PeMS-BAY database under different prediction time step (predictions are made every 30 minutes and the 
optimal values under the same time step are bolded)

Prediction time 
steps

Metrics ARIMA PrePCT DCRNN ST-GCN Graph WaveNet STTF

PeMS-Bay 15 min MAE (×50) 1.573 0.874 0.305 0.288 0.271 0.263
RMSE (×50) 2.053 1.337 0.435 0.442 0.389 0.362
MAPE 3.4% 3.2% 2.8% 2.9% 2.79% 2.71%

30 min MAE (×50) 1.969 1.127 0.392 0.411 0.388 0.357
RMSE (×50) 2.883 1.432 0.512 0.504 0.447 0.404
MAPE 5.6% 4.7% 3.9% 4.1% 3.59% 3.51%

60 min MAE (×50) 2.334 1.276 0.539 0.548 0.514 0.529
RMSE (×50) 3.418 1.508 0.580 0.574 0.536 0.577
MAPE 8.8% 7.1% 4.7% 5.5% 4.32% 4.39%
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ability of the model for different time periods of the day. 
With reference to the peak traffic periods, we divide the day 
into three periods on average (04:00–12:00, 12:00–20:00, 
20:00–24:00–04:00). Considering that the traffic changes are 
more significant during peak and off-peak periods in urban 
weekdays, the FUZHOU dataset (Monday, June 4, 2018) is 
chosen here for the experiments. Because graph-based deep 
learning models have a notable predictive advantage, we 
only use DCRNN, ST-GCN and Graph WaveNet to com-
pare with our STTF model. From the results in Table 3, it 
is obvious that the STTF model has the advantageous and 
comprehensive performance, especially for the 30-minute 
prediction range.

Secondly, we take the large differences in traffic patterns 
between weekdays and weekends into account. For example, 
people wake up relatively later on weekends, so the morn-
ing peak is later and has a smaller peak. More people may 

Table 3  Performance of each model with different time intervals and same prediction time steps at different time periods of the day (predictions 
are made every 30 minutes and the optimal values within the same time period are bolded)

 Model - Time periods 15 min 30 min 60 min

MAE (×50) RMSE (×50) MAPE MAE (×50) RMSE (×50) MAPE MAE (×50) RMSE (×50) MAPE

DCRNN (4–12) 2.343 2.574 5.82% 2.532 2.595 5.78% 2.691 2.419 7.53%
ST-GCN (4–12) 2.471 2.422 5.93% 2.536 2.578 6.15% 2.617 2.483 8.56%
Graph WaveNet (4–12) 2.294 2.573 5.56% 2.544 2.355 5.69% 2.692 2.352 7.35%
STTF (4–12) 2.134 2.154 5.50% 2.498 2.561 5.64% 2.547 2.533 7.11%
DCRNN (12–20) 2.187 2.394 5.60% 2.393 2.413 5.62% 2.516 2.561 7.46%
ST-GCN (12–20) 2.166 2.377 5.88% 2.269 2.506 6.03% 2.422 2.496 8.30%
Graph WaveNet (12–20) 2.170 2.318 5.52% 2.253 2.289 5.49% 2.506 2.362 7.16%
STTF (12–20) 2.223 2.166 5.51% 2.217 2.222 5.48% 2.322 2.356 7.07%
DCRNN (20–4) 2.249 2.507 5.67% 2.355 2.536 5.85% 2.509 2.568 7.56%
ST-GCN (20–4) 2.287 2.402 5.97% 2.377 2.572 6.25% 2.555 2.578 8.47%
Graph WaveNet (20–4) 2.265 2.322 5.52% 2.366 2.507 5.63% 2.506 2.491 7.36%
STTF (20–4) 2.188 2.377 5.51% 2.324 2.346 5.49% 2.445 2.536 7.25%

Table 4  Performance of each model in weekdays and weekends with different  time intervals  and same prediction time steps (predictions are 
made every 30 minutes and the optimal values in the same day are bolded)

Model - Days 15 min 30 min 60 min

MAE (×50) RMSE (×50) MAPE MAE (×50) RMSE (×50) MAPE MAE (×50) RMSE (×50) MAPE

DCRNN (6.4) 2.221 2.365 5.61% 2.353 2.466 5.71% 2.477 2.504 7.42%
ST-GCN (6.4) 2.176 2.399 5.83% 2.318 2.398 6.10% 2.463 2.457 8.30%
Graph WaveNet (6.4) 2.199 2.309 5.48% 2.322 2.351 5.58% 2.456 2.438 7.22%
STTF (6.4) 2.105 2.237 5.45% 2.276 2.292 5.42% 2.429 2.425 7.13%
DCRNN (6.9) 2.372 2.448 5.75% 2.439 2.527 5.76% 2.555 2.53 7.48%
ST-GCN (6.9) 2.392 2.505 5.86% 2.462 2.534 6.27% 2.507 2.611 8.40%
Graph WaveNet (6.9) 2.301 2.338 5.54% 2.513 2.464 5.59% 2.641 2.509 7.29%
STTF (6.9) 2.204 2.423 5.49% 2.313 2.413 5.53% 2.524 2.474 7.26%

Table 5  Performance of STTF model with different time step

Standard time steps Metrics STTF

FUZHOU 5 min MAE (×50) 2.497
RMSE (×50) 2.505

10 min MAE (×50) 2.584
RMSE (×50) 2.640

15 min MAE (×50) 2.696
RMSE (×50) 2.731

PeMS-Bay 5 min MAE (×50) 0.529
RMSE (×50) 0.577

10 min MAE (×50) 0.603
RMSE (×50) 0.689

15 min MAE (×50) 0.672
RMSE (×50) 0.737
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have time to go out and relax in the weekends’ evening, so 
the roads may be more congested at night. Therefore, we re-
select weekday hours (June 4, 2018, Monday, 00:00–24:00) 
and weekend hours (June 9, 2018, Saturday, 00:00–24:00) 
for the FUZHOU dataset to compare the generalization abil-
ity of the four graph-based learning models, respectively. 
From the results in Table 4, it is noticeable that the accuracy 
of all models for predicting weekend data is not significantly 
different from that of weekdays, and the STTF model has a 
marked predictive advantage.

Also, we need to consider the robustness of the model, 
i.e., to examine whether the model still maintains a com-
parable accuracy when the standard time step changes. 

Therefore, for the specific time of the FUZHOU data-
set (Monday, June 4, 2018, 6:00–20:00) and the specific 
time of the PeMS-Bay dataset (Monday, March 6, 2017, 
6:00–20:00), we use different standard time steps (5 min, 
10 min, and 15 min) to predict the TCI value using STTF 
model with a prediction range of 60 min and calculate 
MAE and RMSE, as shown in Table 5. Comparing Table 5 
with Tables 1 and 2, it can be seen that the prediction 
accuracy of the STTF model decreases as the step length 
becomes longer, although it still has a competitive predic-
tion ability under the variation of the standard step length. 
This is also due to its reduced amount of learning for 
temporal information. In the case of longer standard step 
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length, the prediction range remains the same, resulting 
in a reduction in the amount of input temporal informa-
tion and thus a decrease in the model’s learning ability for 
temporal feature information.

Considering the many improvements of STTF over the 
classical Transformer structure, the ablation experiment is 
introduced here to examine the contribution of each struc-
ture in the STTF model. We predict the 30-min TCI val-
ues for the FUZHOU and PeMS-Bay datasets at the spe-
cific time given above, with a standard time step of 5 min. 
Among them, experiment (a) removes Spatial Att layer (A), 
Temporal Att layer (B), Masked-Temporal Att layer (C) and 
E-D Att layer (D), respectively, and experiment (b) removes 
the Spatial Att layer, Spatial Att layer & Temporal Att layer 
(F), Spatial Att layer & Temporal Att layer & Masked-
Temporal Att layer (G), respectively. Finally, we calculate 
the MAE of the predicted values for each time step. The 
results are shown in Fig. 8. We can see that STTF consist-
ently outperforms the model with the remaining incomplete 
models, indicating the ability of the four modules to mine 
spatio-temporal information. In particular, it should be 
noted that the missing Spatial Att layer module causes a 
particularly significant decrease in accuracy, especially in 
the long-term prediction range, which further indicates the 
long-term impact of the spatial structure of road networks 
on traffic congestion.

Finally, we compare the training time and prediction time 
of all six models on the PeMS-Bay dataset for the same 
time period (Monday, March 6, 2017, 6:00–20:00), the same 
standard time step (standard step size of 5 min), and the 
same prediction range (15 min), as shown in Table 6. As can 
be seen from the results, in the training phase, since ARIMA 
is a simple linear operation, its training time is absolutely 
superior. The last five algorithms are neural network algo-
rithms, so there is a significant increase in the training time. 
Among them, ST-GCN is relatively efficient, but its predic-
tion accuracy is far inferior to other graph neural networks. 
Graph WaveNet and STTF are the two models with the best 
and most similar overall performance. However, referring 
to the performance of the two models in Tables 1 and 2, we 
can see that STTF performs better.

6  Conclusion

We propose a new traffic congestion index and devise a 
STTF model based on data spatio-temporal information for 
predicting congestion on the road network. Specifically, we 
devise a new information embedding learning module that 
transforms both road network structure information and tem-
poral information into feature vectors that can be learned 
by the network. The embedding vectors are learned by a 
new spatial attention module and a temporal attention mod-
ule with different learning directions. The model has better 
prediction accuracy and relatively high efficiency compared 
with the state-of-the-art algorithm under real-world data.
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Inference time (s)
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