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Abstract
Opinion mining or sentiment analysis (SA) is a key component of real-world applications for e-commerce organizations, 
manufacturers, and customers. SA deals with the computational evaluation of people’s views, thoughts, and feelings in the 
text, whether they are visible or concealed. The Aspect based SA level is becoming one of the most active phases in this area. 
In this paper, we propose an approach to enrich K-Nearest Neighbors (KNN) to deal with Implicit Aspect Identification task 
(IAI). Through the use of WordNet semantic relations, we propose an enhancement for KNN distance computation to support 
the IAI task. For a conclusive empirical evaluation, experiments are conducted on two datasets of electronic products and 
restaurant reviews and the effects of our approach are examined and analyzed according to three criteria: KNN distance used 
to compute the similarity, the number of nearest neighbors (K) and the KNN behavior towards Overfitting and Underfitting. 
The experimental results show that our approach helps KNN improve its performance and better deal with Overfitting and 
Underfitting for Implicit Aspect Identification.

Keywords Implicit aspect-based sentiment analysis · Machine learning · Supervised approaches · WordNet · K-nearest 
neighbors · Lesk algorithm

Abbreviations
ABSA  Aspect based sentiment analysis
ACD  Aspect category detection
ATE  Aspect term extraction
IAI  Implicit aspect identification
IAT  Implicit aspect term
IR  Improvement rate
JMTS  Joint multi-grain topic sentiment
KNN  K-nearest neighbors
LDA  Latent Dirichlet allocation

LSTM  Long short term memory
PMI  Pointwise mutual information
POS  Part of speech
RNN  Recurrent neural network
SA  Sentiment analysis
WN  WordNet
WSD  Word sense disambiguation

1 Introduction

SA studies have been done at three levels of granularity: 
document, sentence, and aspect level. Aspect-based senti-
ment analysis is concerned with collecting opinions about 
each aspect of existing entities in the text.

The most important task in aspect-level SA is aspect 
identification, that is why most researchers are interested 
in it. There are two types of aspects: implicit and explicit. 
Extracting explicit aspects and implicit aspects are both 
part of the aspect identification phase. There has been a 
great deal of effort put towards extracting explicit aspects, 
although implicit aspects have received little attention. Spe-
cific terms that appear expressly in the document are referred 
to as explicit aspects, they can be represented by noun or 
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noun phrase. An implicit aspect, on the other hand, is not 
clearly stated in the document. It can appear in the form of 
verb, adjective, and adverb as they are used in [4–6]. Implicit 
aspects are essential as they can reflect the opinions implied 
in the text and contribute in the improvement of Opinion 
Mining Task.

In this study, we suggest a method for enriching KNN 
algorithm model by combining its basic distance with simi-
larity function inspired from the Lesk algorithm [7] when 
applied to Word Sense Disambiguation (WSD) first intro-
duced by [8]. As defined in [9–11], WSD is a process that 
automatically assigns a meaning to ambiguous words in con-
text. The original Lesk algorithm defines the correct mean-
ing of a word in given context as a sense with the maximum 
overlap between word dictionary definition and the given 
context.

In this article, we use the underlying idea of Lesk Algo-
rithm for word sense disambiguation, however, our work is 
different and its originality is established at two levels: (i) 
The idea rationale: We inspire from Lesk algorithm to cre-
ate a similarity function between words using WordNet dic-
tionary (WN), created in [12], and employ this function to 
create a novel KNN distance that assigns higher weights to 
semantically similar words in nearest neighbors calculation. 
Based on this reasoning, we look to theoretically promote 
KNN search for nearest neighbors and therefore to empiri-
cally improve KNN performance. (ii) Model formulation: 
our similarity function, which will be formulated in details 
later, amplifies original score between words by squaring it 
then adding.

1. On the one hand, this new formulation guarantees 
much higher similarity scores for semantically similar words 
and consequently much smaller distances between them 
(since similarity and distances are defined to be inversely 
correlated), and on the other hand it keeps the same basic 
KNN distance for dissimilar words.

Several experiments are prepared according to protocols 
that are defined to serve our investigation objectives. The 
main outcomes of our research can be summarized as fol-
lows: (i) our approach aids KNN improve its performance 
for all considered distances without changing KNN perfor-
mance evolution with respect to K, (ii) our technique sup-
ports KNN to better deal with Overfitting and Underfitting 
by reducing their impacts on KNN and therefore improving 
its performance and (iii) for both models (BasicKNN and 
KNN based on our method), sensitivity to Underfitting and 
Overfitting is inversely proportional to training data size.

The following is a breakdown of paper’s structure. The 
second section discusses related works on Implicit Aspect 
based SA. Our technique is outlined in the third section. The 
experimental setting is presented in Sect. 4, proceeded by 
the findings and discussion section. Finally, the last section 
contains the conclusion.

2  Related Works

Implicit Aspect Identification task includes two subtasks, 
Aspect Term Extraction (ATE) and Aspect Category 
Detection (ACD). Earlier methods for ATE and ACD, like 
the one proposed by Hu et al. [13], rely on the frequency 
of nouns and noun phrases in the documents, with the 
hypothesis that aspect terms are more likely to be repeated. 
As cited in [14], the dependence on the frequency of par-
ticular word categories, nouns and noun phrases, is a limi-
tation of this strategy, which may perform efficiently if 
the terms are frequent but may fail if terms are rare. In 
[15], Popescu and Etzioni enhance the precision of their 
approach by calculating Pointwise Mutual Information 
(PMI) for each aspect and excluding those aspects that do 
not match the supplied PMI score.

In recent years, dependency parser based methods have 
been actively used, like in [16, 17]. They use opinion-tar-
get relations to accomplish ATE and ACD tasks. Authors 
in [16] proposed a novel rule-based technique for detecting 
both explicit and implicit aspects that uses common-sense 
knowledge and phrase dependency trees. In [17], authors 
study rule-based linguistic patterns. They assume that 
detecting sentiment is easier than detecting aspect words. 
They proposed a group of opinion rules to detect senti-
ment words as a first step. In the second step, they employ 
grammatical dependencies to construct sentences’ gram-
matical structure and detect aspect words. The final step 
entails adding infrequent words and removing irrelevant 
aspects. The most important factor in this method is the 
aspect-sentiment word lexical relation, which is able to 
identify low-frequency aspects.

Two of the most known co-occurrence based methods are 
introduced in [18, 19]. In [18], the authors predict implicit 
aspects depending on the co-occurrence frequency between 
the explicit aspects and the opinion words. Potential implicit 
aspects are based on a threshold calculated value. In [19], 
training data are enriched by the use of semantic relations 
from WordNet and the co-occurrence score is calculated for 
each extracted implicit aspect and its WordNet synsets.

The techniques that use WordNet or any other diction-
ary semantic relations are referred to as Dictionary-based 
methods. Fei et al. [6] is an earlier work that proposes 
a dictionary-based technique to identify aspects implied 
by adjectives. In [20] authors use synonym and definition 
relations extracted from WN to perform Implicit Aspect 
Identification task for adjectives and verbs. In [21], authors 
provide a novel hybrid model for Implicit Aspect Identi-
fication that combines semantic relations and frequency-
based approach with supervised classifiers.

To perform ACD, topic modeling, which is an unsu-
pervised machine learning technique, has been frequently 
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used. Latent Dirichlet Allocation (LDA), that is very popu-
lar topic modeling algorithm, is used in [22–24]. In [22], 
authors propose a system called W2VLDA that is prac-
tically unsupervised. It combines LDA with continuous 
word embeddings and a Maximum Entropy classifier to 
perform Aspect Category Detection and sentiment clas-
sification. To extract semantic aspects, Alam et al. [23]. 
propose a domain-independent topic sentiment model 
named Joint Multi-grain Topic Sentiment (JMTS). JMTS 
efficiently extracts high-quality semantic aspects auto-
matically, removing the need for manual probing. In [24], 
authors propose a novel LDA method to cluster aspect 
terms according to their aspect category. It employs 
semantic similarity between two words to improve the 
clustering process. In [25], authors propose an unsuper-
vised model for aspect extraction and sentiment classifi-
cation using LDA combined with linguistic rules. They 
ranked aspects based on their probability distribution val-
ues, and then clustered them into predetermined categories 
using domain knowledge with frequent terms.

In recent years deep learning techniques have started to 
be used for sentiment analysis after finding considerable 
success in a variety of application domains. Soni and Ram-
bola [26] is an earlier work that proposes a hybrid approach 
that uses a Recurrent Neural Network (RNN) with similar-
ity function from spaCy and similarity measures based on 
WordNet to detect implicit aspects. In [27], authors pro-
pose a topic-level model for sentiment analysis based on 
deep learning. They used a topic-level attention mechanism 
applied to a Long Short-Term Memory (LSTM) network 
to perform Aspect Category Detection and sentiment clas-
sification. In order to enhance the ATE task, authors in [28] 
suggest a two-step mixed unsupervised model that combines 
language patterns with deep learning methods. In the first 
step they use rule-based method to extract aspects, and then 
use fine-tuned word embedding to prune relevant aspects. In 
the second phase the attention-based deep learning model is 
trained using the first step’s extracted aspects as labeled data.

Our study varies from all preceding works as it proposes 
WordNet semantic relations based enhancement of KNN 
classifier model to better deal with Implicit Aspect Identi-
fication task.

3  The Proposed Approach

To classify a test sample, KNN calculates distances between 
this test sample and each document in the training set. After 
that, the test sample is assigned to the most common class 
in its nearest neighbors. The most commonly used distance 
for KNN is Euclidean distance. It measures the real straight 
line between points in Euclidean space.

In this section, we present our approach, as detailed in 
Fig. 1, whose motivation is integrating external and rel-
evant knowledge (namely semantic information extracted 
from WN lexical database) within KNN distance calcula-
tion. For this purpose, we introduce a novel distance func-
tion to KNN. Let Ti and Tj be two implicit aspect terms 
(IAT) in our data, and Defi and Defj be the respective sets 
of their definitions extracted from WordNet. If Defi con-
tains n definitions and Defj contains m definitions then 
Defi and

Defj are defined as follows:

where  subsetis is the subset of words representing the sth 
definition of  Defi, and  subsetjt is the subset of words repre-
senting the tth definition of  Defj. The new distance is com-
puted according to the following formulas:

The score is calculated trough the comparison of words 
definitions extracted from WordNet lexical database, since 
similar word senses are frequently defined by the same 
terms. We can make the following assumption: if the defini-
tions of two terms contain similar words, they are similar. 
This score is inspired from the Lesk algorithm [7] which 
proposes using the number of common terms in the glosses 
of two concepts to compare them. First, the number of com-
mon words between each subset of  Defi and each subset of 
 Defj is computed.

Let’s note this number as follows:
NCWij(s, t) = the number of common words between 

 subsetis in  Defi and  subsetjt in  Defj.
As shown in Eq. (3), the score is then computed as the 

maximum of all these numbers  NCWij(s, t) for s ∈ [1, n] and 
t ∈ [1, m].

Equation  (4) demonstrates how Similarity(Ti, Tj) is 
obtained. This latter is computed by adding 1 to the square 
of Score(Defi, Defj). If Ti and Tj are dissimilar (Score(Defi, 
Defj) = 0) then the new distance between them is set to the 
standard KNN distance since Similarity(Ti, Tj) is equal to 1. 
The score is squared to provide higher similarity of terms 
having larger number of common words between subsets 
of their definitions and therefore smaller KNN distance 
between them.

(1)Defi = {subseti1,… , subsetis}, s ∈ [1, n],

(2)Defj = {subsetj1, … , subsetjt}, t ∈ [1, m],

(3)
Score

(

Defi, Defj
)

= maxNCWij(s, t), s ∈ [1, n], t ∈ [1,m],

(4)Similarity
(

Ti, Tj
)

= score2
(

Defi, Defj
)

+ 1,

(5)
DistNew

(

Ti, Tj
)

= StandardDist
(

Ti, Tj
)

∕Similarity(Ti, Tj).
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In Eq. (5), the new KNN distance (DistNew(Ti, Tj)), is cal-
culated by dividing the standard distance (StandardDist(Ti, 
Tj)) by the proposed similarity in Eq. (4).

4  Experiments and Results

The details of the experiments conducted to evaluate our 
approach are presented in this section. The experimental 
design is explained, including the pre-processing techniques 
employed, the classifier utilized, the datasets selected, the 
performance evaluation measures employed and the experi-
mental protocols adopted.

4.1  Experimental Setup and Protocols

4.1.1  Pre‑processing

The first step in pre-processing is parsing the corpus to come 
up with a list of verbs and adjectives. All corpus terms are 
labeled using the Part of Speech Tagger (POS), and a list 
of extracted adjectives and verbs is created. The final list is 
made by removing all stop words from the first one.

4.1.2  Classifier Used

One of the most widely used distance-based algorithms is 
the K-Nearest Neighbors classifier (KNN). KNN is a lazy 
supervised machine learning algorithm which assumes that 
elements in close proximity are similar. It is the simplest 
model since it non parametric because it makes no assump-
tion on data distribution. It is lazy learning since the general-
ization of training data is delayed till a test data is submitted 
to the system. It does no training on training data, because 
there is no model to build. In particular, it just places the 
labeled data in some metric space. This algorithm classifies 
data by measuring the distance between the test sample and 
each element of the training set. After that, the test sample is 
assigned to the most common class in its nearest neighbors. 
In the case of K = 1, the test sample is assigned to its nearest 
neighbor’s class.

4.1.3  Datasets

To evaluate our method, we used Products and Restaurant 
datasets. Cruz-Garcia et al. [1]. created the Products dataset 
in which each IAT was manually labeled. This corpus is 
based on the Customer Review Datasets corpus described 
in [13]. The corpus includes reviews for five different 

Fig. 1  Summary of our 
approach
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electronic products: the “Apex AD2600 Progressive-scan 
DVD player”, the “Canon G3 digital camera”, the “Creative 
Labs Nomad Jukebox Zen Xtra 40 GB”, the “digital camera 
Nikon Coolpix 4300”, and the “Nokia6610 Phone”. Func-
tionality, performance, appearance, price, quality, weight, 
and size, are the primary implicit aspects addressed.

The second corpus is Restaurant dataset. This dataset 
is distributed for aspect based sentiment analysis (ABSA), 
Task 4 of SemEval-2014 [3]. It consists of 3044 English 
sentences from the restaurant reviews of Ganu et al. [2] with 
five preset implicit aspects, ambiance, food, price, service, 
and anecdotes/miscellaneous. This latter is not taken into 
account in our research because it does not properly describe 
an implicit aspect.

4.1.4  Evaluation Measures

The most commonly utilized evaluation measures for evalu-
ating the performance of the sentiment analysis model are 
accuracy, precision, recall, and F1-score. The percentage of 
accurately predicted samples is known as accuracy. How-
ever, if the dataset is imbalanced, accuracy is not enough, 
thus precision, recall, and the F1-score are used. The 
F1-score is the equally weighted average of precision and 
recall [29].

4.1.5  Experimental Protocols

We prepare our experiments so that our method can be 
empirically analyzed according to three KNN structural 
aspects:

• Distance metric used,
• Number of nearest neighbors (K),
• Overfitting and Underfitting.

All experiments are conducted using the tenfold and five-
fold cross-validation to reduce the uncertainty of data split 
between training and test data and have two different train-
ing data sizes for testing. In the next four subsections, our 
experimental protocols will be described in details with a 
focus on the goal to be attained by each protocol and how 
this latter is prepared to meet its goal.

4.1.5.1 The Distance Metric Used KNN calculates the dis-
tance of every test data from all training data then finds the 
K-Nearest Neighbors of it. Hence, the core of KNN classifier 
depends mainly on distance or similarity between test data 
and training data and its performance depends significantly 
on this distance. For these reasons, we consider to empiri-
cally investigate the impact of our new similarity function 
on KNN performance when using different distances. In this 

work, we consider three different kinds of distances that are 
appropriately chosen:

Euclidean distance it is the most widely used distance 
that measures the real straight line between points (terms) 
in Euclidean space.

Cosine distance it calculates similarity between two term 
vectors to determine whether they are pointing to the same 
direction. It provides hidden information in the data that 
Euclidean distance does not capture. It is independent from 
the length of term vectors. The cosine distance is defined as 
the cosine similarity subtracted from 1.

Jaccard distance it is based on Jaccard index which deter-
mines the similarity between two finite sets based on their 
union and intersection and is defined as the size of the inter-
section divided by the size of the union of the sets. It neither 
captures the data set size nor considers the term frequency 
in the data sets. The Jaccard distance is then defined as the 
Jaccard index subtracted from 1.

4.1.5.2 Number of Nearest Neighbors (K) In general, very 
large values of K lead to global class boundary smoothing. 
This latter, even if it reduces the overall noise, it induces 
Underfitting of KNN algorithm that becomes very general-
ized and performs badly on both training and test data. On 
the other hand, when K has very small values KNN is very 
specific (due to local smoothing), does not generalize and 
becomes very sensitive to noise. It performs well on training 
data and badly on test data. This refers to KNN Overfitting. 
K, which is related KNN model error, is then a core deciding 
factor for KNN algorithm and consequently has a power-
ful effect on its performance. Hence, our study considers 
an experimental investigation of the impact of our proposed 
similarity function-based distance on KNN performance 
for IAI task with respect to different values for K. In this 
work, we consider for K different values appropriately cho-
sen (very small and very large values) so that the impact of 
our new distance can be studied under the above mentioned 
KNN biasing conditions.

The choice of small and large values for K depends on data-
set used. For each dataset, we define these values for K with 
respect to training data size. The following table (Table 1) 
provides detailed information on the two datasets used.

To deal with the issues (a) and (b), we conduct our experi-
ments according to the following protocol:

Table 1  Detailed information for the two datasets

Dataset Number of 
implicit aspect 
terms

Training data 
size for tenfold

Training 
data size for 
fivefold

Restaurant 121 109 97
Products 552 497 442
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4.1.5.3 Protocol1: Experiments for Issues (a) and (b) 

4.1.5.4 Overfitting/Underfitting To experimentally address 
issue (c), we prepare a protocol that aims at studying the 
impact of our similarity function-based distance on KNN 
performance for IAI task under Overfitting/Underfitting 
conditions and using three different distances. To achieve 
this goal, our protocol (protocol 2) shown below should:

1. Be based on conditions leading to KNN Overfitting and 
Underfitting. In general, Overfitting and Underfitting 
are caused by respectively small value(s) of K and large 
value(s) of K and they can be experimentally identified by 
cross-validation. In this protocol, we conduct our experi-
ments using both fivefold and tenfold cross-validations in 
order to test two different training data sizes.

2. Offer a measure for the effect of Overfitting and Under-
fitting on KNN performance. Therefore, comparison can 
be made between BasicKNN and KNN based on our 
approach with respect to their behavior towards Over-
fitting and Underfitting. In Overfitting, KNN performs 
well on training data and badly on test data. Whereas, 
in Underfitting, KNN performs badly on both training 
and test data. We define four indicators for measuring 

sensitivities of both models to Overfitting and Underfit-
ting. These indicators are introduced and explained in 
details in Sect.  4.2.2 of part ”Results and Discussion”.

4.1.5.5 Protocol 2: Experiments for  Issue (c) Let K be the 
number of nearest neighbors of KNN and k is k-fold param-
eter for cross-validation. K≠k, where K gets 1 if Overfitting 
and K gets values from the set K-Large Values of a dataset, 
and k gets values from the set {5, 10}. 

Where Dist and DistNew are defined in protocol 1. K 
Large Values(DS) is the set of large values that K takes. 
They depend on dataset and distance used.

4.2  Results and Discussion

The findings of the experiments are represented and ana-
lyzed in this section according to the following points.

Fig. 2  F1-score evolution for KNN using Euclidean distance with tenfold and fivefold cross-validation on Restaurant

For each Distance (Dist) from {Euclidean, Cosine, Jaccard} : 

For each dataset (DS) from {Products, Restaurant} :

Let K-Set = K-Set(DS)
Execute BasicKNN and NewKNN for every K from K-Set 
Report results for F1 performances of both BasicKNN
and NewKNN
Where BasicKNN is KNN based on standard distance
and NewKNN is KNN based on our proposed distance.

K-set(Restaurant)=[1,2,3,4,5,10,15,20,25,30,35,40,45,50,60,70,80,90,100]
K-set(Products)=[1,2,3,5,10,20,22,50,100,150,200,250,300,350,400,450,

                         470,480,490]



International Journal of Computational Intelligence Systems            (2023) 16:3  

1 3

Page 7 of 14     3 

Fig. 3  F1-score evolution for KNN using Euclidean distance with tenfold and fivefold cross-validation on Products

Fig. 4  F1-score evolution for KNN using Jaccard distance with tenfold and fivefold cross-validation on Restaurant

Fig. 5  F1-score evolution for KNN using Jaccard distance with tenfold and fivefold cross-validation on Products
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4.2.1  The Distance and the Number of Neighbors Used

The figures presented in this section show the performance 
results for protocol 1. Figures 2, 3, 4, 5, 6, and 7 show the 
F1-score evolution for BasicKNN and NewKNN according 
to the distance used and to the value of K.

As shown in the six figures below, the novel distance 
function has enhanced KNN’s performances for both 
datasets and the three utilized distances, without chang-
ing the performance behavior of the NewKNN compared 
to BasicKNN. For each dataset, the highest improvements 
achieved by NewKNN are observed within the same K value 
range for all used distances and for both fivefold and tenfold 
cross-validations. (Restaurant: K range ∼ [20,45]; Products: 
K range ∼ [50,350]). However, NewKNN has a relatively 

smaller superiority when K has small or large values and 
especially when it gets closer to the training data size.

These improvements are achieved because the terms that 
are semantically similar, tend to belong to the same aspect 
category.

The new distance used for KNN, reorganizes and opti-
mizes the distribution of the nearest neighbors, by prioritiz-
ing semantically similar words for the identification of a 
term nearest neighbors, and then improves the classifica-
tion’s performance. However, when K gets larger values both 
NewKNN and BasicKNN suffer more from Underfitting and 
therefore they perform poorly.

Table 2 exposes the averages of F1-score’s improvement 
rates (IR) of NewKNN over BasicKNN for fivefold and ten-
fold cross-validations and for all considered K values.

Fig. 6  F1-score evolution for KNN using Cosine distance with tenfold and fivefold cross-validation on Restaurant

Fig. 7  F1-score evolution for KNN using Cosine distance with tenfold and fivefold cross-validation on Products
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From Table 2, it is noticed that, on the average and for 
both datasets, improvement rates are:

• Higher with fivefold than with tenfold cross-validation 
for Euclidean distance.

• Smaller with fivefold than with tenfold cross-validation 
for Jaccard distance.Almost equal for both tenfold and 
fivefold cross-validations for Cosine distance.

This shows that the improvement rate is not related to the 
training data size since it varies by changing the underlying 
KNN distance.

Table 2 gives a global view on NewKNN performance 
superiority. To give clearer idea about this superiority, 
we introduce Table 3 that defines three ranges for K val-
ues corresponding to structural change of KNN perfor-
mance. Thus, Table 3 shows the improvement rates with 
respect to the three defined ranges of K values where K 
is the core KNN parameter representing the most impact-
ing performance factor. These three ranges of K values 
are Rsmall, Rmiddle and Rlarge that respectively represent 
the small K values (K < 20 for Restaurant; K < 50 for 
Products), the medium K values (K ∈ [20, 45] for Res-
taurant; K ∈ [50, 350] for Products), and the large K 

values (K > 45 for Restaurant; K > 350 for Products). The 
K values of three ranges are extracted from conducted 
experiments.

We can notice from this table that the improvement 
is considerable in the middle area. However, for small 
and large areas of K values the improvement is less 
important, because these two areas correspond respec-
tively to Overfitting and Underfitting situations, where 
KNN performance has a special behavior. As it will be 
detailed in next section, in Underfitting, KNN perfor-
mance is negatively impacted, whereas in Overfitting 
KNN achieves its best performance. Moreover, the KNN 
superiority is globally maintained, but it is particularly 
highly significant in the middle range of K for: the three 
distances, both 5 and tenfold cross-validations, and both 
datasets, that are also major impacting factors of KNN 
performance (For Restaurant: IR are { Euclidian: (ten-
fold: 14.1%, fivefold: 23.71%); Jaccard: (tenfold: 79.39%, 
fivefold: 83.44%); Cosine: (tenfold: 12.46%, fivefold: 
12.49%)}). For Products: IR are {Euclidian: (tenfold: 
82.32%, fivefold: 103.62%); Jaccard: (tenfold: 267.10%, 
fivefold: 163.41%); Cosine: (tenfold: 52.30%, fivefold: 
44.05%)}).

Table 2  Averages of improvement rates of NewKNN over BasicKNN on both datasets for three distances and with fivefold and tenfold cross-
validation

Cross-validation Restaurant Products

F1-score averages F1-score averages

Euclidian Jaccard Cosine Euclidian Jaccard Cosine

Tenfold Fivefold Tenfold Fivefold Tenfold Fivefold Tenfold Fivefold Tenfold Fivefold Tenfold Fivefold

F1-BasicKnn 42.07 42.96 37.98 41.68 45.26 47.83 29.18 32.63 25.94 30.78 30.89 34.75
F1-NewKnn 45.63 47.88 47.52 51.8 49.21 52.32 33.32 37.98 37.83 41.56 37.31 41.31
IR (%) 8.46 11.43 25.12 24.28 8.73 9.39 14.69 16.40 45.84 35.02 20.78 18.88 

Table 3  Improvement rate averages with respect to three ranges of K values for both datasets and three distances with tenfold and fivefold cross-
validations

Distance Restaurant Products

Rsmall (K < 20) (%) Rmiddle (K ∈ [20, 
45]) (%)

Rlarge (K > 45) (%) Rsmall (K < 50) (%) Rmiddle (K ∈ [50, 
350]) (%)

Rlarge 
(K > 350) 
(%)

Euclidian (tenfold) 6.60 14.1 4.44 6.68 82.32 4.1 
Euclidian (fivefold) 8.48 23.71 − 0.2 7.93 103.62 0 
Jaccard (tenfold) 11.48 79.39 13.31 21.9 267.10 41.38 
Jaccard (fivefold) 8.63 83.44 11.75 20.53 163.41 22.22 
Cosine (tenfold) 6.62 12.46 6.35 11.20 52.30 5.03 
Cosine (fivefold) 8.77 12.49 3.66 10.16 44.05 4.76 
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4.2.2  Overfitting and Underfitting

To analyze the behavior of the original and new models 
under Overfitting, we performed the classification using 
K = 1,2.

Table 4 exposes F1-score averages (where each average 
is computed over different folds) for BasicKNN model and 
the proposed model and on Products and Restaurant datasets 
in Overfitting situation when both models perform well on 
training data and poorly on test data.

To analyze the sensitivity of NewKNN and BasicKNN 
to Overfitting, we introduce four indicators in Table 4 that 
are used to measure how much resilient both models are to 
Overfitting.

Table 4 shows that even under Overfitting conditions, 
NewKNN outperforms BasicKNN for all experiments 
(Delta-test > 0 in all experiments in Table 4).This fact is the 
first indicator to less Overfitting sensitivity of NewKNN 
compared to BasicKNN, because the first model outperforms 
the second one on test data.

It is clear from this table that the difference between 
F1-score averages for training and testing data are smaller 
in the NewKNN model. Delta- BasicKNN (Delta-NewKNN) 
is the difference between F1-test and F1-train of BasicKNN 
(NewKNN). (i.e. Delta-BasicKNN = F1-train(BasicKNN)—
F1-test(BasicKNN)).

Delta-BasicKNN and Delta-NewKNN are two other 
indicators of Overfitting sensitivity of respectively 
BasicKNN and NewKNN. These two indicators measure 
how much performance losses are made by both New-
KNN and BasicKNN between training and test data. 
When Delta-BasicKNN (Delta-NewKNN) gets higher the 
BasicKNN (NewKNN) achieves poorer performance on 
test data than on training data. This means that BasicKNN 
(NewKNN) is more sensitive to Overfitting. Delta 

(which is equal to Delta-BasicKNN—Delta-NewKNN) 
indicates which model is more sensitive to Overfitting 
amongst BasicKNN and NewKNN. When Delta is posi-
tive BasicKNN is more sensitive otherwise it is the New-
KNN that is more sensitive. Also, when Delta gets higher 
BasicKNN gets more sensitive than NewKNN.

Table 4 shows that for both datasets and all used dis-
tances, all values of Delta are positive. This means that in 
NewKNN the difference between F1-test and F1-train is 
less important than in BasicKNN, and this signifies less 
performance loss between training and test data and there-
fore less Overfitting sensitivity.

Even if it is less pertinent, a fourth indicator Delta-train 
is added (Delta- train = F1-train(NewKNN) − F1-train(Bas
icKNN)). Table 4 shows that the values of Delta-train are 
either null (for Restaurant dataset) or small positive (for 
4 out of 6 cases for Products dataset). This indicates that 
NewKNN is slightly more performant on training data than 
BasicKNN for most experiments on Products, whereas it is 
as performant as BasicKNN on training data for Restaurant 
dataset. This means that NewKNN shows towards Overfit-
ting relatively more tolerance (for Products) and the same 
resilience (for Restaurant) compared to BasicKNN. This 
indicator is less pertinent than the three others because 
both models basically perform well on training data within 
Overfitting.

Thus, our approach helps KNN dealing better with Over-
fitting. In other terms, the proposed model is less sensitive 
to Overfitting than the basic one for all the datasets and 
distances.

Like BasicKNN, we can also observe that NewKNN tol-
erance to Overfitting is higher with fivefold cross-validation 
than with tenfold. This means NewKNN tolerance to Over-
fitting is proportional to training data size. More training 
data helps reducing its sensitivity to Overfitting.

Table 4  F1-score average performances of NewKNN and BasicKNN under Overfitting for both datasets and using three distances

Cross-validation Restaurant Products

F1-score averages F1-score averages

Euclidian Jaccard Cosine Euclidian Jaccard Cosine

Tenfold Fivefold Tenfold Fivefold Tenfold Fivefold Tenfold Fivefold Tenfold Fivefold Tenfold Fivefold

F1-test(BasicKnn) 70 72.6 72.4 79.4 74.9 82 71.4 70 70.5 70.2 68.9 69
F1-train(BasicKnn) 100 100 100 100 100 100 96.7 95.4 93.7 95.8 93.6 94.6
F1-test(NewKnn) 72.4 77.6 76.2 84.4 78.6 87.8 72.6 71.6 74 72.4 74.3 74.6
F1-train(NewKnn) 100 100 100 100 100 100 96.0 96.4 96.2 96 94.8 94.4
Delta-test 2.4 5 3.8 5 3.7 5.8 1.2 1.6 3.5 2.2 5.4 5.6
Delta-train 0 0 0 0 0 0 − 0.7 1 2.5 0.2 1.2 − 0.2
Delta-BasicKnn 30 27.4 27.6 20.6 25.1 18 25.3 25.4 23.2 25.6 24.7 25.6
Delta-NewKnn 27.59 22.4 23.8 15.6 21.4 12.2 23.40 24.8 22.2 23.6 20.5 19.8
Delta (%) 2.41 5 3.8 5 3.7 5.8 1.9 0.6 1 2 4.2 5.8
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In order to analyze the behavior of BasicKNN and New-
KNN during Underfitting, we extract the values of K leading 
to Underfitting from graphs shown in Fig. 2, 3, 4, 5, 6, and 7.

Tables 5 and 6 show the behavior of BasicKNN and New-
KNN in Underfitting conditions when both models poorly 
perform on both training and testing data. To conduct a com-
plete analysis of Underfitting sensitivity of both NewKNN 
and BasicKNN, we introduce in Tables 5 and 6 four indica-
tors that are to be used all together in order to measure how 
tolerant both techniques are to Underfitting.

Tables  5 and 6 show that even within Underfit-
ting conditions, NewKNN outperforms BasicKNN for 
all experiments (shown by positive values for delta-
test in all experiments in both tables, where delta-
test = F1-test(NewKNN) − F1-test(BasicKNN)). This fact is 
the first indicator to less Underfitting sensitivity of NewKNN 
compared to BasicKNN since the first model outperforms the 
second one on test data. The second indicator is delta-train 
(delta-train = F1-train(NewKNN) − F1-train(BasicKNN)). 
The two tables show that the values of delta-train are posi-
tive. This indicates that NewKNN is more per- formant on 
training data than BasicKNN. This means higher Underfit-
ting tolerance of NewKNN compared to BasicKNN. The 
two other indicators to Underfitting sensitivity of respec-
tively NewKNN and BasicKNN are delta-New and delta-
Basic (delta-New = F1-train-New − F1-test-New and delta-
Basic = F1-train-Basic − F1-test-Basic). These two indicators 
measure how much performance losses are made by both 
NewKNN and BasicKNN between training and test data. 

When delta-Basic (delta-New) gets higher the BasicKNN 
(NewKNN) achieves poorer performance on test data than 
on training data. This means that BasicKNN (NewKNN) is 
more sensitive to Underfitting.

Unlike Overfitting, the two tables show that the values 
of delta-New are smaller than their corresponding values 
of delta-Basic only for most of fivefold experiments and 
one tenfold experiment. Thus, NewKNN is less sensitive to 
Underfitting than BasicKNN in most of fivefold cross-vali-
dation experiments when the size of training data is bigger. 
Exceptionally, for all 10-fold cross-validation experiments 
(except one), NewKNN is more sensitive to Underfitting 
than BasicKNN.

Even though NewKNN does not show more tolerance to 
Underfitting than BasicKNN for tenfold cross-validation, it 
consistently keeps the same tolerance variation (like in Over-
fitting) with respect to number of folds in cross-validation. 
Indeed, the tolerance of NewKNN to Underfitting is higher 
with fivefold cross-validation than with tenfold cross-valida-
tion. This means that NewKNN tolerance to Underfitting is 
proportional to training data size. More training data helps 
reducing NewKNN sensitivity to Underfitting.

4.2.3  Comparison with Other Works

The suggested technique is compared to various methods 
from the literature in order to assess the proposed method’s 
performance. Table 7 presents a comparison of traditional 
and deep learning approaches with our proposed method for 

Table 5  F1-score average performances of NewKNN and BasicKNN in Underfitting, for both datasets and using three distances with tenfold 
cross-validation

Distance/Dataset K F1-test-basic F1-train-basic F1-test-new F1-train-new Delta-test Delta-train Delta-new Delta-basic

Euclidian-rest 40 35.55 39.85 46.7 51.9 11.15 12.05 5.2 4.3
Euclidian-prod 150 14.2 18.6 23.6 31 9.4 12.4 7.4 4.4
Jaccard-rest 40 19.7 19 42.6 56.5 22.9 37.5 13.9 − 0.7
Jaccard-prod 50 21.0 29.3 51.1 62.8 30.1 33.5 11.3 8.3
Cosine-rest 60 18.3 28 20.4 33.8 2.1 5.8 13.4 9.7
Cosine-prod 100 25.6 35.2 48.9 57.9 23.3 22.7 9 9.6

Table 6  F1-score average performances of NewKNN and BasicKNN in underfitting, for both datasets and using three distances with fivefold 
cross-validation

Distance/Dataset K F1-test-basic F1-train-basic F1-test-new F1-train-new Delta-test Delta-train Delta-new Delta-basic

Euclidian-rest 40 33.6 37 37.8 43.4 4.2 6.4 5.6 3.4
Euclidian-prod 150 10.6 15.6 25.8 29.6 15 14 3.8 5
Jaccard-rest 35 24.8 29.6 50.6 55.2 25.8 25.6 4.6 4.8
Jaccard-prod 100 13.6 22.4 47.4 52 33.8 29.6 4.6 8.8
Cosine-rest 60 14.4 21.4 16.6 23.2 2.2 1.8 6.6 7
Cosine-prod 100 24.6 31 45.8 53 21.2 22 7 6.4
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Implicit Aspect Identification. It is very important to men-
tion that all works utilize the same datasets however they do 
not operate at the same level. On one hand, W2VLDA[30], 
Schouten et al. Supervised method [19] and our proposed 
approaches (with 3 distances) operate on algorithmic level 
where they suggest adjustments or additions, on the other 
hand, the remaining techniques operate on training data level 
where they bring improvements to training data quality.

From Table 7, we observe that:
For Restaurant dataset, our proposed approach glob-

ally shows very competing performance level compared to 
other works. Four comparisons are worth mentioning: (i) 
Our proposed approach (especially, with Cosine and Jac-
card distances) outperforms W2VLDA [30], Schouten et al. 
Supervised method [19], MNB + WN [20] and BNB + WN 
[20]. Even if when adjusting the core model that is very 
sensitive and challenging, our proposed approach succeeds 
to achieve better performances than the four other tech-
niques. (ii) Our proposed approach with Cosine distance 
(best performing amongst three proposed methods) slightly 
outperforms KNN + WN + Frequency [21] even if this lat-
ter operates on data level which is less challenging. It is 
important to note that our proposed method uses Cosine 
distance whereas the other one uses Euclidian one. (iii) Our 
proposed approach with Euclidian distance is outperformed 
by KNN + WN + Frequency [21] that uses the same distance 
and operates on training data by enhancing its quality which 
allows to remedy to class unbalanced nature of Restaurant 
dataset. (iv) Our proposed approach with Cosine distance 
(best performing amongst three proposed methods) shows 
almost the same performance as Att-LSTM + WN + Fre-
quency [21] which is not only a deep learning technique, 
which is generally reputed for higher performance on clas-
sification, but also operating on less challenging and less 
sensitive data level.

For Products dataset our three proposed approaches 
are largely outperformed by all other methods that apply 
to Products dataset. These latter are data level techniques, 
that enhance training data by adding semantic relations from 
WN, and this should reduce the high class unbalanced struc-
ture of Products dataset. Whereas our approaches operate on 
algorithm level without modifying the structure of training 
data.

5  Conclusion

In this work, we propose an approach to improve KNN 
algorithm to deal with Implicit Aspect Identification task. 
Through the use of WordNet semantic relations, we propose 
an enhancement for KNN distance computation to support 
the IAI task. For empirical evaluation, experiments are con-
ducted on two datasets of electronic products and restaurant 
reviews, and the effects of our method are analyzed accord-
ing to three different KNN aspects: (i) The KNN distance 
used to compute the similarity, (ii) The number of nearest 
neighbors (K) and (iii) The KNN behavior towards Overfit-
ting and Underfitting. The main findings of our work can be 
summarized as follows:

1. Our approach helps KNN boost its performance for the 
three considered distances and for different values of 
K without changing KNN performance evolution with 
respect to K.

2. Our technique supports KNN to better deal with Overfit-
ting and Underfitting by reducing their impacts on KNN 
and therefore improving its performances.

3. For both models (BasicKNN and KNN based on our 
method), sensitivity to Underfitting and Overfitting is 
inversely proportional to training data size.

Table 7  F1-score performances 
of selected traditional and deep 
learning approaches and our 
proposed methods for IAI and 
using Restaurant and Products 
datasets

Method Type F1-score (Restaurant) 
(%)

F1-score 
(Products) 
(%)

W2VLDA [30] Traditional 72.00 –
Schouten et al. Supervised [19] Traditional 83.80 –
MNB + WN [20] Traditional 77.40 90.00
BNB + WN [20] Traditional 78.40 93.30
SVM + WN + frequency [21] Traditional 85.30 91.80
KNN + WN + frequency [21] Traditional 85.30 91.80
MNB + WN + frequency [21] Traditional 87.55 91.80
LSTM + WN + frequency [21] Deep learning 85.20 89.09
Att-LSTM + WN + frequency [21] Deep learning 87.83 94.36
Proposed KNN with Cosine dist Traditional 87.80 74.60
Proposed KNN with Jaccard dist Traditional 84.40 74.00
Proposed KNN with Euclidian dist Traditional 77.60 72.60
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In future work, we will consider investigating WordNet 
synonym semantic relation for KNN model enhancement 
for Implicit Aspect Identification task. We also plan to apply 
our technique to improve other machine learning classifiers 
for sentiment analysis, particularly deep learning classifiers.
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