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Abstract
Retailers increasingly apply price markdowns for their seasonal products. Efficiency of these markdown applications is 
driven by the accuracy of empirical models, especially toward the end of a selling season. In the literature, recent sales are 
recognized to be more important than older sales data for estimating the current period’s demand for a given markdown level.  
The importance difference between the weeks of a selling season is addressed by weighted least squares (WLS) method with 
continuous weight functions of time. This study suggests a generalization of the weight functions and a method for optimiz-
ing their shape and discretization parameters to stimulate the predictive accuracy of models. We find that addressing the 
importance difference of recent sales observations using our generalized weight functions improves the forecast accuracy 
by up to 20%, and most of the improvement stems from our weight discretization method.
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Abbreviations
WLS	�  Weighted least squares
GWF	�  Generalized weight functions
GoF	�  Goodness of fit
AIC	�  Akaike information criterion
OLS	�  Ordinary least squares
MAPE	�  Mean absolute percent error
SKU	�  Stock keeping unit
WFS	�  Weight function by Smith et al. (1994)
WFK	�  Weight function by Keskin and Zeevi (2017)
GH	�  Greedy heuristic
R2

WLS
	�  Coefficient of determination for WLS (Willett 

and Singer 1988)
R2

WLS−p
	�  Pseudo coefficient of determination for WLS 

(Willett and Singer 1988)
ES	�  Exhaustive search

1  Introduction

Financial performance and stability of retailers mainly 
depend on their sales performance [16], and retailers focus 
on increasing their sale rates as much as possible by chang-
ing their price and inventory levels. In the retail sector, 
inventory decisions are made based on demand forecasts 
before the start of a selling season and actual sales may be 
lower than forecasted demand due to various factors such as 
large product variety, existence of competitors, short sell-
ing seasons of private labels and fashion merchandise [32]. 
This leads retailers to end up with unsold products at the end 
of a selling season. Unsold end-of-season merchandise is a 
significant problem for fashion retailers, as such products 
increase material handling costs for leftover inventory that 
is transferred to warehouses or donated to charities at the 
end of each selling season to make space for new-season 
merchandise.

To avoid material handling costs and revenue losses, 
retailers issue markdowns to stimulate their demand and fin-
ish their inventory as much as possible before the end of a 
selling season. In markdown decisions, remaining inventory 
level and in-seasonal demand patterns play a crucial role. 
Usually, demand rates decrease toward the end of a selling 
season; hence, delaying markdowns can diminish the poten-
tial impact of markdowns on a retailer’s profit. Similarly, 
early markdowns can increase discount costs of the retailer 
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and lead to premature depletion of merchandise. In addition, 
the existence of markdowns changes characteristic demand 
patterns of products. Without markdowns, retail demand of 
a product can be characterized by a concave curve; sales 
peak in the middle of a selling season and decrease toward 
the end due to broken assortment and seasonal effects [1]. 
The existence of markdowns motivates some customers to 
behave strategically and delay their purchase to the mark-
down season to exploit lower prices [21]. This leads to lower 
early-season sales and a shifted demand peak. The effect of 
markdowns on the daily sales of a typical textile product is 
depicted in Fig. 1, where daily sales are marked with a line 
plot, and markdown levels are given with an area graph on 
the secondary axis over a 210-day selling season (between 
10-02-2014 and 09-09-2014). In this example, markdowns 
increase, and the daily sales rate reaches its peak toward 
the end of the selling season. In addition, Fig. 1 depicts a 
hypothetical concave demand curve with a dashed line to 
emphasize the difference between sales rates with and with-
out markdown applications.

Markdown decisions significantly impact retailers’ profit-
ability and financial performance; therefore, they should be 
managed with a data-driven decision support system. Suc-
cessful implementation of such a decision support system 
heavily depends on the accurate estimation of markdown 
sensitivity of demand over a selling season. This estima-
tion requires a data set including quantity, selling price 
and inventory availability for each product. For forecasting 
future demand from historical sales data, recent observations 
are more reliable compared to the older periods [16, 35]. 
This importance difference between older and recent weeks 
of a selling season is operationalized through the weighted 

least squares (WLS) method [6, 23, 35]. Scholars consider 
different mathematical functions to generate sequences of 
increasing weights toward the most recent observation.

In this paper, we suggest a demand modeling system for 
markdown optimization by generalizing the weight func-
tions of Smith et al. [35] and Keskin and Zeevi [23] with 
the dyadic function [11]. Our generalized weight functions 
(GWFs) allow piecewise constant weight sequences for the 
parameter estimation of a regression model. To find the best 
weight sequence, we suggest an optimization procedure that 
searches over the shape and discretization parameters of 
GWFs using a goodness of fit (GoF) criterion. In our study, 
we consider three different GoF criteria, R2 for WLS, pseudo 
R2 for WLS, and Akaike information criteria (AIC), for the 
weight optimization. The first two are suggested by Willett 
and Singer [38] for WLS models, whereas the last is typi-
cal for choosing a demand model from a candidate set [15]. 
In addition, we consider a WLS approach from the robust 
regression literature. We test the contribution of these WLS 
methods to the prediction power of a demand model using 
empirical data from a Turkish apparel retailer. The accuracy 
of our methods is benchmarked against the ordinary least 
squares (OLS) method in terms of mean absolute percent 
error (MAPE).

Our results indicate that GWFs increase the accuracy 
of a multiplicative demand model by up to 20%, and this 
increase is primarily due to the discretization of weight 
functions. We find that the weight function by Smith et al. 
[35] is more effective than the one suggested by Keskin and 
Zeevi [23] when they are combined with discretization. This 
can be explained by the fact that Smith et al.’s formulation 
is more flexible and more suited to log-linear models. Our 

Fig. 1   Impact of markdown on 
in-season sales of a product
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experiments with the weight optimization procedure reveal 
that the AIC leads to more accurate demand models than 
the other two criteria from the WLS literature. We also find 
that the robust regression method provides inferior perfor-
mance for a markdown optimization system. To the best of 
our knowledge, ours is the first study that provides a com-
prehensive evaluation of WLS methods for a markdown 
optimization system.

This paper consists of six sections. The next section 
reviews the extant literature. Section 3 presents the data set 
that we used to apply our method. Section 4 gives the details 
of our model and generalized weight functions. Section 5 
presents the results of the study and Sect. 6 summarizes and 
concludes the paper.

2 � Literature Review

The relevant literature for this study consists of two main 
streams. The first research stream consists of studies focus-
ing on markdown optimization. We consider those mark-
down studies from the demand modeling perspective. 
Second, we consider studies on the WLS approach for the 
parameter estimation of demand models.

The markdown optimization literature includes many 
studies targeting products with a low end-of-season value, 
such as apparel, holiday presents, or perishable products. For 
the apparel sector, Smith et al. [35] consider a markdown 
optimization problem by considering a two-stage demand 
modeling approach. Their approach is extended by Smith 
and Achabal [33] and Caro and Martínez-de Albeniz [6]. 
In those studies, the log-linear demand model is considered 
to capture the customers’ sensitivity to markdown levels. 
Studies by Harsha et al. [18] and Chen et al. [9] utilize 
demand models other than multiplicative equations. Harsha 
et al. [18] consider a multinomial logit model for custom-
ers’ preferences and utilize the model predictions for pre-
dicting demand, whereas Chen et al. [9] utilize the gradient 
boosting algorithm combined with a differential equation-
based parameter estimation to optimize clearance prices of 
Walmart over a selling season.

From the demand modeling perspective, interactions 
between different products are also important for cus-
tomer demand [14] [13]. Specifically, Cosgun et al. [13, 
14] utilize approximate dynamic programming to opti-
mize the markdown levels of multiple products using a 
linear demand model. Wang et al. [37] consider markdown 
optimization of holiday items left over after the Christ-
mas period. They state that decreasing values of prod-
ucts require sharp markdowns at sales price to remove 
inventory from retail stores. Rice et  al. [30] compare 
markdowns with probabilistic selling, which they define 

suggesting different options to customers to augment price 
discrimination, using a stylistic model. They conclude that 
probabilistic selling has a potential of achieving higher 
revenue and better inventory utilization. Recently, mark-
down optimization models have been applied to perishable 
products, which lose almost the entire value at the end of 
their shelf lives. In those studies, researchers mainly con-
sider one-time discount approach to stimulate demand [2, 
8, 10, 25, 27, 29]. Single discount applications are moti-
vated by the fact that subsequent markdown applications 
suffer from diminishing rate of returns.

The second relevant research stream consists of the 
studies on the usage of WLS estimation of parametric 
demand models. Smith et al. [35] and Smith and Achabal 
[33] use a two-stage demand procedure to estimate the 
discount sensitivity of customer demand. They utilize a 
weight function to assign more importance to recent peri-
ods’ sales. Their studies are extended by Caro and Gallien 
[5], who consider a different weighting scheme to assign 
higher importance to recent observations. Manning and 
Mullahy [28] consider the WLS approach for log-linear 
models for health economic estimations in the existence 
of heteroscedasticity and skewed coefficients. Keskin and 
Zeevi [23] consider WLS for estimating the parameters 
of a linear demand function used in price optimization. 
Their algorithm assigns exponentially decaying weights to 
old observations, interpreted as information depreciation.

Another interesting usage of WLS-based parameter esti-
mation is robust regression [4, 7, 36] and locally weighted 
regression [12, 26, 31]. In robust regression studies, WLS 
estimation is used to discount leverage points in covariate 
values. In many cases, empirical data might suffer from 
uncontrollable effects and measurement errors [4], creat-
ing bias in the parameter estimation procedure. Research-
ers suggest various statistical procedures that assign lower 
weights to leverage points in the parameter estimation of 
regression models.

The closest studies to our paper are given by Smith 
et al. [35], Smith and Achabal [33], Caro and Gallien [5], 
and Keskin and Zeevi [23]. We extend those studies by 
considering generalized weight functions (GWFs) with a 
hyper-parameter search to obtain the best model using dif-
ferent quality of fit criteria. Our approach generalizes the 
WLS methods in the literature by a parametric discretiza-
tion method. Note that we chose two well-known weight 
functions from the literature to demonstrate the impact of 
our approach, whereas it can be applied to other continu-
ous, weight-generating functions. We also compare our 
GWFs to different WLS algorithms from the robust regres-
sion literature [38]. To the best of our knowledge, ours is 
the first study evaluating robust regression models for a 
markdown optimization problem.
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3 � Point‑of‑Sale Data

We consider point-of-sale data from a large apparel retailer 
in Turkey. The data set consists of 10,770 rows and 15 col-
umns. The columns of the data set include sales date, sales 
quantity, product code, product group, gender, collection 
code, brand code, season code, sales price, and list price. 
Rows of the data set consist of daily sales of 312 unique 
product codes sold between 2011 and 2015. The distribu-
tion of the products over the years is approximately equal 
(18, 20, 22, 24, 17 percent). Most of the products (95%) 
are sold out at the end of their first year on shelf and never 
returned to stores. Only 16 (out of 312) products are kept 
on shelf over more than 1 year. Such products are removed 
from the store and sent to the warehouse until the next 
year’s selling season.

Each product code is a member of a product collection, 
which is used as the key information for modeling cus-
tomer demand in our study. Specifically, the retailer makes 
markdown decisions based on product collections includ-
ing products with similar markdown sensitivity of demand. 
In our data set, there are 19 different collection codes. 
Three of these product collections consist of a single prod-
uct code, whereas for the rest, each collection includes 
more than 20 different product codes. A more detailed 
description of the data set is provided by Yıldız [39].

Furthermore, start dates and durations of markdown 
periods vary significantly within each collection. We 
manually break down collections into subcollections to 
ensure that products with the same start and end points 
are grouped and subjected to the same markdown levels. 
We define 81 subcollections and %65 of them include less 
than three different products. Such a granular approach to 
the data set is motivated by achieving higher accuracy in 
our demand modeling study. In this study, we fit a different 
log-linear regression model to each subcollection. Also, 
the forecast accuracy of each model is reported at subcol-
lection level to describe the impact of weight optimization 
on forecasting performance.

3.1 � Data Enrichment

In addition to the covariates explained above, we extract 
additional features proven to be useful for estimating cus-
tomer demand. One of the extracted features is the number 
of days since the last change of the markdown level. It is 
known that customers’ response to any price promotion 
exponentially decreases over time as people get accustomed 
to the discounted price. This can also be explained with the 
reference price theory, in which each customer is assumed 
to have a reference for the product and decides if the selling 

price is lower than his or her reference [17]. After the price 
discount, customer demand surges as there is a significant 
difference between the selling price and customers’ refer-
ence prices. Over time, reference price levels are adjusted, 
so the sales rate goes back to its normal trend. We calcu-
lated the average number of weeks since the last markdown 
update for each product to cover this time-dependent effect.

Seasonal sales trend for retail products is another 
extracted feature from our data set. Specifically, empirical 
evidence from the retail management literature suggests that 
customer demand starts slowing at the beginning of a selling 
season [32]. Toward the mid-season periods (weeks), sales 
rates reach its peak and start to decline due to the broken 
assortment effect [34], or season change. To capture this 
in-season dynamics we define the following covariate: 
Tt
i
∶=

(ti−tmidi )
2

Ti
∀i ∈ ℘k where ti is the week index of the prod-

uct i, and tmid
i

 is the middle of the selling season. Ti stands 
for the length of the selling season for product i ∈ ℘k, where 
℘k is the set of products in the subcollectionk ∈ K , and K is 
the set of all subcollections. Note that the lengths of prod-
ucts’ selling seasons might vary due to various factors, such 
as different introduction dates and in-store retail practices. 
To address this variability, we used normalization using the 
length of the selling season. The effect of this covariate is 
depicted with a dashed line in Fig. 1. In the following sec-
tion, these two covariates are utilized in a multiplicative 
regression model to estimate customer demand for given 
markdown levels using a WLS method.

4 � Demand Modeling with WLS Estimation

To model customer demand and its markdown sensitivity, 
we consider a log-linear demand model and a WLS param-
eter estimation procedure. In this section, we first present 
the demand model in Sect. 4.1. Next, the WLS estimation 
method and a parameter update method are described (Sects. 
4.2, 4.3). In the last part of this section, resampling studies 
are presented (Sect. 4.4).

4.1 � Multiplicative Demand Model

Nonlinear, multiplicative regression models are a common 
approach to establish the relationship between selling price, 
discount, and customer demand. Using the log transforma-
tion on demand, one can estimate the model coefficients 
using the linear regression methodology. Customer demand 
is affected by many different factors such as seasonality, the 
week of a selling season, the existence of special days, and 



International Journal of Computational Intelligence Systems          (2022) 15:109 	

1 3

Page 5 of 14    109 

price discounts. It is crucial to consider all relevant covari-
ates for a successful demand model.

To predict weekly customer demand using the log-linear 
model, we consider both quantitative and qualitative covari-
ates in this study. Let us define Bi and Gi as the brand and 
gender codes for the product (code) i . Mi

t
 is the markdown 

level given below.

where Pi
0
 is the sales price for product i ∈ ℘k, k ∈ K at the 

beginning of its selling season. Wi
t
 measures the number of 

periods since the date of the last markdown change. Using 
these covariates, we suggest the following model for weekly 
demand during a markdown period.

for 1 ≤ t ≤ � i , where Di
0
= 0 and � i represents the total 

number of weeks in the markdown season for product 
i ∈ ℘k, k ∈ K . The model in (1) assumes the first-order 
autocorrelation for the demand variable, which is a reason-
able assumption. In addition, we consider product-specific 
intercept, denoted by � i

0
, to cover the average sales of each 

product during a selling season.
For the estimation of model parameters, we run a coeffi-

cient estimation procedure combined with the WLS method. 
Our method consists of three main calculation steps: (1) 
calculate the best parameters for the GWFs at the begin-
ning of a selling season; (2) at the beginning of each week, 
calculate the WLS estimate for the coefficients of the model 
in (1); (3) update the coefficients of the prediction model 
using the exponential smoothing in Sect. 4.2. The overall 
algorithm, including these calculation steps, is presented in 
Algorithm 1.

Note that the exponential smoothing in Step 4 of Algo-
rithm 1 is suggested by Caro and Gallien [5] and Smith et al. 
[35] for markdown optimization systems. We extend those 

Mi
t
=

Pi
0
− Pi

t

Pi
0

,

(1)
log

(

Di
t
)

= �̃ i0 + �̃1log
(

1 −Mi
t
)

+ �̃2Wi
t + �̃3Ti

t

+ �̃4Bi + �̃5Gi + �̃6log
(

Di
t−1

)

+ �t ,

studies with the weight optimization using GWFs presented 
in the following section.

4.2 � Weight Optimization with GWFs

Markdown systems are utilized for a wide variety of prod-
ucts with different characteristics. For most of them, assign-
ing higher importance to recent observations is crucial for a 
successful implementation. As weight assignment to recent 
sales data mainly depends on the product characteristics 
[35], we suggest that the weight vector of WLS should be 
optimized at the beginning of a markdown period using a 
parametric GWF. To this end, we consider two different 
weight functions, by Smith et al. [35] and Keskin and Zeevi 
[23], and suggest a generalization scheme using the dyadic 
function. The resulting GWFs are optimized using three dis-
tinct GoF criteria. Weight functions and the considered GoF 
criteria are presented in the following subsections.

4.2.1 � Weight Function by Smith et al. [35] (WFS)

The first weight function that we consider is suggested by 
Smith et al. [35] (from this point, it is referred to as WFS). 
WFS, denoted by wS

�
(t) , yields a weight value for the week t 

of a selling season with the following function:

where   t is the total length of the selling season, t is the cur-
rent period (week) and α ∈ [0,1] is the shape parameter. wS

�
(t) 

is a continuous, increasing function of t, so it assigns higher 
weights toward the end of a selling season (Fig. 2a). Also, 
wS
�
(t) is decreasing in � . When � is close to one, WFS assigns 

more weights toward the end of the season, whereas values 
close to zero assume more weights for later weeks. So, one 
can control the weight assigned to recent sales of a product 
by manipulating the shape parameter of wS

�
(t) (Fig. 2a).

4.2.2 � Weight Function by Keskin and Zeevi [23] (WFK)

Keskin and Zeevi [23] suggest another nonlinear function 
family, which we call Weight Function by Keskin and Zeevi 
[23] (WFK) that assigns higher weights to the most recent 
observations to optimize data-centered pricing strategy of 
a retailer. They prove that (3) gives the optimal weights to 
estimate the parameters of a linear demand–price curve. In 
this study, we evaluate this function family for the weight 
optimization of a WLS-based parameter estimation method. 
WFK is given as follows:

(2)wS
�
(t) = (1 − �)

2

(
t−t

)
,
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where m ∶= ⌈�T 1

3 ⌉ , and α is the shape parameter of the 
function. In this study, we set κ to 2 and assume T is the larg-
est planning horizon in a subcollection. wK

�
(t) is monotoni-

cally decreasing in α. In our study, we optimize the shape 
parameters of WFS and WFK to obtain the optimum weight 
sequences for the product after discretizing them with the 
dyadic function.

4.2.3 � Dyadic Function for Discretization

The weight functions in (2) and (3) are continuous increas-
ing functions of t. Utilizing these functions in markdown 
optimization implicitly assumes that the importance of past 
sales data continuously decreases for earlier sales date. On 
the other hand, in some markdown applications, some weeks 
have the same level of importance from the perspective of 
discount sensitivity and equal weight values are needed for 
WLS-based coefficient estimation. This requires the discre-
tization of the weight functions in the form of a step func-
tion. To this end, we consider the dyadic function, which 
approximates any continuous function with a piecewise con-
stant function in any desired accuracy. The dyadic function, 
denoted by dn: [0,∞] → [0,∞) (cf. Çınlar [11], is defined as 
follows:

(3)wK
�
(t) =

⎛
⎜⎜⎜⎝
1 −

�
t − t

�

m2
+

�
t − t

�1−�

m2

⎞
⎟⎟⎟⎠

1

�

,

where r is any continuously increasing function and 
1(a,b)(r): = 1{a < r < b} stands for the indicator function. 
By using the dyadic function with wα

S(t) and wα
K(t), we 

obtained the following GWFs, which are non-decreasing, 
right continuous, piecewise constant for any n < ∞.

Recall that  gwS(�,∞)(t) = wS
�
(t) and gwK(�,∞) = wK

�
(t) , 

meaning that the continuous weight functions wS
�
(t) and 

wK
�
(t) are special cases of gwS(�, n)(t) and gwK(�, n)(t), 

respectively. Also, for every n ∈ ℕ , we have the following 
approximation gap of discretization:

where i ∈ {K,S} and ‖f‖∞ = sup
t∈[0,t−)

�f (t)� . The approximation 

gap is bounded by a decreasing function of n, which we refer 
to as discretization parameter. Realizations of 
gwi(�, n), i ∈ {K, S} for different shape and discretization 
parameters ( � and n ) are depicted in Fig. 2a and b.

To find the best weight sequence, we utilize a heuris-
tic search over the parameters of gwS(.) and gwK(.) func-
tions. Specifically, the search algorithm utilizes a single 

(4)d
n(r) =

n2n∑
k=1

k − 1

2n
1[(k−1)2−n,k2−n)(r) + n1[n,∞)(r),

gwS(�, n)(t) ∶= dn
(
wS
�
(t)
)
, 0 ≤ t ≤ t, n ∈ ℕ,

gwK(�, n)(t) ∶= dn
(
wK
�
(t)
)
, 0 ≤ t ≤ t, n ∈ ℕ.

‖gwi(�, n)(t) − gwi(�,∞)(t)‖∞ ≤ 2−n,∀t ≥ 0,

Fig. 2   Weight functions by Smith et al. [35] and Keskin and Zeevi [23] and their generalizations
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dimensional greedy heuristic for α ∈ [0,1] for a fixed n, 
1 ≤ n ≤ n . Preliminary experiments on the dyadic function 
reveal that n = 10 approximates the continuous weight func-
tion close enough (Fig. 2a). Therefore, we set n to 10 and run 
a single dimension greedy heuristic over � ∈ [0,1] for each 
n ∈ {2, n }. The search algorithm is restarted from 20 differ-
ent random points of α0 ∈ [0,1] to find α∗(n). Then compar-
ing different models with (n, �∗(n)) , n ∈ {1,… , n} leads to 
the optimal weight parameters (n∗, �∗(n∗)) with respect to a 
given quality of fit criterion.

4.2.4 � Goodness of Fit Criteria for Model Evaluation

To optimize the weight sequences, we consider three alter-
native GoF criteria for comparing regression models with 
different weight sequences. The first criterion is suggested 
as a replacement for the coefficient of determination for 
parameter estimation with WLS (Willett and Singer [38]). 
To define the coefficient of determination for WLS, denoted 
by R2

WLS
 , Willett and Singer [38] define the diagonal weight 

matrix W. The dimension of the matrix is m by m, where 
m is the length of the dependent variable Y. i-th diagonal 
element of W is defined aswii = w�,n

(
ti
)
 , where ti is the sell-

ing week in row i of the covariate matrix X. Note that Y is 
log

(
Di

t

)
, i ∈ ℘ in (1). Using W, we define the transformed 

variables �∗ = �
−1∕2

� and�∗ = �
−1∕2

� . Then,

where  �
∗
 is the average value of Y∗ and �∗ is the coefficient 

of WLS estimation:

The second alternative GoF criterion that we consider is 
the pseudo coefficient of determination for WLS, denoted 
by R2

WLS−p
 [38]. This statistic is suggested as a replacement 

of the classic coefficient of determination in OLS in case of 
WLS. R2

WLS−p
 is given below:

The motivation behind this metric is to report the fraction 
of variability explained by the model in the original space, 
instead of the one transformed with W matrix [38].

The third alternative metric for comparing regression 
models is Akaike information criterion (AIC), a com-
mon maximum likelihood-based statistic used in different 

(5)R2

WLS
= 1 −

[
(𝐘∗ − 𝐗

∗�∗)T (𝐘∗ − 𝐗
∗�∗)

𝐘∗T𝐘∗ − m𝐘
∗2

]
,

(6)�∗ =
(
�

T
��

)−1
�

�
��.

(7)R2

WLS−p
= 1 −

[
(� − ��∗)T (� − ��∗)

�T� − m�
2

]
.

applications of data mining and statistical machine learning. 
AIC is suggested for WLS by de Brauwere et al. [15].

In addition to the weight optimization with GWFs and dif-
ferent GoF criteria, we also consider weight schemes from the 
robust regression literature to benchmark its performance to 
our GWFs. The robust regression method, which we consider 
in this study, is summarized in the following section.

4.2.5 � Weight Functions of Robust Regression

Robust regression is another stream of research that assigns 
varying weights to different observations in a data set is 
robust regression. In this study, we consider a leverage-based 
weighting scheme that uses the diagonal elements of the 
projection matrix defined as P = X(XT X)−1XT  [7]. Observa-
tions in the X−space, which generates too much leverage on 
the fitted regression curve, is called high-leverage points. To 
eliminate the effects of such points, Chatterjee and Mächler 
[7] suggest an iterative algorithm that calculates the weight 
vector for WLS. To this end, they define

as the k-th element of the weight vector at iteration j. In 
(8), ej

k
= yk − X�̂ j−1 is the residual value of observation k at 

iteration j and mj is the median of ( ej
1
,… , e

j
n ) vector. The 

iterative algorithm starts with w0

k
= 1∕max{pkk, p∕n} . We 

compare the impact of the leverage-based weights on the 
prediction power of the model (1) in Sect. 5.

4.3 � Updating Parameters of the Prediction Model

In this study, we suggest a parameter estimation and an 
update method for estimating weekly customer demand 
within a markdown season of products. In our model, regres-
sion coefficients are estimated using the WLS method with 
GFWs. These estimated coefficients are used to update 
the prediction model’s coefficients using the exponential 
smoothing method as follows:

for j ∈ {1,… , 6}, i ∈ ℘ and t ≥ 2.  �̃ i
0t

 and �̃jt are the WLS 
estimates of the coefficients �̃ i

0
 and �̃j in (1) for week t. Recall 

that in our two-stage demand forecasting method, WLS esti-
mates of coefficients are calculated for every week t . Those 
weekly estimates are used to update the actual model param-
eters � i

0t
 and � i

jt
 to forecast demand for week t + 1 for a given 

(8)w
j

k
=

(
1 − pkk

)2

max
{|||e

j−1

k

|||,mj−1

} ,

(9)� i
0t
= (1 − �)� i

0,t−1
+ ��̃ i

0t
,

(10)�jt = (1 − �)�j,t−1 + ��̃jt,
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markdown levelMi
t+1

, i ∈ ℘ . In our estimations, we set γ 
parameter to 0.2. Note that our choice of � is also utilized by 
Smith et  al. [35]. We prefer using updated coefficients 
( � i

0t
, �jt ) over WLS estimates ( ̃� i

0
 , �̃jt) to control variance of 

estimates and to avoid overfitting-related problems. By 
doing so, we accept some extra bias in our demand forecasts 
to control estimation variance. Our results in Sect. 5.2 reveal 
that the variance control and overfitting avoidance using 
exponential smoothing significantly pay off in terms of fore-
cast accuracy.

4.4 � Performance Tests with Resampling

Once the coefficient estimation and the parameter update 
steps are complete, we obtain the demand forecast of period 
t using � i

0t
 and �jt coefficients. We test our prediction method 

from two different perspectives. First, we evaluate the accu-
racy of the model using rolling-origin-recalibration evalu-
ation [3]. Second, we test our model against the possibil-
ity of overfitting using a bootstrapping method specifically 
designed for time series data [20].

4.4.1 � Rolling‑Origin‑Recalibration Method for Model 
Evaluation

To evaluate the prediction power of forecasting models, dif-
ferent methods are suggested in the literature. One way of 
classifying these evaluation methods is based on the last 
observation in the training set, which is defined as forecast 
origin. For time series data, Bergmeir and Benitez [3] sug-
gest the rolling-origin-recalibration method, which proceeds 
in two steps: first, for a given forecast origin and a fixed 
number of observations (forecast horizon) predictions are 
made and compared with the observations in the test set 
to calculate deviation; second, the first week of the test set 
is added to the training set and is taken as the new forecast 
origin, and the forecast model is recalibrated. In our study, 
we adopted the rolling-origin-recalibration method for the 
estimation of markdown-driven customer demand. We take 
80% of available data as a training set for each subcollection 
at the beginning of the evaluation. Starting from the first 
week of a test set, we generate predictions from our demand 
model and measure the prediction accuracy. Afterward, the 
forecast origin is added to the training set and the parameters 
of the log-linear model are recalculated. The measures that 
we used for prediction accuracy are explained in Sect. 4.4.3.

4.4.2 � Bootstrapping Tests Against Overfitting

Estimating the prediction error of a model and checking 
against any possible overfitting is challenging for any 
problem with a limited sample size. It is recognized that 

low training set error, high test set bias, and large response 
variance are primary indicators of overfitting in predic-
tive models [22]. Specifically, the test set error can be 
decomposed into the sum of prediction bias, variance of 
model response and irreducible error. To obtain the best 
prediction accuracy, it is important to find a low-bias and 
low-variance model. High response variance is an essential 
indicator of overfitting as small changes in the training set 
lead to large fluctuations in model estimates and lower test 
set accuracy.

Bootstrapping is suggested for estimating model accu-
racy and response variance when the data set size is lim-
ited. Bootstrapping method relies on simulating a new 
data set from the original data by random sampling with 
replacement. Bootstrap samples can be used to estimate 
the variance of a model’s response or its prediction bias 
[19]. The standard bootstrapping method of sampling 
with replacement creates biased estimates of popula-
tion features when it is applied to time series data with 
possible autocorrelation. In such a case, moving block 
bootstrapping with overlapping samples is suggested by 
Kunsch [24] and Li and Maddala [20]. In this method, 
the data set is divided into blocks of size l . For a data set 
of {x1, x2,… , x6} and l = 3, moving bootstrap blocks are 
{
{
x1, x2, x3

}
,
{
x2, x3, x4

}
,
{
x3, x4, x5

}
, {x4, x5, x6}} . To apply 

bootstrapping,  b of these blocks is sampled with replace-
ment. Kunsch [24] suggested the following formula for the 
optimal block size, l∗.

where � = (1 − �2)∕� , � is the coefficient of AR(1) pro-
cess and n is the sample size of the original data. Li and 
Maddala [20] suggest that b = n∕l∗ for the number of boot-
strap blocks.

In this study, we applied the moving block bootstrap-
ping method for our markdown demand modeling prob-
lem. We keep the weeks with no markdown in the training 
set and create bootstrapping blocks starting from the first 
week of the discount season. Each bootstrap sample is 
combined with the training set to estimate prediction error 
and variance of model response using the rolling-origin-
recalibration scheme described above. For the block size 
calculation, we estimate  �̂  and l∗ values by fitting a sepa-
rate AR (1) model to log-demand observations of each 
subcollection.

4.4.3 � Measures for Prediction Accuracy

The accuracy of our model’s forecasts is tested using the 
evaluation method in Sect. 4.4.1. At each time point, the 
difference between the forecasted and actual sales value is 

l∗ = n1∕3�−2∕3,
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evaluated using mean absolute percent error (MAPE) for 
each subcollection k , denoted by MAPEk. The description 
of subcollection is given in Sect. 3.

where Nk stands for the number of SKUs and Tk is the 
length of time series in subcollection k ∈ K. Model perfor-
mances are presented in terms of subcollection averages, 
e.g.,  MAPEagg =

∑
k∈KMAPEk∕�K� in the following section.

Recall that our subcollection-based rolling-origin-recal-
ibration scheme and moving block bootstrapping tests are 
specifically modified to address the needs of markdown 
optimization systems, which are usually run for a group of 
products that have similar discount sensitivity. Each mark-
down update requires manual labeling for existing products 
with new price and discount tags, and grouping products 
significantly lowers the operational complexity of markdown 
systems (Caro and Martínez-de Albéniz [6].

5 � Results and Discussion

This study suggests a weight optimization procedure for the 
WLS-based estimation of a demand forecasting model. We 
suggest two different GWFs and three GoF criteria for the 
weight optimization, which are evaluated using empirical 
sales data of a Turkish apparel retailer. We present the per-
formances of these weight optimization alternatives rela-
tive to the models with OLS parameter estimation. Using 
resampling tests, we investigate the impact of the following 
factors of the weight optimization system on the prediction 
accuracy:

A) 	Weight discretization and optimization.
B) 	Goodness-of-fit criteria for weight optimization.
C) 	A single-stage parameter update procedure.
D) 	Optimization of weight sequences at every period.

To understand the impact of (A), we compare WFS and 
WFK functions with and without the discretization in (4). 
For each subcollection weight vectors from gwS(�∗(∞),∞) , 
gwS(�∗(n∗), n∗) , gwK(�∗(∞),∞) and gwK(�∗(n∗), n∗) func-
tions are utilized to estimate model coefficients in (1). In 
addition, we consider the leverage-based weight determina-
tion method in Sect. 4.2.5. Impact of (B) is considered with 
the implementation of three different criteria for the weight 
optimization. The main experimental design that includes 
these WLS components with 42 experiments is presented 
in Table 1. In addition, the experimental factors in Table 1 
are extended with a single-stage parameter update procedure 

(11)MAPE
k =

1

T
k

Tk�
t=1

⎡
⎢⎢⎣
1

Nk

N
k�

i=1

�D̂i,k

t
− D

i,k

t
�

D
i,k

t

⎤
⎥⎥⎦
,

(γ = 1) (C) and weight optimization at every period (D). The 
total amount of experiments considered in our study is 126. 
The implementation details and the results of our analyses 
are discussed in the following subsections.

5.1 � Impact of Weight Optimization 
with Discretization

To evaluate the impact of the weight optimization on pre-
diction accuracy, we optimize GWFs’ shape and discre-
tization parameters. The shape parameter, α, is optimized 
with the greedy heuristic (GH) over [0.1, 0.6] for a given 
n ∈ {1,… , n }. This search leads to the best weight param-
eter for a given n, denoted by α∗(n). Then the best param-
eter set is found using an exhaustive search (ES) over 
n ∈ {1,… , n } values, where n = 10, as it is almost equal to 
the continuous weight function (2). In the parameter opti-
mization of weight vectors, we conduct runs with the three 
GoF criteria in Sect. 4.2.4.

In addition to the joint optimization, we investigate the 
impact of optimization over n for a given α ∈ {0.1,0.15,0.2} 
(Table 1). These values of α are suggested by [35] for mark-
down optimization of an apparel retailer. Therefore, our 
experimental design extends their work by comparing their 
setup with new features. Also, the performances of α∗(∞), 
continuous weight functions (2) and (3), are considered by 
setting n = ∞ in gwS(α,n) and gwK(α,n). In addition to the 
weight functions, we evaluate the robust regression method 
in a markdown setting. The results of our experiments are 
given in Table 2, where the optimized weight function 
parameters are indicated with *.

Our results reveal that the best performance is obtained 
from the joint optimization over α and n using the AIC 
criterion. It creates 21% of additional accuracy in terms 
MAPEagg compared to OLS. The improvement over OLS 

Table 1   Main different experimental factors

Weight optimiza-
tion α n

GoF criteria Interpretation

OLS ∞ Benchmark
GH ES R

2

WLS
Joint optimization

GH ES R
2

WLS−p
Joint optimization

GH ES AIC Joint optimization
GH ∞ R

2

WLS
Optimization over α

GH ∞ R
2

WLS−p
Optimization over α

GH ∞ AIC Optimization over α
{0.1,0.15,0.2} ∞ Continuous GWFs with constant 

α
{0.1,0.15,0.2} ES R

2

WLS

R
2

WLS−p
AIC

Optimization over n

LB Leverage-based weights
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occurs in 66% of 41 subcollections (65% of 282 products) 
considered in the study. Interestingly, the second-best 
accuracy is obtained from the optimization over n with 
respect to AIC for a constant � . We find no statistically 
significant difference between the best two performances. 
Therefore, we conclude that the main contribution to fore-
cast accuracy stems from the WLS with a constant 𝛼, 𝛼 < 1 
and its discretization (Table 2). The importance of WLS 
is mainly because the main drivers of retail demand, such 
as competitor’s discounts, and broken-assortment effects, 
are prominent at later weeks of selling seasons whereas 
demand at the beginning of a selling season is usually not 
affected by exogenous factors. Discretization is essential 
since it significantly lowers response variance and test set 
errors. Note that the relative unimportance of the search 
over � is also consistent with the study by Smith et al. 
[35], who claims that α is mainly related to the product 
characteristics, e.g., basic textile or a trendy design, and 
does not change over the markdown period. However, ours 
is the first study revealing the benefit of WLS when it is 
combined with discretization.

Furthermore, we find that R2

WLS
 and R2

WLS−p
 statistics 

perform significantly worse than the AIC statistic in the 
weight optimization procedures. The superior performance 
of AIC stems from the choice of n∗ values of 2 and 3 in the 
optimization compared to the other two GoF statistics. In 
the joint optimization (first row in Table 2), AIC chooses 
n∗  ≤ 3 in 78% of cases, whereas this ratio drops to 70% 
and 49% with RWLS

2 −p and RWLS
2 statistics, respectively. 

Similar qualitative observations hold for n∗ for α = 0.2 
(fifth row in Table 2).

Table 2 also reveals that the leverage-based weights  [7] 
are not useful for demand forecasting in markdown appli-
cations. The inferior performance of the leverage-based 

weights (> 1000 relative MAPEagg compared to OLS) sug-
gests that the robust optimization is not a good candidate 
for WLS-based markdown optimization. Robust regression 
diminishes the impact of end-of-season markdowns and 
associated demand surges by decreasing their weights in 
the data set. Note that our conclusions are only limited 
with our empirical data (around 300 SKUs) and should be 
tested in other studies.

The positive impact of discretization on prediction accu-
racy is also confirmed by our bootstrapping study described 
in Sect. 4.4.2. For each subcollection, we estimate prediction 
error, MAPEagg , and response variance  V̂ar(D̂i) using the 
moving block bootstrapping for the regression model (1) 
trained with gwS(0.1,∞) and gwS(0.1, n∗) , respectively. Then 
the impact of discretization is quantified by percent reduc-
tion in MAPEagg and V̂ar(D̂i) , denoted by %ΔMAPEagg

= 100
MAPEagg(0.1,n

∗)−MAPEagg(0.1,∞)

MAPEagg(0.1,∞)
 a n d  %ΔVar

(
D̂

)

= 100
Var

(
D̂

)
(n∗,∞)−Var

(
D̂

)
(0.1,∞)

Var(D̂)(0.1,∞)
 . The results of the bootstrap-

ping study are depicted in Fig. 3.
Our results indicate that the discretization decreases test 

error and model variance by 5% and 6% on average. This 
means the discretization contributes to forecasting accuracy 
while reducing response variance. Hence, it prevents the 
model from overfitting the training set.

5.2 � Impact of Parameter Update with Exponential 
Smoothing

Another critical element of our WLS-based demand model 
is the calculation of prediction coefficients using exponential 
smoothing. The procedure relies on estimating the regres-
sion coefficients at every period and using them to update 

Table 2   Relative performance of WLS and WFK methods in terms 
of MAPEagg for γ = 0.2 (performance of OLS is set to 100, WFK is 
expressed in brackets)

Weight optimiza-
tion

Optimization criteria

Α N R2
WLS R2 WLS-p AIC

α∗(n∗) n∗   > 1000 (95.6) 84.4 (92.1) 78.9 (89.7)
α∗(∞) ∞  > 1000 (99.2) 130.0 (96.2) 112.1 (95.8)
0.10 n∗  83.6 (91.4) 85.5 (90.5) 85.1 (88.5)
0.15 n∗  88.6 (92.1) 83.5 (90.7) 87.4 (88.6)
0.20 n∗  113.6 (93.1) 82.7 (91.1) 81.1 (88.8)
0.10 ∞ 87.0 (93.1)
0.15 ∞ 90.0 (93.9)
0.20 ∞ 105.8 (94.8)

Fig. 3   Box plot for average test error and response variance
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prediction coefficients with the exponential smoothing in 
(9) and (10). The update parameter γ controls the speed of 
the model’s adaptation to the changing discount sensitivity 
of apparel demand. In this part of the study, we conduct 
experiments in Table 1 by setting γ to 1 to evaluate the per-
formance of a single-stage parameter calculation procedure. 
γ = 1 implies that the estimated regression parameters are 
equal to the prediction coefficients. The results of the single-
stage experiments are presented in Table 3 in terms of the 
percent decrease in MAPEagg values.

Our results imply that the performance of the procedure 
with no parameter update is significantly worse compared to 
the results in Table 2. The best performance is 5% higher 
MAPEagg than the OLS, which is obtained with the optimi-
zation over n via R2

WLS−p
 (Table 3). The accuracy difference 

between the two procedures stems from rapidly changing 
coefficients of the log-linear model, which indicates the 
existence of some level of overfitting due to extra bias in the 
demand predictions. These findings indicate that it is benefi-
cial to utilize smoothing procedures when successive predic-
tions from the demand model are required. Our findings 
extend Smith et al. [35], Smith and Achabal [33],Caro and 
Martínez-de Albéniz [6], who omit evaluating the perfor-
mance of the single-stage parameter update. Furthermore, 
the performance of continuous weight functions is signifi-
cantly inferior to the discretized weights for the case of γ = 1. 
This observation, which is similar to the results in Table 2, 
also indicates the importance of the weight discretization.

5.3 � Impact of Weight Optimization at Every Period

In this study, we suggest a demand modeling system with 
WLS estimation where the shape and discretization param-
eters of the GWFs are optimized at the beginning of a mark-
down season. This practice is motivated by the fact that the 
WLS estimation addresses customers’ changing discount 

sensitivity over the markdown period and the shape of the 
weight function is mainly driven by the customers’ purchase 
behavior. In this part of the study, we also evaluate a WLS-
based system design where the parameters of GWFs are 
optimized at every period using a GoF criterion given in the 
experimental design in Table 1. The results of these experi-
ments are reported in Table 4.

The results of our periodic weight optimization are simi-
lar to those  shown in Table 2. The highest two accuracy 
rates are obtained from AIC with the joint optimization and 
optimization over n, respectively. Comparing these results 
with the ones in Table 2 indicates that executing the weight 
optimization at every period does not contribute to the accu-
racy of the markdown system. This finding is consistent with 
the assertion that the shape parameter of the WLS method 
depends on the product’s characteristic [35].

5.4 � Impact of Markdown Applications on Demand

In addition to the impact of different WLS features on accu-
racy, we investigate the effect of markdown applications on 
total demand in a selling season for the apparel industry. To 
this end, we consider two models with the highest accuracy: 
discrete weight functions with � = 0.2 with optimization 
over n using AIC criterion ( gwS(0.2, n∗)-AIC), and continu-
ous weight function with � = 0.1 ( gwS(0.1,∞)). These two 
model configurations are benchmarked to the results of the 
OLS model. In all of these models, � = 0.2 . The impact of 
markdown on demand is estimated by calculating the percent 
difference between list price and demand, denoted by D̂i

t
(0) , 

and estimated demand for the empirical markdown levels 
at week t:

The results of these models indicate that markdown appli-
cations during the discount season increases demand by 

100 ∗
D̂k

t
(0) − D̂k

t

D̂k
t

,∀k ∈ K.

Table 3   Relative performance of WLS (WFK) methods with single-
stage parameter update (MAPEagg of OLS is set to 100)

Weight param-
eters

Optimization criteria

Α N RWLSWLS
2 R2 WLS-p AIC

�∗(n∗) n
∗  > 1000 (149.7)  > 1000 (150.7) 359.5 (152.3)

�∗(∞) ∞  > 1000 (99.2)  > 1000(94.6) 314.2 (95.4)
0.10 n ∗  185.2 (105.8) 184.4 (105.6) 184.5 (105.7)
0.15 n ∗  121.5 (105.9) 118.2 (105.0) 119.3 (105.2)
0.20 n ∗  113.0 (106.3) 105.9 (104.8) 211.3 (105.3)
0.10 ∞ 217.6 (148.7)
0.15 ∞ 138.7 (149.5)
0.20 ∞ 113.5 (149.5

Table 4   Relative performance of WLS (WFK) methods with periodic 
weight optimization and γ = 0.2 (MAPEagg of OLS is set to 100)

Weight parameters Optimization criteria

Α N R
2

WLS
R
2

WLS−p
AIC

�∗(n∗) n
∗  > 1000 (95.6) 84.7 (87.1) 80.0 (86.3)

�∗(∞) ∞  > 1000 (99.2) 89.8 (94.6) 87.0 (95.4)
0.10 n

∗ 84.4 (94.4) 84.9 (87.2) 84.4 (86.9)
0.15 n

∗ 90.6 (93.8) 83.1 (87.1) 84.1 (86.8)
0.20 n

∗ 115.2 (93.4) 82.2 (87.1) 79.2 (86.8)
0.10 ∞ 105.8 (93.1)

90.0 (93.9)
87.0 (94.8)

0.15 ∞
0.20 ∞
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35% on average. Although there is no significant difference 
between the three models in terms of the average markdown, 
our results indicate that OLS and continuous weight func-
tion lead to a larger variance for markdown impact estimates 
(Fig. 4, left).

Furthermore, we find that the impact of markdown sig-
nificantly increases over the discount season (Fig. 4, right). 
This increase can be observed from the results of the three 
models (Fig. 4, left).

6 � Conclusion

In the retail sector and the marketing literature, product char-
acteristics are recognized to be the primary drivers of the 
sales performance of products. Some products, such as fash-
ion clothes or holiday presents, are sold over a single selling 
season, and they significantly lose their value over time. At 
the end of a season, leftover inventory must be taken to stor-
age rooms or warehouses to make space for the new-season 
collection. To stimulate demand and control the associated 
costs of leftover inventory, retailers apply price markdowns 
toward the end of selling seasons to maximize their revenue 
or sell-through rates for the same inventory. Performances of 
the markdown systems depends on the accuracy of demand 
predictions.

In this study, we consider a WLS-based demand modeling 
problem for markdown optimization systems. We take two 
different weight functions from the literature and generalize 
them using the dyadic function. The shape and discretization 
parameters of GWFs are optimized using three different GoF 
criteria to obtain the best weight sequences. Performances 
of different weights are compared using point-of-sale data 
of a Turkish apparel retailer.

We find that assigning higher importance to later weeks 
of a season pays off significantly, especially with the dis-
cretization of weight functions and a simple optimization 
over the discretization parameter. In contrast, the optimiza-
tion over the shape parameters of GWFs does not create 
any additional impact. The importance of the WLS method 
stems from the prominence of the main drivers of retail 
demand, e.g., broken assortment effect or competitors’ dis-
counts, at the later stages of a selling season. Hence, these 
periods should be considered with higher weights than the 
more stable initial weeks of a season. The benefit of dis-
cretization stems from the division of the sales history of a 
product into sub-intervals with increasing weights over time. 
Our method provides an easy and effective way of achieving 
this through the dyadic function. It can be applied to other 
continuous weight functions to increase the forecast accu-
racy of demand models.

This study can be extended in multiple directions. First, 
we aim to perform discretization for different products and 
with different weight function families. Second, we are plan-
ning to consider the joint optimization of WLS and mark-
down levels over a selling season.
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